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Abstract
We propose in this paper an automatic system to detect sig-
matism from the speech signal. Sigmatism occurs when the
tongue is positioned incorrectly during articulation of sibilant
phones like /s/ and /z/. For our task we extracted various sets of
features from speech: Mel frequency cepstral coefficients, en-
ergies in specific bandwidths of the spectral envelope, and the
so-called supervectors, which are the parameters of an adapted
speaker model. We then trained several classifiers on a speech
database of German adults simulating three different types of
sigmatism. Recognition results were calculated at a phone,
word and speaker level for both the simulated database and for a
database of pathological speakers. For the simulated database,
we achieved recognition rates of up to 86%, 87% and 94% at
a phone, word and speaker level. The best classifier was then
integrated as part of a Java applet that allows patients to record
their own speech, either by pronouncing isolated phones, a spe-
cific word or a list of words, and provides them with a feedback
whether the sibilant phones are being correctly pronounced.
Index Terms: Gaussian Mixture Models, Support Vector Re-
gression, Acoustic Analysis, Sigmatism

1. Introduction
Medical research can benefit from tools developed in areas like
signal processing, machine learning and pattern recognition.
Applications can range from diagnosis and treatment to inter-
ventional assistance. Our work here focuses on the choice of
processing tools and their optimization for the classification of
a speech disorder found mostly in children.

Sigmatism, also known as lisping, is a distortion of the
phone /s/ and /z/. It is the most common type of speech dis-
order found in children. Depending on the tongue position, we
can distinguish different types of sigmatism, such as interden-
tal, dentalised and lateral. Interdental lisps happens when the
tongue stretches out between the front teeth creating a /θ/ sound
instead of a /s/ or /z/. It is the most common type of sigmatism
[1]. Dentalised sigmatism occurs when the tongue is placed
against the front teeth and air is pushed outwards. Lateral sig-
matism occurs when the tongue touches the roof of the mouth,
as if the talker was aiming to pronounce /l/, and the air is pushed
outwards laterally. During the treatment of the disorder patients
are assisted by speech therapists in weekly sessions, where they
can have a professional feedback on how well they pronounce

the target phones. At home patients would benefit from having
a tool that could provide such a feedback as it is often hard for
them to perceive differences in pronunciation.

Previous work on this task has focused on visualization
tools to assist speech therapy [2] and only a few studies [3, 4]
have been conducted on pathological speech data that could
form the basis of a complete automatic evaluation system for
this disorder. Collecting enough data of disordered speech to
train a classifier is often a hard task as it involves finding a di-
verse collection of patients. Instead in this work we train our
classification system with data we collected from speech thera-
pist students simulating the disorder, a canonical representation
of the disorder as seen by specialist in the area. To test the sys-
tem we then use a small dataset of disordered speech.

In the following section we show how we collected datasets
of simulated and pathological data, in Section 3 we present re-
sults of data analysis performed on the simulated dataset show-
ing how disorder speech spectrum components differs from nor-
mal speech. In Section 4 we present the classification systems
to be evaluated and Section 5 presents results of this evaluation
with the two datasets at a phone, word and speaker level, fol-
lowed by conclusions.

2. Data Collection
We collected two different datasets, one referred here as the sim-
ulated database, containing pathological speech data simulated
by pupils of a speech therapy school. The other dataset contains
real pathological speech data (pathological speakers database).
The simulated database, as it has a larger amount of speakers,
was used to train the classification system. The pathological
speakers database was composed of speech from just a few in-
dividuals and therefore was used for testing purposes only.

The corpora of simulated data contains speech from 39
adults (37 female, 2 male). All participants had no speech dis-
order at the time of recording and all of them were pupils of the
School of Speech Therapy of Erlangen, therefore able to simu-
late the three different types of sigmatism.

The pathological speakers database contains speech from
six teenagers and one adult. Three of the teenagers had a cer-
tain type of sigmatism and were patients being treated by the
School of Speech Therapy of Erlangen. The other three had no
sigmatism or other speech disorder. The adult had dentalised
sigmatism due to the use of a dental prosthesis. We were able
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Figure 1: Spectogram of the German word “Glas” pronounced
in four different manners: normal / interdental / dentalised /
lateral.

to record both pathological and normal speech from him, once
he removed the prosthesis.

All data were recorded with the use of a standard headset
(dnt Call 4U Comfort) and sampled at 44.1 kHz with a 16 bit
quantization. The databases were manually segmented at phone
and word level.

Each individual uttered 16 German words that belonged to
a test designed in the School of Speech Therapy of Erlangen.
The test is mainly used to initially identify problems related to
sibilant pronunciation. Each of the 16 words contains at least
one realization of /s/ or /z/, in different positions.

3. Data Analysis
Figure 1 shows the spectogram of four realizations of the Ger-
man word “Glas” from a particular speaker contained in the
simulated database. We can see that due to coarticulation not
only the /s/ segments differ from each other but also the neigh-
boring phone.

For a more detailed acoustic analysis we processed the
speech signals from the simulated database using a Hamming
window of 25.6ms duration and a frame rate of 100Hz. From
this segments we estimated the spectrum envelope through cep-
stral smoothing, using the true estimator technique [5] with a
2048 point DFT and cepstral smoothing order of 60.

Figure 2 shows the mean spectrum envelope for each pro-
nunciation type, i.e. normal, interdental, dentalised and lateral,
averaged over all speakers and over the /s/ and /z/ phones. The
deviation within speakers was not greater than 6 dB ; within
phones the deviation within speaker was not greater than 5 dB.
The high peak located in the lower frequency range, below
300Hz, in all figures corresponds to background noise present
in all recordings, probably the noise of the computer in the
recording room.

As we can see in Figure 2 the spectrum of the lateral sigma-
tism presents higher energy levels than the normal case in the
region just below 5 kHz, as can also be seen in Figure 1. For fre-
quencies higher than 5 kHz, normal speech presents higher lev-
els than all lisping cases. Above 11 kHz the lateral curve stays
below all other curves and falls faster at higher frequencies. Fi-
nally, we can see that interdental and dentalised spectrum prac-
tically coincide. This result is expected since the difference be-
tween these two misarticulations is only a slight change in the
position of the tongue. Depending on the speaker, this differ-
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Figure 2: Mean spectrum envelope of /s/ for all speakers.

ence was not always very evident.

4. Classification System
Based on the results of the data analysis described in the previ-
ous section we choose to extract the following spectrum based
type of features:

• Energy: a two dimensional feature vector containing the
energy calculated form the spectral envelope in two dif-
ferent frequency bandwidths: 5-11 kHz and 11-20 kHz.

• MFCC: a 24 dimensional feature vector containing 12
static and 12 dynamic Mel-Frequency Cepstral Coeffi-
cients (MFCC). The Mel-filterbank consists of 22 filters.
The dynamic features were calculated using a five frame
window.

• Supervector (SVector): a Mk(1 + 2D)-dimensional
feature vector containing the concatenated parameters of
a Maximum A Posteriori (MAP) adapted Gaussian Mix-
ture Model (GMM). These parameters are the weights,
mean vectors and diagonal elements of the covariance
matrix of Mk Gaussian densities constructed with a D-
dimensional MFCC feature vector. The GMM is MAP
adapted from a Universal Background Model (UBM),
which is a GMM trained with the data from all speak-
ers and all types of realization, see [6] and [7]. The pa-
rameters of the MFCC frontend were the same as those
previously described for the MFCC feature set;

• Simplified Supervector (SSVector): a Mk-dimen-
sional feature vector containing only the weight of the
densities of the MAP adapted GMM.

For the classification task we compared the following clas-
sifiers, as implemented by the WEKA toolbox [8]:

• NaiveBayes: the class conditionals are modeled as a uni-
modal Gaussian distribution;

• ViaRegression: the class conditionals are approximated
using a model tree [9];

• SVM: support vector machine classification with poly-
nomial kernel, which generally showed better results;

• AdaBoostM1: AdaBoost classifier [10] using Decision-
Stump, a decision tree with only one node, as a weak
classifier.



Feature RR(%) Rn(%) Rp(%) CL(%) AUC
Energy 75.64 61.89 79.32 70.61 0.781
MFCCs 82.46 72.62 85.33 78.98 0.789
SVector 86.00 77.19 88.93 83.06 0.830

SSVector 82.79 71.79 86.46 79.14 0.791

Table 1: Phone level results: Energy feature set using ViaRe-
gression and the MFCCs, SVector and SSVector using SVM.

Feature RR(%) Rn(%) Rp(%) CL(%) AUC
SVector 86.85 68.42 93.01 80.71 0.807

SSVector 84.89 70.51 89.69 80.10 0.863

Table 2: Word level results: SVector feature set using SVM and
SSVector using AdaBoostM1.

5. Results and Discussion
In this section we show classification results at a phone, word
and speaker level. Each table compares the best performance
obtained by the different feature sets in terms of absolute
Recognition Rate on the whole set (RR), on the normal class
(Rn) and the Pathological class (Rp) as well as the CLass-
wise averaged recognition rate (CL) and the Area Under the
receiver operating characteristics Curve (AUC). Training and
testing were conducted on the simulated data in a Leave-One-
Speaker-Out manner.

5.1. Simulated data

For the phone level results, we tested all the feature sets de-
scribed in Section 4. However, for the word and speaker level,
where the sibilants sounds were not segmented, only the Super-
vector and its simplified version were used.

5.1.1. Phone level

In total we had 2792 /s/ and /z/ phone recordings. The MFCC
filterbank covered a bandwidth between 1 kHz and 16 kHz. To
extract both SVector and SSVector we train a UBM using only
/s/ and /z/ sounds with 16 densities to cover as many different
types of pronunciation of the phones as possible.

Comparing the overall results for the two class problem in
Table 1 we see that the SVector feature set had the best perfor-
mance amongst all feature sets. The highest RR was of 86%,
for SVector using the SVM classifier. The second highest over-
all RR, 82.79%, was also obtained by the SVM, but this time
for the SSVector feature set, followed by 82.46% and 75.64%
obtained by the SVM and the ViaRegression classifiers for the
MFCCs and Energy feature set respectively. All three results
are significantly different from the Supervector best result at a
significance level of p < 0.001.

With only two static parameters the “Energy” feature set
was able to achieve a classification rate slightly above 75%
compared to a 82% obtained by the MFCC set of 24 param-
eters, that also included coefficients describing the dynamics.

5.1.2. Word level

The results on the word level were obtained using 2496 exem-
plars of recorded words. The UBM created for the Supervector
extraction was trained using the speech sounds of all recorded
words. We used more densities than in the phone level case –
128 – in order to cover other sounds and coarticulations present
in the 16 word list.

Feature RR(%) Rn(%) Rp(%) CL(%) AUC
SVector 92.56 81.08 96.39 88.73 0.887

SSVector 93.91 89.18 95.49 92.33 0.993

Table 3: Speaker level results: both feature sets using SVM.

RR(%) Rn(%) Rp1(%) Rp2(%) Rp3(%) AUC
62.83 89.18 48.64 40.54 72.97 0.844

Table 4: Speaker level results for the four class problem: SVec-
tors using SVM.

In order to put more emphasis on the higher frequencies, to
extract the MFCC features we used filterbanks that covered a
bandwidth of 5-16 kHz. This bandwidth choice seems to per-
form better because it restricts the information that is modeled
by the UBM to a more relevant frequency range.

The word level results are summarized in Table 2. The high-
est RR value of 86.85% was found using the SVM classifier for
the SVector case and 84.89% was found using the AdaBoostM1
classifier for the SSVector feature set. At the word level SSVec-
tor and SVector results are significantly different only at a level
of p < 0.050. Using the weights alone did not seem to have
a big impact on the AUC and CL values either. In fact, it im-
proved the correct classification for normal speech.

5.1.3. Speaker level

This set of experiments was performed on whole utterances. An
utterance in this case is a list of all 16 words (with silence in be-
tween) uttered by a single speaker. All in all, 148 speakers’
utterances, i.e., 37 speakers producing four different pronunci-
ations each, were available. Two speakers were not used in this
test because they were recorded in a different order.

Once again we present here classification results only for
the Supervector feature types, i.e SVector and SSVector. The
UBM was created using all recorded utterances, including
words and silence. We used 128 densities, as this number gave
better results in preliminary experiments. For the MFCC extrac-
tion we again used Mel-filterbanks that covered a bandwidth of
5-16 kHz.

The results at the speaker level is shown in Table 3. The
highest RR values for each feature set - 92.56% obtained by
the SVM classifier for the Supervector and 93.91% obtained by
both SVM and AdaBoostM1 for the Simplified Supervector -
are very similar and not significantly different from each other.

For the speaker level we additionally present results for the
classification of sigmatism type in Table 4. The AUC values in
Table 4 correspond to averages of AUC values taken over the
four classes. The recognition rates for the pathological cases
interdental, dentalised and lateral are presented as Rp1, Rp2
and Rp3 respectively. In the results of the four class problem
the Rn value was highest among all class rates, since normal
speech is the most distinctive class. Compared to recognition
rates obtained for the pathological types, the lateral recognition
rate Rp3 is the highest one. Interdental and dentalised sigma-
tism are the most difficult types to differentiate, and showed
lower rates.

5.2. Pathological speakers data

Using the best pairing of classifier/feature set for each level we
show here the results of the classification task for the patholog-
ical dataset.



Class Age Phone Word Speaker
interdental 12 12/18 11/16 0/1

lateral 14 16/18 9/16 0/1
dentalised 18 17/18 14/16 1/1

normal 7 10/18 11/16 1/1
normal 11 12/18 8/16 1/1
normal 13 16/18 14/16 1/1

dentalised 27 16/18 14/16 1/1
normal 27 10/18 7/16 0/1

Total (%) 75.70 68.75 62.50

Table 5: Pathological speakers data classification results at all
levels. For each speaker, 18 phones, 16 words and 1 list of
words were tested. The results are in fractions and the overall
result for each level is shown in percentage.

For all levels, we chose Supervector as the feature set. For
the phone and word levels, the SVM classifier was chosen. For
the speaker level, the AdaBoostM1 classifier was chosen. Both
the classifier and the UBM were trained with speech from all
39 speakers of the simulated dataset. This configuration was in-
corporated in the Java applet for automatic sigmatism detection,
illustrated in Figure 3.

Table 5 presents in each row the speakers available for test-
ing the system and their classification results for each level. The
results are shown in fractions of correctly classified items over
tested units. The overall result for each level is given in the last
row.

Overall compared to the recognition scores obtained with
the simulated data the scores obtained with the real pathological
data are smaller, but still a 75% of recognition rate could be
obtained at a phone level without the need to record disordered
patients.

Table 5 also shows that the best results are obtained at the
phone level, which is different from what was seen with the
simulated data. The fact that we created the UBM only on adult
speech might explains this result. For the phone level case, a
UBM was created only with the /s/ and /z/ phones. The other
levels’ UBMs model coarticulation and other phones as well,
which attenuates the effect of the mismatch between training
and testing data.

6. Conclusions
In this paper we have proposed an automatic sigmatism de-
tection tool for children. Our main goal was to classify the
speech sounds as normal or pathological at the phone, word and
speaker level, in order to assist patients treatment. We used
simulated data, manually segmented into these units, for train-
ing and testing. We carried out leave-one-speaker-out experi-
ments using different features and classifiers. At phone level
we achieved a Recognition Rate (RR) of almost 86%. At word
level the RR value slightly increased to 87% and at speaker
level, we achieved a RR of 94%. For the classification of sig-
matism types, i.e. four class problem, we were able to achieve
about 63% of RR at speaker level. The lowest recognition rates
were, as expected, from the dentalised and interdental classes,
both below 50%. The classification results on the pathologi-
cal dataset were not as good because of the mismatch between
training and test data, but still we achieved a 75% recognition
rate without the need of recording disordered speech data for
training. We expect then that with a larger dataset, containing
more children’s speech, we can improve recognition rates on

Figure 3: Screenshot of the main page of the Java applet

real pathological data. Using feature sets such as the Supervec-
tor one, which attempt to describe speaking style rather then
phone characteristics, allowed us to process the speech signal
without any sort of automatic segmentation step. For an im-
proved version of the system though, the use of an automatic
speech/silence segmentation module would no doubt be benefi-
cial. Once we have collected a larger database of pathological
data, we have plans to make the system publicly available in the
internet.
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