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Abstract. Intestinal crypts are multicellular structures the properties
of which have been partially characterized, both in the “normal” and in
the “transformed” development. Only in the last years there has been an
increasing interest in using mathematical and computational models to
achieve new insights from a “systems point-of-view”. However, the over-
all picture lacks of a general model covering all the key distinct processes
and phenomena involved in the activity of the crypt. Here we propose
a new multiscale model of crypt dynamics combining Gene Regulatory
Networks at the intra-cellular level with a morphological model com-
prising spatial patterning, cell migration and crypt homeostasis at the
inter-cellular level. The intra-cellular model is a Noisy Random Boolean
Network ruling cell growth, division rate and lineage commitment in
terms of emergent properties. The inter-cellular spatial dynamics is an
extension of the Cellular Potts Model, a statistical mechanics model in
which cells are represented as lattice sites in a 2D cellular automaton
successfully used to model homeostasis in the crypts.

1 Introduction

Intestinal crypts are multicellular structures are of great interest, mostly be-
cause some of their key structural and dynamical features have been quite well
characterized, both in the “normal” and in the transformed development. In the
latter some specific mutations or pathway alterations eventually lead to the ap-
pearance of colorectal cancer (CRC), one of the current major causes of deaths
in adults [16].
In particular, the lining of the small intestine is composed by a single-layer ep-
ithelium that covers the crypts of Lieberkhün, i.e. invaginations in the connective
tissue, which are the object of our model ([1] and references therein). 5 principal
types of cells reside in the crypt: i) stem cells, ii) enterocytes, iii) Goblet cells, iv)
Paneth cells, v) absorptive or enteroendocrine. Cell populations are segregated
and sorted in well-defined compartments and the (fast) turnover process is ac-
complished through a very complex coordinate migration process. In particular,



stem cells are positioned in the lower part of the crypt, within a specific niche,
intermingled with Paneth cells, and the other types of cells reside in the upper
portion of the crypt. The overall dynamics is a coordinate upward migration
of cells dividing in transit amplifying stage, moving from the stem and Paneth
cell niche toward the top of the crypt. A deeply schematized representation of
the lineage commitment tree is shown in Figure 1, while a representation of the
crypt morphology and of the main pathways involved in its dynamics is shown
in Figure 2. For a more detailed description of the intestine biology the reader
is referred to [7] and to the further references therein.
Only in the last years there has been an increasing number of attempts to use
mathematical and computational models to achieve new insights on this system
from a “systems point-of-view” and, in this regard, in [7] we reviewed the existing
models designed for the description of the morphology and the morphogenesis of
the intestinal crypts. The review highlighted the lack of a general model covering
all the distinct processes and phenomena involved in the activity of the crypt
and, so, a holistic system-based picture of the overall dynamics is still missing.
To try to fill this gap, we adopted a multiscale modeling methodology to de-
scribe the crypts. Multiscale modeling is intended to deal with the separation of
the spatial and temporal scales entailed in the distinct cellular and intercellular
processes, at different abstraction levels. Thus, the notion of hierarchy becomes
fundamental to describe all the levels of the crypt organization, from the intra-
cellular (e.g. gene regulation, intra-cellular communication), to the inter-cellular
(e.g. signaling pathways, inter-cellular communication, cell-environment commu-
nication) and the tissue level (e.g. spatial patterning, crypt homeostasis).
Setting on these premises, the aim of this paper is to propose a new multi-
scale computational model integrating a general model of gene regulatory net-
work (GRN) with a spatial/morphological model of crypt dynamics. The model
should be capable of covering a broad range of experimentally observed phenom-
ena, both from the qualitative and the quantitative point of view. Up to now our
contribution, which is developed within the RetroNet project (see Acknowl-
edgments), is the model construction. Its implementation and the subsequent
analyses are the next expected steps for the same project. By combining low and
high-level dynamics we expect that our model permits a better understanding
of key dynamical phenomena such as cell sorting, migration, niche maintenance
and general homeostasis. Furthermore, we think that the model should permit
to investigate the repercussion of different kinds of gene-level perturbations on
the overall dynamical behaviour, with reference to the emergence of cancer.

2 Modeling the internal dynamics as NRBNs

The internal dynamics of each cell is modeled with a Noisy Random Boolean
Network (NRBN) [24,26], a generalization of classical RBNs [18,17,19], a highly
abstract and general model of gene regulatory network, which was proven to
reproduce several biological properties of real networks [28,29,27]. As proposed
by Villani et al. [30], NRBNs are particularly effective in describing some of the



Fig. 1. Schematic representation of the crypt differentiation tree. Stem cells (St) are
the root of the tree, while the 4 differentiated cell types (i.e. Paneth (Pa), Goblet
(Go), enteroendocrine (Ee), absorptive or enterocyte (Ec)) are the leaves. TA stands
for transit amplifying stage, which is known to be the intermediate state between stem
and fully differentiated stages.

most relevant features of the differentiation process, in detail: i) the definition of
a specific stem cell type which can generate any other type of cell (totipotent) or
a subset of them (pluripotent) [1], usually through transit amplifying stages; ii)
the presence of a (recursive) stochastic differentiation process [15,6,13] according
to which a population of identical stem cells generate different cell types, which
in turn generate more differentiated cell types and the process repeats; iii) the
deterministic differentiation [31], according to which there exist specific signals
triggering, through the mutation of specific genes, the development of a stem
cell along a specific differentiation pathway.

Background: Classical and Noisy RBNs. For an exhaustive description of the
classical RBN model please refer to [2]. Here we will outline the key features of
the Noisy Random Boolean Network model.
Classical RBNs are directed graphs in which nodes represent genes and their
Boolean value stands for the corresponding activation or inactivation, while the
edges symbolize the paths of regulation. A Boolean updating function is asso-
ciated to each node and the update occurs synchronously at discrete time step
for each node of the network, according to the value of the inputs nodes at the
previous time step. Since the network dynamics is discrete, synchronous and
deterministic the only asymptotic states (i.e. the attractors) of the system are
cycles (and fixed points).
The rationale at the base of the development of the Noisy Random Boolean
Networks model (NRBN) is that noise plays a major role in numerous cellular



Fig. 2. Representation of the crypt morphology, with specific regard to the migration
directions and the signaling pathways involved in its dynamics. Four types of cells
are represented: Paneth cells (yellow), stem cells (green), cells in transit amplifying
stage (orange) and differentiated (i.e. Goblet, enteroendorcrine and enterocyte) cells
(light blue). All cells but stem and Paneth migrate upward. The three major signaling
pathways involved in the crypt activity are the Wnt, the Notch and the Eph/ephrins
pathways. The complex interplay among them, with reference to the repercussions on
the various phenomena in the crypt, is schematized in this figure, taken from [7].

phenomena [23,5,22,8] and, above all, it is supposed to drive the differentiation
process [21,14,12]. Classical RBNs are fully deterministic and, hence, they do
not properly take this aspect into account.
In the classical version of the RBN model cell types are associated to attractors,
given that all the different cells of an organism share the same gene network and
the differences in the cell types can be interpreted as different gene activation
patterns. Nevertheless, attractors in RBNs are, in general, deeply sensitive to
the introduction of noise, intended as perturbations of the value of one or more
nodes. To this end, Ribeiro and Kauffman proposed a more sound approach to
connect attractors and cell types [25] and, successively, Villani et al. developed
a further refinement of the idea [30], which is described in the following.
Given a specific RBN, a temporary flip3 is performed for each node in each state
of each attractors, detecting all the possible transitions from one attractor to an-
other one and, consequently, drawing the so-called attractor transition network
(ATN). NRBNs rely on the assumption that the level of noise is sufficiently low
to allow the system to reach its (new or old) attractor before another flip occurs.
This assumption is endorsed by simulations showing that the number of steps
to skip from one attractor to another one is usually small [30].
A threshold is then introduced to remove from the ATN those transitions that
are considered too rare to occur, i.e. it is reasonable to think that some “jumps”

3 When a flip in the i−th gene is performed the value σi is complemented, the flip
lasts 1 time step in the time-evolution of the network. This is indeed the smallest
perturbation which can affect a Boolean network.



are too rare to happen with a significant probability within the lifetime of the cell
and, therefore, we consider threshold-dependent ATNs. Accordingly, a Threshold
Ergodic Set (TES in brief or TESδ when δ ∈ [0, 1] is the threshold) is a set of
attractors in which the dynamics of the system continue to transit, in the long
run, due to random flips (i.e. noise) or, using the graph theory terminology, a
strongly connected component (SCC) in the threshold-dependent ATN.
Formally, let A = {α1, α2, . . .} be the finite set of attractors of a NRBN. By
performing for each attractor and gene a single flip , and by observing which po-
tentially attractor is reached, it is possible to define a weighed transition graph
among attractors. By using the normalized frequency of such switches it is possi-
ble to determine a stochastic matrix PA ⊆ [0, 1]|A|×|A| where pi,j determines the

probability of switching from attractor αi to attractor αj , and
∑|A|
j=1 pi,j = 1 for

i = 1, . . . , |A|. Given a threshold δ an attractor αj is δ-reachable from another
attractor αj if pi,j ≤ δ. Besides, αj is δ-reachable from αi if there exist a path
connecting αi to αj through transitions between pairs of δ-reachable attractors.
A set θ ⊆ A is a TESδ if (i) any αi ∈ θ is δ-reachable from any other member of
the TES. When the threshold is 0 a unique TES, which is indeed an Ergodic Sets
in the sense of [25], is usually found. When the threshold is smoothly increased
the TESs divide into smaller TESs, i.e. composed by less attractors, up to the
point in which the TESs are indeed the attractors.

The model. Here we assume that each TES of a NRBN represents a specific
cell type characterized by a peculiar noise resistance, as indicated by the rel-
ative threshold. The degree of differentiation (i.e. highly differentiated against
less differentiated) relates to the possibility for the cell in its attractor to roam
in a wider or smaller portion of the phase space (i.e. the size of the TESs which
decreases as the threshold increases).
At the best of our knowledge, in fact, less differentiated cells (e.g. stem cells)
show fewer control mechanisms against noise (e.g. copy errors) and, thus, we
characterize them by a smaller threshold allowing them for roaming in a wider
portion of the phase space [30]. On the opposite, cells in a more differentiated
state present more refined control mechanisms and, consequently, are associated
to higher thresholds which actually prevent random fluctuations [22].
In the construction of a suitable NRBNs to be used in the model, we impose some
constraints based on the current biological knowledge of real gene networks.
The main constraints concern the topology and the choice of the updating
boolean functions. In regard to the former, we design NRBNs with n genes
and scale-free topology [3]. More precisely, the fraction of nodes in the network
having k connections to other nodes follows ck−γ , for large values of k, where c
is a normalization constant and γ ≈ 2.3÷ 2.5 is a parameter whose value relates
to the structure of many biological networks, including GRNs [4]. On the other
hand, we impose a constraint on the choice of the boolean functions, based on the
biological plausibility of updating functions in GRN models [11]. In particular
we impose that all the functions must be canalyzing [20].



Fig. 3. An example of the threshold-dependent ATN and the corresponding tree-like
TES landscape. The circle nodes are attractors of an example NRBN, the edges rep-
resent the relative frequency of transitions from one attractor to another one, after
a 1 time step-flip of a random node in a random state of the attractor (performed
an elevated number of times). In this case we show three different values of thresh-
old, i.e.: δ = 0, δ = 0.15 and δ = 1. TESs, i.e. strongly connected components in
the threshold-dependent ATN are represented through dotted lines and the relative
threshold is indicated in the subscripted index. In the right diagram it is shown the
tree-like representation of the TES landscape.

Search of the suitable NRBNs. In our model we associate totipotent stem cells
with TESs at threshold 0, cells in a pluripotent or multipotent state (i.e. transit
amplyfing stage or intermediate state) with TESs with a larger threshold com-
posed by one or more attractors, while completely differentiate cells (i.e Paneth,
Goblet, enteroendocrine and enterocyte) correspond to TESs with the highest
threshold, usually composed by single attractors.
It should be clear at this point that an a priori choice of a specific NRBN does
not guarantee the existence of the TES and thresholds corresponding to the
desired differentiation tree (e.g. Figure 1). In addition, this would contradict
our choice of not imposing specific detailed assumptions concerning the interac-
tion which drive the modeled phenomena. As a consequence, we must perform
a search among plausible NRBNs to match the outlined acceptability criteria.
Once the suitable NRBNs are collected, they can be used to complete and ana-
lyze the whole model, as we shall see in the next sections.
Summarizing, we (a) generate a scale-free NRBN with canalizing boolean func-



tions, which also are generated at random. Then, we (b) sample a possibly ex-
haustive number of initial conditions for the network. We (c) find a subset of its
attractors by flipping the genes4, i.e. a subset of A which is dependent on the
number of different sampled initial configurations, and we define the matrix PA
describing the stability of all the attractors. For a δ ∈ [0, 1] we define the prune
of PA to be the matrix P≥δ whose elements p′i,j are equal to the corresponding
pi,j , the elements of PA, if pi,j > δ, and p′i,j = 0 otherwise. The prune completes
once we re-normalize the matrix, since otherwise it does not represent a correct
stochastic matrix, which is actually required in the next part of the model, as we
shall see later. As expected, different TESs are determined by different values
of δ and P≥0 = PA and P≥1 is the zero matrix. We denote with Θ≥δ the set of
TESs for matrix P≥δ. Last step (d) requires to find a set of suitable thresholds
(i.e. δ0 < δ1 < δ2 < δ3 with δ0 = 0) that implicates the perfect match between
the graph structure of the differentiation tree in Fig. 1 and that of the tree-
like representation of the TES landscape (e.g. Fig. 3). This is done by means
of a rather complicated procedure (not presented here) at the end of which all
the distinct threshold-dependent ATNs are defined. Once an NRBN with these
peculiar features has been determined, this internal model can be used to rule
several key cellular processes involved in cell division and differentiation.

The NRBN dynamics. As far as the NRBN dynamics is concerned, when the
simulation starts a random attractor of the specific TES is assigned to every
cell, according to its type. We remark that all the cells are characterized by a
structurally identical NRBN (i.e. same genome), even if their state can belong
to different portions of the state space. While time advances, if no NRBN-level
perturbations are performed the cell potentially resides in the same attractor,
unless higher-level events which shall be discussed in the next sections happen.
At this level noise is accounted as the probability p that each node has to perform
a transient flip at any time step of the dynamics. Instead of running the step-by-
step NRBN dynamics we make use of the already mapped TES landscape and
of the relative frequency of transition among the attractors. In this way NRBNs
can jump from one attractor to another one within their own TES, according to
the peculiar level of noise, in the course of the simulation time.

3 Modeling the spatial/morphological dynamics

We decided to adopt an evolution of the original Cellular Potts Model (CPM)
[9,10] on the basis of the work by Wong et al [32], who extended the original
model to a 2-D lattice with periodic boundary conditions, representing the (un-
rolled) surface of the crypt with a certain degree of approximation, accounting
for cell types and sizes.

4 To draw the exact ATN all the possible flips of all the nodes in all the states of all the
attractors should be performed [30]. Since even relatively small networks have huge
state spaces, an exact sampling is practically unfeasible. Nonetheless, it is possible
to draw the ATN up to a desired precision.



The model considers a population of k cells disposed over a 2-D lattice of posi-
tions L ∈ {1, . . . , k}n×m, i.e. a cellular automaton, where li,j = w if the lattice
position (i, j) is occupied by cell w. Cells are delimited by connected domains,

namely cell w is determined by the positions C(w)
def≡ {li,j = w | (i, j) ∈ L} . If a

set of cell types T is considered, a lattice site is naturally extended to li,j = (w, τ)
if the position is occupied by cell w, and cell w has type τ ∈ T .
In CPM cells are expected to rearrange (i.e. via cell sorting) and change shape
according to an energy gradient. Potts assigned to each lattice configuration L
a hamiltonian energy H : In×m → R denoted H(L). In practice, we arbitrarily
define H as far as we can describe a process in terms of a real or effective po-
tential energy. In the subsequent section we will describe the hamiltonian used
in our model (Eq. 7).
The time-evolution of a lattice occurs through a series of flips. Given a lattice
L, we define the flip of a position (x, y) to a cell w to be the new lattice L′, that
is

L′
def≡ L[w ← (x, y)] where l′i,j =

{
w if (i, j) = (x, y)

li,j otherwise

where l′i,j and li,j are the same position in L′ and L, respectively.
The simulation of the CPM works according to a Metropolis-like algorithm.
In the following, we denote with L(t) the lattice at time t. Given the n × m
lattice L(t), at each step a position (i, j) is chosen with uniform probability,
i.e. i ∼ U [1, n] and j ∼ U [1,m]. Moreover, a neighbour w ∈ N (i, j), uniformly
distributed on the set N (i, j) is chosen and is used as a candidate flip. The

algorithm probabilistically accepts or rejects the flip, i.e. L′(t)
def≡ L[w ← (i, j)],

according to the hamiltonian energy evaluated in both lattices. Formally, L′(t)
is accepted or rejected according to the probability distribution P(L′(t)) where

P (L′(t))
def≡ min

{
1, exp

(
−∆H
kBT

)}
(1)

for kBT > 0, and

P (L′(t))
def≡


0 if ∆H > 0
1
2 if ∆H = 0

1 if ∆H < 0

. (2)

for kBT = 0. These equations account for the change of energy induced by the
flip, the temperature T and the Boltzmann constant kB .
Intuitively, the goal is to minimize the energy of the lattice by re-ordering the
cells. A computation starting at time ts and ending at time te performs te − ts
MonteCarlo steps (MCSs) each one attempting nmk random flips, where k ∈ I is
an arbitrary constant. Once all the attempts of flips are finished, the new lattice
L(t+1) is determined as a result of all the accepted flips. Formally, such process
is a Discrete Time Markov Chain.
We remark that we introduced some modifications to Wong’s model. In detail, we
use a distinct set of cell types T = {St,TA1,TA2-A,TA2-B,Pa,Go,Ec,Ee}



which indeed corresponds to the differentiation tree that describes the crypt
lineage commitment presented in Figure 1. Besides, while in the original model
the growth and division dynamics are prefixed and occur as described above,
in the multi-scale model they are be strictly interconnected with the low-level
dynamics, i.e. thus driven by the NRBN, as it will be explained in the next
section.

4 Linking NRBNs and CPM: the multi-scale model

Three major processes of the cellular activity are ruled by the internal dynamics
of the NRBNs, hence influencing the CPM spatial dynamics: (i) the length of the
cell cycle, which is tied to the weighted length of the attractors belonging to the
corresponding TES, thus being an emergent property; (ii) the growth rate of the
size of the cell, which is assumed to linearly increase up to the doubling of the
original size, so that when the size is doubled (at the end of the cycle) the cell
divides and differentiates; (iii) the lineage commitment tree, which depends on
the structure of the landscape of the attractors and, consequently, of the TESs
so that the differentiation bifurcations consequently depend on the position in
which the dynamical trajectory of the system is when the cell divides.

Cell cycle length. In regard to the length of the cell cycle, for a cell of type
τi, whose NRBN threshold is δi, we consider its biggest TES in Θ≥δi and the
stochastic matrix P≥δi restricted to the states and the transitions regarding
only the attractors in the TES and, with abuse of notation, we still denote it as
P≥δi . As we said, P≥δi is a Discrete-Time Markov Chain (DTMC). By standard
DTMC theory if it is possible to go from each state, in any number of steps, to
every other state, then the chain is ergodic and, obviously, this is the case by
the definition of TESs. This implies also the irreducibility of P≥δi . It holds that
the stationary probability distribution πi of an irreducible DTMC in an ergodic
set of states is unique and is the fixed point of: πiP≥δi = πi, where P≥δi is the
stochastic matrix for the considered TES. For the cell of type τw we determine
the length `w of its cell cycle as

`w
def≡
∑
αj∈θ

ηjπi(αj) (3)

where ηj is the length of attractor αj . The length of the cell cycle in CPM is
then an emergent property of the NRBN dynamics. This requires the conversion
between the time-scales of the internal and external models which, at the best
of our knowledge, is a new result.

Time-scales conversion. We highlight that the difference between the time-scales
of the NRBN steps with respect to the CPM steps is the key property of the
multiscale model. Therefore, we link the time scale of the internal dynamics (i.e.
the NRBN steps) with the time scale of the MonteCarlo simulation (i.e. the



CPM steps). Along the line of Wong’s simulation experiments [32] we consider
that: (i) 10 MonteCarlo steps (MCSs) correspond to 1 hour of biological time;
(ii) the length of a cell cycle ∆tcycle is in the range 12÷ 17 hours, according to
the different cell types, that is it takes in between 120 and 170 MCSs; (iii) the
natural unit for lw is one NRBN step of the internal dynamics. So, we end up
with the following conversion

1 RBN step =
∆tcycle
`w

MCSs =
120÷ 170

`w
MCSs . (4)

Cell size dynamics. The current area of a cell w in a lattice is defined as

a(w)
def≡
∑
C(w)

a = |C(w)|a

where a is a basic quantity of area assigned to a single lattice position. This
quantity dynamically evolves in the lattice according to the performed flips.
To each cell w of type τ a standard area A(τ, w) is associated, representing
the area of any newborn cell of that kind. In addition, we introduce a time-
dependent target area A(τ, w, t) which is evolving according to the dynamics of
the underlying NRBN. The target area represents the growing cell size during its
cycle and as if it was mechanically isolated, that is with no contact interaction
with neighbor cells.
We now link the dynamical evolution of the target area A(τ, w, t) to the length
of the cell cycle `w as defined in equation (3). We assume the doubling of the
volume of a cell to happen after a complete cell cycle and we consider a linear
growth for all the cycle. We have that, if t0 is the time at which a cell starts its
cycle, then

A(τ, w, t) =

{
A(τ, w), if t = t0

A(τ, w, t− 1) + µ
[
A(τ,w)
`w

]
int

otherwise
(5)

or, alternatively

A(τ, w, t) =

{
A(τ, w), if t = t0

A(τ, w) + µ
[
(t− t0)A(τ,w)

`w

]
int

otherwise
(6)

where µ = 0 for non-dividing cells and µ = 1 for proliferative cells. Notice that
in (5) and (6) [ ]int denotes the nearest-integer function. This latter function
comes from considering an integer number of incremental pixels in the cell area
as a consequence of our lattice discretization. The hamiltonian of the system is
then defined by

H(L)
def≡

∑
(i,j)∈L

 ∑
(i′,j′)∈N (i,j)

J(τ, τ ′) (1− δ(w,w′))


+ λ

∑
τ∈T

[a(w)−A(τ, w, t)]
2

Heav(A(τ, w, t)) (7)



if li,j = (w, τ) and li′,j′ = (w′, τ ′), where N (i, j) denotes the neighborhood of
position (i, j) according to some distance metrics (e.g. Von Neumann neighbor-
hood); λ is the strength of size constraint which is proportional to the capacity
to deform the cells membrane; J(τ, τ ′) is the surface energy between cells of type
τ and τ ′, as derived from the symmetric matrix J : T × T → R, which denotes
the energy required by cell of type τ to adhere to one of type τ ′ (an adhesion
constant matrix is given, for instance, in [32])5. Biological aggregates are also
surrounded by a hosting fluid (ECM) which is usually marked with a special cell
type which has unconstrained area. Therefore, the medium target area is set to
be negative and the corresponding area constraint is suppressed by including the
Heaviside function, i.e. Heav(A(τ, w, t)).

Cell division and differentiation dynamics. Finally, when one cell cycle is con-
cluded (i.e. after `w RBN time steps) and the size of the cell has doubled its
target size (i.e. 2A(τ, w)) we assume that the cell instantaneously divides in two
on the lattice and differentiates.
For the two daughter cells the TES threshold is automatically increased to the
subsequent level, which is chosen as indicated in Section 2, implying the hypothe-
sized variation in the level of noise resistance and control [22]. The differentiation
direction and the new TES to which the daughters will belong is chosen looking
at the attractor in which the progenitor cell is found at the moment of division.
Notice that NRBNs wander in the TES space according to the particular level
of noise p introduced in Section 2. In this regard, the process of stochastic dif-
ferentiation is effectively depicted by the model.

5 Conclusions

The objective of this work was to present a novel multi-scale model describ-
ing the dynamics of intestinal crypts. The main novelties of the model can be
summarized as follows:

– First, the model describes in a original way phenomena and processes oc-
curring at different spatial/temporal scales, i.e. the low-level mechanisms
of gene regulation on the on the one hand, and the high-level phenomena
regarding the crypt homeostasis and the spatial patterning of cells, on the
other hand. Key cellular processes, e.g. cell growth and differentiation, are
at the center of a continuos exchange of information among the levels, on
the basis of the conversion of the different time scales shown in Section 4.

– Another important novelty resides on the attention casted on the concept
of emerging dynamical behaviour. The dynamics of both the low- and the
high-level models are strictly related to the emergence of particular gene
activation patterns (i.e. attractors), which eventually determines the general

5 Notice that the use of the delta function (i.e. Kronecker symbol) ensures that only
the surface sites between different cells contribute to the adhesion energy.



activity and fate of the system. In analogous models, processes such as cell
cycle or cell division are usually prefixed, depending on external parameters,
and do not emerge from the dynamics.

– The comparison of statistical analyses of ensembles of NRBNs designed with
biologically plausible structural parameters with experimental data concern-
ing the overall activity of the crypt will allow to achieve new insights on the
generic properties of such a system and on other possibly not expected bio-
logical constraints and mechanisms.

– The possibility of simulating various perturbations at the gene level allows
innovative possibilities in investigating how biological noise and mutations
can spread through complex biological system, eventually leading to func-
tional disorders and to the emergence of tumors and cancers.

Several simulations on the model are underway, with the goal of providing
a more exhaustive picture of the complex interplay that regulates the crypt
activity and homeostasis.
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