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Combining experiments and modeling, we study how the discrimination of
time intervals depends both on the interval duration and on contextual stim-
uli. Participants had to judge the temporal regularity of a sequence of standard
intervals that contained a deviant interval. We find that the performance to de-
tect the deviant increases with the number of standards preceeding the deviant
and decreases with the duration of the standard. While the effect of the stan-
dard duration can be explained by an neural network model that realizes the
concept of multiple synfire chains, the position effect is incorporated into the
model by an in-situ averaging process. Furthermore, experiments are discussed
that are critical for the predictions of the model.

Keywords: time perception; sequence experiment; synfire chains; adaptation;
serial memory system.

1. Introduction

Whenever we listen to somebody talking, or to a piece of music, we are pre-

sented with a sequence of stimuli that contain information in their duration

and timing. For instance, the phonemes /ba/ and /pa/ differ by only 25 to

50 ms in their onset time but can still be reliably discriminated. This dis-

crimination is even better when the phonemes are embedded in a sequence

that forms natural speech.

While speech is a quite complex example of a sequence including se-

mantic information, the neural mechanisms that enable discrimination of

∗This study was supported by a grant from the BMBF in the framework of the Bernstein
Center for Computational Neuroscience Göttingen, grant number 01GQ0432.
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interval durations are not well understood even for much simpler sequences

with purely temporal context, or even single intervals. Despite of numer-

ous experimental and theoretical studies on the topic,1–3 many ambiguities

even about the psychophysical regularities remain. For instance, it is estab-

lished that variability of time estimates σT increases as the intervals T to

be estimated get longer,1 but it is debated whether this increase is linear

in T (Weber’s law),4 even steeper5 or less steep than linear.6 Similarly, for

the question of whether context information enhance discrimination perfor-

mance, there is both supporting7,8 and contradicting evidence.9,10

We approach these two questions with an experimental paradigm

(Sec. 2) where participants discriminate the duration of a variable interval

from the constant standard durations of a number of previously presented

intervals. The more standards are presented before the variable interval,

the more context information is available. Varying the standard duration

between blocks, we can simultaneously assess the decrease of discrimination

performance with the interval duration. This experiment can be seen as a

critical test between two classes of models: Static models like the classical

pacemaker-accumulator system11 predict no context effects at all, while dy-

namic models such as the multiple look model7 predict an improved perfor-

mance with increasing context information. Our results support the latter

class, as performance increases at later positions of the variable interval.

In Sec. 3, we formalize the concept of the multiple look model7 that im-

proved performance results from averaging previous temporal information

to reduce discrimination errors. The model provides a statistical frame-

work for perception of both single intervals and sequences of intervals, as

judgements about sequences are based on comparison of the individual in-

tervals it is composed of. The model can be readily extended to account

for more complex aspects of time perception and has partly been imple-

mented as a biological neural network.12 This implementation is based on

general connection principles in the neocortex and does not depend on any

modality-specific properties. Finally, Sec. 4 discusses the results and gives

an outlook on further experiments.

2. Sequence experiment

2.1. Method

23 psychology undergraduates (mean age 23 years, 17 female) participated

in the experiment for partial fullfillment of course requirements. They were

naive to the purpose of the experiment, but were debriefed afterwards, in-
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cluding feedback about their performance. In each trial, a sequence of seven

intervals filled with white noise was presented via headphones. Six of these

intervals were standard intervals (STI) with a constant duration, while the

seventh was a variable interval (VTI). All intervals were separated by an

inter-stimulus interval (ISI) with a duration identical to the STI. Partici-

pants were instructed that a deviating interval could be presented at any

of the seven positions in the sequence and that if there was a deviating

interval in the sequence, it would be the only one. The task was to decide

whether the presented sequence was regular or irregular. As independent

variables, we used the position of the VTI within the sequence (position

1 to position 7), which was randomized from trial to trial, and three dif-

ferent STI durations (50 ms, 150 ms and 250 ms), which were tested in

separate blocks. The duration of the VTI was adjusted by a weighted up-

down method.13 Starting from an initial value, the duration was increased

(step-up) if the participant had judged the sequence as “regular” and de-

creased (step-down) after an “irregular” judgment. The adjustments were

done independently for each position of the variable interval. We chose the

step sizes such that the VTI converged to the .75 percentile of the answer

“irregular”. As the dependent variable, we used the 75% detection thresh-

old V75, which can be computed from the percentile by subtracting the

respective standard duration. The smaller the threshold, the better is the

performance in detecting a deviant interval.
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Fig. 1. 75% detection thresholds as a function of the position of the variable interval
for three standard durations. The dots are means over participants with standard error
bars. (Left) Data for all seven positions. (Right) Data for position one to six. The lines
are fits of this data to Eqn. 6 (see Sec. 3.2.4). The color map is the same in both figures.
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2.2. Results

Fig. 1 shows the mean values of V75 as a function of both the position

of deviant and the duration of the STI. Three effects are apparent: The

threshold increases with the standard duration, decreases from position

one to six, and finally, increases again at the last position. To confirm

these effects statistically, we performed a two-way ANOVA with the factors

position and standard duration (levels as indicated above). The ANOVA

showed highly significant effects for both factors, F (6, 132) = 35.61, p <

.001, η = 0.62 and F (2, 44) = 68.97, p < .001, η = 0.76, respectively, and

also an interaction, F (12, 264) = 8.02, p < .001, η = .27 (η is short for

partial eta-squared). These results did not qualitatively change when the

seventh position was excluded from the analysis (data not shown).

To further analyse the increase of V75 with the STI duration, we take

the mean over all seven positions within an STI duration and calculate the

Weber fraction V̄75/STI for each STI duration. The values were 1.18, 0.64

and 0.49 for S = 50 ms, 150 ms and 250 ms, respectively. Decreasing Weber

fractions are in accordance with standard theories of temporal perception1

within this range of relatively short durations.

The significant decrease of the detection threshold from position one to

six established that the number of STIs presented before a VTI indeed im-

proves the performance to detect the deviant. This rules out static models

of time perception11 that would predict no such effect. However, also adap-

tive models that predict improved performance with increasing number of

standards do not predict the decrease in performance at the final position.

3. Serial memory model

Fig. 2. Illustration of the model structure.

We now develop a model that aims to explain the findings in the present

experiment. The model composes the representation of a temporal sequence

from the representations of the individual intervals. The basic structure
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of this model (Fig. 2) is similar to the classical pacemaker-accumulator

system,11 although its elements include mechanisms of adaptivity. Each

interval is first encoded in a single-interval representation. We proposed

a neural model for this encoding,12 which we briefly present in the next

section.

The second stage in the model is a memory system with two units (MU).

These units also exist in the original model, but we make two modifications.

First, the units are arranged in serial, e.g. the representation of interval one

is first stored in MU1, but as the second interval is encoded, interval one

is shifted to MU2 and interval two is stored in MU1 and so on (cf. Fig. 2).

And second, while MU1 always contains a representation of the individual

intervals, in MU2 the representations of all presented intervals are averaged

to decrease variability.

Finally, in the third stage, the intervals represented in the two units are

compared, and whenever the difference between the two exceeds a certain

criterion, a deviant interval is detected. In this respect, the framework is

similar to classical signal detection theory.

3.1. Single interval representations by synfire chains

A neural correlate of an interval representation should consist of a neu-

ral network that is able to store a wide range of time intervals with high

precision. A neural structure that fullfills these requirements is the synfire

chain,14 a layered network of spiking neurons with feed-forward connec-

tivity. This type of network has been shown to enable stable propagation

of neuronal activity: If a sufficient number of neurons in the first layer is

activated, neurons in the second layer also start spiking after some time,

and this activation in turn is transmitted to the third pool, and so on. It

has been shown that under broad conditions on the strength and timing of

the initial activation15,16 and the model parameters,12 this propagation is

stable, and activity travels along the layers like a wave. The propagation is

linear in time and the temporal spread σL of the wave at each layer con-

verges to a constant fixed point value in the range of milliseconds,15,16 even

in the presence of synaptic background noise. Therefore, the system is able

to translate temporal information into a precise quasi-spatial code: The

time elapsed since the initiation of the wave is represented in the position

of the layer that is currently most active.12

Variability in the representation arises from the remaining temporal

spread σL in the spikes. This constant error in each layer accumulates to

smear the arrival time T of the wave at layer i to a standard deviation σT
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proportional to the square root of i. Therefore, the Weber fraction σT /T

decreases with the interval length like 1/
√

T , consistent with the results of

our experiment.

100 300 500 700

1

3

5

7

T [ms]

σ
T
 [ms]

Fig. 3. Timing error, e.g. standard deviation σT of the total runtime of an activity wave
as a function of time T for various transmission speeds of the chains. The solid curves
depict simulation data and the dotted line represents the optimal timing error σ∗

T
(T )

from Eqn. 1. It is close to the lower envelope of the simulation data.

For short intervals up to a few hundred milliseconds, this result of a

decreasing Weber fraction has also been found previous experiments.1,6

However, the steeper increase found at longer intervals (linear or even su-

perlinear with duration1,3–5) is not easily reconciled with the accumulation

of neuronal noise. For the steeper increase at longer intervals, there must

be an additional constraint. In a synfire chain, the most obvious of such

constraints is a finite chain length L. With a given mean transmission de-

lay ∆t from one pool to the next, the maximal interval to be represented

is T = ∆t · L. For longer intervals, a chain with a higher value of ∆t must

be used. We could show that the speed of the activity wave can be manip-

ulated by various model parameters,12 but that any change in the synfire

model that increases ∆t also increases the spread of the spike times σL

and thus, results in a larger timing error σT (Fig. 3).12 From Fig. 3, it is

also apparent that there exists an optimal chain for each interval of time to

be encoded, meaning that the timing error σT is minimal. As the increase

of this error with ∆t is much larger (order 3) than the increase along the
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layers (order 1/2), it is always optimal to use the entire length of the chain

with the lowest ∆T that is able to encode the current interval. The form of

the optimal timing error is12

σ∗

T (T ) =

{

σmin(∆t) ·
√

T + D for T ≤ min(∆t) · L
AT 3 + B T 2 + C T + D otherwise,

(1)

where σ2
min(∆t) is the variance of the minimal transmission delay ∆t. The

dotted line in Fig. 3 shows a fit of the simulated data to Eqn. 1, which is

close to the lower envelope of all chains.

The data in our experiment shows a decreasing Weber fraction, so all

intervals can be assumed to be encoded by the fastest synfire chain available.

We thus use the first column of Eqn. 1 to fit the data, resulting in values of

σmin(∆t) = 7.13 ms and D = 6.87 ms. The fit gives a very good description

of the data averaged over participants (97.5% of variance explained).

3.2. Memory and decision stage

3.2.1. Stochastic framework

We now formalize the adaptation in the serial memory system as an in-

formation processing model. A neural implementation of this system is in

progress. The central stochastic variable is the difference Xi(I) between the

contents of the first and the second unit, where I is the time index of the

intervals and i is the position of the deviant interval within the sequence.

We use a general number of N intervals (set to seven to fit the present

data). The intervals are presented during the first N time steps, while the

computation of the difference Xi(I) starts with the arrival of the second

interval (I = 2) and is finished after I = N + 1 to complete a total of N

comparisons.

Each interval represented by the spike patterns of the synfire chains is

denoted by Si and can be considered as a Gaussian random variable with

the actual interval duration as the mean and the variance determined by

the timing error σT (cf. Sec. 3.1). Assuming the same σT for both standard

and deviant interval, the VTI is given by

Si = Sv = N (S̄v, σ2
T ) (2)

and the STI is

Sj = Ss = N (S̄s, σ
2
T ), j 6= i. (3)
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With these definitions, we can write Xi(I) in the general form

Xi(I) = SI −
I
∑

j=1

Sj

I
. (4)

The first term is the content of MU1 (the interval presented at position

I), and the second term is the average in MU2 over all intervals presented

before position I.

The difference Xi(I) between the two units can now be used to evaluate

the current interval in MU1 based on the information accumulated in MU2:

If the difference exceeds a decision criterion K, the interval is judged to

be irregular, otherwise it is judged to be regular. The probability for an

“irregular” judgment is thus given by

P (Xi(I) > K) = Φ

(

X̄i(I) − K
√

Var(Xi(I))

)

, (5)

where Φ is the standard normal distribution function and X̄i(I) and

Var(Xi(I)) are the mean and the variance of Xi(I), respectively.

In the framework of signal detection theory, the probability of a “irreg-

ular” response given the VTI in MU1 would correspond to the hit rate,

while the probability of the same response, given an STI in MU1 would be

the false positive rate. However, we are more interested in the joint proba-

bility to judge the entire sequence of N intervals as “irregular”, since this

response determines the 75% detection thresholds S̄v in the experiment.

This probability is given by

P (“irreg′′) = 1 − P

(

N+1
⋂

I=2

(Xi(I) < K)

)

= 1 −
N+1
∏

I=2

P (Xi(I) < K). (6)

The second equality holds under the assumption that all events are sta-

tistically independent. Note that Eqn. 6 gives an implicit equation for the

75% detection thresholds S̄v at each of the positions of the VTI, given the

probability P (“irreg′′), and the set of parameters{σT , K}. P (“irreg′′) is set

to 0.75 in the current experiment, and the parameter set {σT , K} can be

used to fit the model to the experimental data.

3.2.2. Results

To use Eqn. 6 for determining the S̄v values, we must calculate the proba-

bilities P (Xi(I) > K) for each value of i and I, and thus, the means and
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variances of the respective variables Xi(I). However, we can divide all pos-

sible combinations of i and I in three groups, each of which have the same

mean and variance for all its respective members:

1) The VTI has not yet been presented at position I (i > I). In this

case, both MU1 and MU2 contain only STIs. Thus,

X
(1)
i (I) = Ss −

I
∑

j=1

Ss

I
; X̄

(1)
i (I) = 0. (7)

2) The VTI is presented at time I (i = I). Now MU1 contains the VTI,

while MU2 is the same as in 1):

X
(2)
i (I) = Sv −

I
∑

j=1

Ss

I
; X̄

(2)
i (I) = S̄v − S̄s. (8)

3) The VTI has already been presented at an earlier position than I

(i < I). MU1 contains an STI, again, but one of the intervals in MU2 is

the VTI. Thus,

X
(3)
i (I) = Ss −

I
∑

j=1

Ss

I
− Sv

I
; X̄

(2)
i (I) =

S̄s − S̄v

I
. (9)

The variance of the Xi(I) does is the same in all three cases, because

the variance σT does not differ for the STIs and the VTI:

Var(X
(1)
i (I)) = Var(X

(2)
i (I)) = Var(X

(3)
i (I)) = σT

I2 + I

I2
. (10)

Additionally, it must be noted that the criterion K can not be entirely

freely chosen. Specifically, it must be ensured that the probability of an

“irregular” judgment is below the defined P (“irreg′′) if the sequence does

not contain a deviant interval, or S̄s − S̄v = 0. Otherwise, the adaptive

method would make the detection thresholds converge to zero, as a sequence

of regular intervals would be sufficient to elicit “irregular” responses with

the defined probability. Together with Eqn. 5 and 7, this requirement results

in the following condition on K:

K > σT (1 − P (“irreg′′))
1/N ≈ 0.915 σT , (11)

where the second equality holds for P (“irreg′′) = 0.75 and N = 7.
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3.2.3. Approximation

Plugging the results Eqn. 7, 8, 9 and 10 into Eqn. 6 yields an equation that

only depends on σT , K and the detection thresholds S̄v − S̄s. This equation

can be used to fit σT and K to the experimentally obtained thresholds.

However, the relative contributions of the two parameters to the data will

not be apparent in these equations. Here, we derive an approximation where

these contributions can be more clearly seen.

Fig. 4. Distributions of Xi(I) for the three cases (see text) and two values of I.

Fig. 4 illustrates the three distributions of differences Xi(I) for two

values of I. All distributions become more peaked for later Is as a result of

the averaging process. Furthermore, the mean value of X
(2)
i always reflects

the actual difference between the VTI and the STI, while the mean of X
(3)
i

is the negative of this difference for I = 1 and decreases in its absolute

value for later I. Therefore, it is apparent that the false positive rate ǫ =

P (Xi(I) < K |Si = Ss) (shaded area in Fig. 4) is maximal for X
(1)
i .

Now assume that we have chosen the criterion K such that ǫ never

exceeds a certain value ǫ∗ for X
(1)
i . Then, from the above observations, we

see that ǫ∗ is also the upper bound for the false positive rate for X
(3)
i , so

we can consider ǫ ≤ ǫ∗ for all N − 1 false positive cases and approximate

Eqn. 6 by

P (“irreg′′) ≥ 1 − (1 − ǫ∗)N−1

(

1 − Φ

(

S̄v − S̄s − K

σT (I)

))

, (12)

where σ2
T (I) is the position-dependent variance common to all three cases,

as given in Eqn. 10. Thus, the detection threshold is given for each i by

S̄v − S̄s ≥ Φ−1

(

1 − 1 − P (“irreg′′)

(1 − ǫ∗)N−1

)

σT

√

I2 + I

I2
+ K. (13)
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From this equation, one can see that the threshold decreases with I like
√

1 + 1/T , while the steepness of the decrease is governed by σT and a

factor depending on ǫ∗, P (“irreg′′) and the number of intervals N . Addi-

tionally, there is an offset that is equal to the criterion K.

3.2.4. Fit to data

We use Eqn. 6 together with the results on mean and variance Eqn. 7, 8,

9 and 10 and the constraint on K, Eqn. 11 to fit the parameters σT and

K to the data set of the three different standard durations. The fits are

depicted as solid lines in Fig. 1. The model gives a good description of the

data averaged over participants. (see Tab. 1).

Table 1. Fit parameters for Eqn. 6 (and others, see text).

STI duration [ms] σT [ms] K/σT variance explained [%]

50 45 0.923 87
150 90 0.965 97
250 110 1.0 89

4. Discussion

We presented a model that can explain context effects on interval discrimi-

nation performance that we observed in a sequence experiment, and also the

decrease of performance with increasing standard interval durations. Apart

from the indivdiual effects, the model also explains the interaction of the

two: σT increases with the STI durations and enters as a factor in Eqn. 13.

Thus, longer STI durations increase the steepness of the adaptation curve,

and thus enhances the position effect.

Fitting Eqn. 1 to the data suggested a very high temporal spread,

σmin(∆t) = 7.13 ms. This is about one order of magnitude higher than the

values that we found to be realistic.12 However, this may be a specificity of

sequence experiments, as the Weber fractions (0.49 to 1.18) are also very

high compared to interval discrimination, where fractions between 0.05 and

0.2 are typical. A possible explanation lies in the rapid presentation of the

stimuli: The ISI of maximally 250 ms might not be long enough to allow

the intervals to be completely processed, causing an additional error.

The detection thresholds decrease with the position I of the variable

interval like
√

1 + 1/I. Therefore, even for very long sequences, the vari-
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ablity will not be eliminated, but only decreased to a value close to σT

(cf. Eqn. 13), the variability of a single interval. Therefore, the model could

be falsified by data showing a drastically different form of decrease, e.g.

linear or superlinear. Moreover, the model predicts that i) the saturation of

the detection threshold should be apparent in longer sequences, and ii) that

there should only be a limited effect in single-interval task such as inter-

val production. We already confirmed the first prediction in an experiment

with nine intervals.17

On the other hand, the model is not directly falsified by the fact that

it does not explain the end effect. Like other more complex effects,17 this

could be included by introducing a decay of the representations in the

MUs. At the final time step, no new interval is represented in MU1, so the

comparison has to rely on the partly decayed memory trace of the second-

to-last interval. Because of the decay, the variability of this representation

will be increased, which explains the poor discrimination performance at

the final position.
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