

Edinburgh Research Explorer

Expert Programmer versus Parallelizing Compiler: A
Comparative Study of Two Approaches for Distributed Shared
Memory

Citation for published version:
O'Boyle, MFP & Bull, JM 1996, 'Expert Programmer versus Parallelizing Compiler: A Comparative Study of
Two Approaches for Distributed Shared Memory' Scientific Programming, vol. 5, no. 1, pp. 63-88. DOI:
10.1155/1996/141895

Digital Object Identifier (DOI):
10.1155/1996/141895

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Scientific Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1155/1996/141895
https://www.research.ed.ac.uk/portal/en/publications/expert-programmer-versus-parallelizing-compiler-a-comparative-study-of-two-approaches-for-distributed-shared-memory(cfec463e-3ba6-4996-b962-bcd10db0bd55).html

Expert Programmer versus Parallelizing
Compiler: A Comparative Study of Two
Approaches for Distributed Shared Memory

M. F. P. O'BOYLE AND J. M. BULL
Centre for Novel Computing, Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK

ABSTRACT

This article critically examines current parallel programming practice and optimizing
compiler development. The general strategies employed by compiler and programmer
to optimize a Fortran program are described, and then illustrated for a specific case by
applying them to a well-known scientific program, TRED2, using the KSR-1 as the target
architecture. Extensive measurement is applied to the resulting versions of the program,
which are compared with a version produced by a commercial optimizing compiler,
KAP. The compiler strategy significantly outperforms KAP and does not fall far short of
the performance achieved by the programmer. Following the experimental section each
approach is critiqued by the other. Perceived flaws, advantages, and common ground
are outlined, with an eye to improving both schemes. © 1996 by John Wiley & Sons, Inc.

1 INTRODUCTION

Obtaining high performance from parallel com­
puters is the goal of both programmers and opti­
mizing compilers. Despite this obvious overlap in
concern there has been little investigation into
how each tries to achieve this goaL and whether
either has anything to learn from the other. In this
article we begin such an investigation by way of an
experiment, where the experimental method,
evaluation, and results are clearly defined. ~We
also describe and compare the underlying mecha­
nisms used by programmer and compiler writer in
their attempt to parallelize a given program.

Received October 1994
Revised February 1995

© 1996 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 5, pp. 63-88 (1996)
CCC 1058-9244/96/010063-26

Historically, scientific programmers and com­
piler writers have worked in relative isolation for
good reason: one is primarily concerned with re­
flecting a particular scientific model in a particular
program while the other is concerned with imple­
menting a language on a machine or family of rna­
chines. Both are concerned with preservation of
meaning-one from model to program, the other
from language to machine, but there is a differ­
ence in focus. Compiler writers are concerned with
a range of general program constructs while pro­
grammers are more concerned with a single pro­
gram (at a time) and its particular structure. Fur­
thermore, programmers view a program in the
light of the physical reality it is modeling, while
compiler writers see it as a particular instance of
all possible programs.

In parallel scientific computing, the emphasis
on performance brings the perspectives of pro­
grammer and compiler writer closer together. On
one hand there is a need for programmers to un­
derstand the features of a particular parallel ar-

64 O'BOYLE A~D BGLL

chitecture and of the compiler that tries to effi­
ciently map their program to it. Conversely,
compilers need to understand programs at a
higher level of abstraction than just a syntax tree if
they are going to perform well. In a sense the pro­
gram is a contract or dialogue between program­
mer and compiler, where the former tries to ex­
plain to the latter what computation is to be done
in a clear enough manner to enable efficient com­
pilation to take place. Sometimes the need for
clarity is so great that explicit language extensions
are needed to tell the compiler not just what has to
be done, but also how to do it.

The assumption that the programmer is the au­
thor of the program is by no means always true.
Often a "dusty deck" is to be ported to a new
machine, where the programmer may have to ap­
ply a process of reverse engineering to try to deter­
mine exactly what the program is trying to do be­
fore they reimplement it. This situation is due to a
lack of integration between programmers and
compiler writers. When the dusty deck was origi­
nal written, it may well have been written in a
high-leveL easy-to-understand manner. However.
because the compilers of the time could not de­
liver the required performance. the program was
hand transformed into some obscure and con­
torted form so as to best utilize the machine. In
effect, the programmer took on the role of the
compiler for most of the optimization. Cnfortu­
natelv much of this transformation is architecture
dependent and has to be undone before it can be
mapped to a new machine. However, the con­
torted version is usuallv all that remains. so inevi­
tably when a new architecture/ compiler is used, it
often gives miserable results when compared to
the previous system, hindering progress in parallel
computing.

In this situation the dialogue between program­
mer and compiler (i.e., the program) is no longer
understandable to either in its present form and
has to be rewritten before progress can be made.
Precisely how this effort should be divided is the
area of debate. In this article we try to address this
question by examining the world views of both
groups. We take a representative of each and ask
them to describe their general methodology, and
how they would implement a particular scientific
program.

The chosen program, TRED2, is a 100-line
Fortran program from the eigenvalue solver pack­
age Eispack. It reduces a symmetric matrix to

symmetric tridiagonal form using accumulating
orthogonal similarity transformations. The pro-

gram contains imperfectly nested loops, IF state­
ments, and GOTOs, and, as such, is typical of
many programs found in scientific computing. It is
long enough so as not to be trivial and extensively
studied (such as matrix multiplication), but short
enough to allow analysis of the resulting program
behavior in a reasonable time.

A description of the machine used and its pro­
gramming environment is given in Section 2. In
Section 3 both the programmer and compiler
writer* set out their approach to parallelization.
Sections 4 and 5 describe the application of the
two approaches to the implementation of TRED2
on the KSR -1. The performance of the resulting
programs is reported in Section 6 and compared
with the output of an existing commercial parallel­
izing compiler. The relation between the experi­
ments can be seen in Figure 1. As the programmer
and compiler writer are both authors of this ar­
ticle. there may be a tendency to overly agree, so,
in Section 7 each approach is critiqued by the
other. The advantages and disadvantages of the
two approaches are outlined. and common
ground between them identified. with an empha­
sis on how each scheme might be improved. We
seek a more cooperative way forward for program­
mer and compiler, and outline further research in
this area.

2 THE KENDALL SQUARE RESEARCH
KSR-1

2.1 Architecture

The target machine for the experiment is the :32-
cell Kendall Square Research KSR -1 computer
installed at the Cniversity of :\1anchester. t This is
a distributed shared memorv machine: it has a
physically distributed memory but there is exten­
sive hardware support for a single logical address
space. Each cell consists of a 20-.VIHz processor
with a peak 64-bit floating point performance of
40 :\1flop/s and a 32 :\ibyte main memory,. which
is also organized as cache memory. The cells are
connected by a unidirectional slotted ring network
with a bandwidth of 1 Gbyte/ s. The machine has

* The compiler strategy has recently been suc­
cessfully implemented in a new compiler [2].

t Upgraded to a 64-cell system after this ex­
periment was performed.

TWO APPROACHES FOR DISTRIBUTED SHARED MEMORY 65

Original Sequential Version

manual "de-spagettisation"

Modified Sequential Version

programmer

method

KAP

compiler

method

KAPVersion

FIGURE 1 Relationship between versions of TRED2.

a Unix-compatible multiuser distributed operat­
ing system.

The memory system, called ALLCACHE, is a
directory-based system which supports fully
cache coherent shared virtual memorv (SVYI).
Data movement is request driven; a memory read
operation which cannot be satisfied by a proces­
sor's own memory generates a request which tra­
verses the ring and returns a copy of the data item
to the requesting processor; a memory write re­
quest which cannot be satisfied by a processor's
own memory results in that processor obtaining
exclusive ownership of the data item, and a mes­
sage traverses the network invalidating all other
copies of the item. The unit of data transfer in the
system is a subpage which consists of 128 bytes
(16 eight-byte words). The operating system man­
ages page migration and fault handling in units of
16 Kbyte.

The KSR-1 processor has a level 1 cache,
known as the subcache. The subcache is 0.5
Mbyte in size, split equally between instructions
and data. The data subcache is two-way set asso­
ciative with a random replacement policy. The
cache line of the data subcache is 64 bvtes (half a
subpage).

There is a 2-cycle pipeline from the subcache
to registers. A request satisfied within the main
cache of a cell results in the transfer of half a sub­
page to the subcache with a latency of 18 cycles
(0. 9 p.,s). A request satisfied remotely from the
main cache of another cell results in the transfer of
a whole subpage with a latency of around 150
clock cycles (7.5 p.,s). A request for data not cur­
rently cached in any cell's memory results m a
traditional, high latency, page fault to disk.

In order for a thread to access data on a sub­
page, a copy of the page in which the subpage
resides must be present in the cache of the proces­
sor on which the thread executes. If the page is not
present, a page miss occurs and the operating sys­
tem and ALLCACHE system combine to make a
copy of the page present. If a new page causes an
old page in the cache to be displaced, the old page
is moved to the cache of another cell if possible. If
no room can be found for the page in any cache,
the page is displaced to disk. Yloving a page to the
cache of another cell is much cheaper than paging
to disk.

2.2 Parallel Programming in Fortran

Parallel execution of programs is achieved by al­
lowing a number of threads to participate in the
execution. Each thread is a flow of control within
a process. By default, the threads are scheduled
by the operating system, and may time-share on a
cell with other threads, or be rescheduled from
one cell to another during program execution.
However the allocate_cells command can be
used to reserve a number of cells for the execution
of a program. Provided the number of threads re­
quired does not exceed the number of cells allo­
cated, no time-sharing or movement of threads
will occur.

Threads are managed in a Fortran program via
a set of extensions to Fortran 77 consisting of
compiler directives and library calls. For full de­
tails see [10]. The two most important directives
are parallel region and tile. The parallel
region directive encloses a section of code thus:

66 (YBOYLE A~D BLLL

c*ksr* parallel region ([options])

[section of code]

c*ksr* end parallel region

The enclosed code is executed by a number of
threads, which is specified as one of the options to
the directive. In addition it is possible to declare
scalar variables as private variables: each thread
will then have its own copy of these variables. All
other variables are shared between threads. ln or­
der for threads to identify themselves, the integer
function i pr _mid () is provided, which returns a
thread ID in the range 0, ... p - 1 when there
are p threads executing the parallel region.

Synchronization, by semaphores, between
threads can be achieved at the most basic level by
calls to gspwt (get subpage wait) and rsp (release
sub page) which, respectively, attain and release
atomic ownership status on a specified subpage. If
a subpage is in atomic state, a thread will block on
a gspwt call until atomic status is released by an­
other thread using rsp. Library routines are avail­
able which use these constructs to implement mu­
tual exclusion (mutex) locks, condition variables,
and barrier svnchronisation. Barrier synchroniza­
tion also oc~urs at the beginning ar~d end of a
parallel region. This mechanism is used by
the compiler method to achieve parallel execu­
tion.

The parallel region, together with the syn­
chronization mechanisms described above, is a
very powerful parallel construct, but it requires
careful management by the programmer and may
necessitate significant code changes from pro­
grams requiring complicated scheduling of paral­
lel work. Since loop-based parallelism is very
common, a separate directive (tile) is supplied
which applies only to perfect rectangular loop
nests, including, or course, single loops. This re­
duces programmer effort, and the code changes
required, for a class of common parallel con­
structs. The tile directive takes the following
form:

c*ksr* tile (index_list, [options])

[loop nest]

c*ksr* end tile

This divides the iteration space of the loop nest
into a number of rectangular pieces (tiles). These
tiles are then scheduled to be executed in parallel.
The index_list allows the programmer to spec­
ify which iterators are to be tiled. The options al­
low specification of the number of threads to be
used and a choice of scheduling strategies. There
are two strategies which are of interest in this ex­
periment: slice and mod. The slice strategy
divides the iteration space into p roughly equally
sized tiles. The mod strategy divides the iteration
space into more than p tiles (where possible) and
schedules them on p threads in a modulo fashion.
For either strategy the size of the tiles can be fixed
by the programmer or determined at run-time. In
the latter case the tile size will normally be chosen
as a multiple of 16 to help avoid false sharing of
subpages. False sharing is said to occur when two
or more threads write to different words on the
same subpage, causing unnecessary data move­
ment. The options also allow scalar variables to be
declared as private variables, or as reduction vari­
ables. In the latter case results are accumulated in
local copies of the variable, and code is generated
which reduces these to a single variable at the end
of the tiled loop.

A further mechanism for avoiding false sharing
is the subpage directive. which forces a scalar
variable, or an element of an array, to be aligned
on a subpage boundary. In order to minimize data
movement, it is sometimes advantageous to force
several different tiled loop nests which have com­
mon iterators to be tiled with the same strategy, so
that any value of the iterator is always assigned to
the same thread. This facility is provided by the
affinity region directive.

3APPROACH

3.1 Compiler

The strategy employed by the compilation ap­
proach is intended to be generic for all distributed
memory architectures. In particular, the strategy
was not determined by experiment on the KSR -1,
but by considering common overheads such as
synchronization and communication. This will be
i~ marked contrast to the method employed by a
programmer.

A linear algebraic representation of the pro­
gram is used which allows the easy formulation of
transformations to optimize program behavior.
The compilation strategy can be broken into two
parts: (i) transforming the program to expose

T" 0 APPROACHES FOR DISTRIBUTED SHARED YIE:\IORY 67

maximum parallelism and (ii) mapping this paral­
lel work so as to utilize machine parallelism and
minimize overheads. To expose parallelism, it is
assumed that a parallelization tool such as Para­
frase, Parascope, or tiny will be used. For the pur­
pose of this experiment a method based upon ac­
curate data dependence analysis. loop
distribution, and scalar expansion was employed.
The method is used in automatic vectorization as
described in [16 j.

Once parallelism is exposed, the next stage is to

map it to the parallel machine. This can be done
in a computation or data-oriented manner. i.e., it
is possible to partition parallel loops or partition
arrays, scheduling them across the processors.
The approach taken here is data oriented: data
layout is determined in an attempt to be globally
optimum. The layout determines the work to be
performed on each processor and the amount of
communication.

The compiler strategy is based upon a method
described in [14] and was applied manually to the
program. The cost model consists of three cost
factors: load imbalance, interprocessor communi­
cation, and synchronization. The compiler opti­
mization problem is to exploit sufficient parallel­
ism while trying to minimize these costs. The most
important feature is that there is a separation of
concerns. The sequence of transformations the
compiler undertakes reflects the perceived relative
importance of hardware costs. Optimizing for one
cost followed by another may miss an optimum
that would be found considering them both
jointly, but it makes compiler decisions tractable
and avoids backtracking. This compiler strategy
will be modified in the light of this experiment. It is
hoped that an important product of this experi­
ment will be to show to what extent generic compi­
lation techniques are useful and what modifica­
tions are needed to successively utilize SVM in
general and the KSR-1 in particular.

Model of Computation

The model of computation used is single process
multiple data (SPMD) where each thread executes
the same program, but operates on different sec­
tions of the distributed array. One thread is sched­
uled to each processor. A local-write rule is used
where only data that are local to a processor/
thread are written to. This is verv similar to the
owner-compute rule but is slightly more relaxed in
that it allows exploitation of reduction parallelism.

To illustrate this point, consider the loop in Fig­
ure 2. If an owner-compute rule were used on this

DO I = 1 ,N
A = A +B(I)

END DO

FIGURE 2 Simple reduction example.

program then the processor owning element A
would access all of B and perform the calculation.
w·ith the local-write rule. each processor may cal­
culate a partial sum which is then read by the
processor owning B. Only local writes have taken
place, but the parallelism associated with reduc­
tion has been utilized.

An essential characteristic of this approach is
data affinity. Knowing where data reside allows
the scheduling of work so as to minimize com­
munication. The local-write rule is an example of
this-work that writes to a particular piece of data
is scheduled to the corresponding processor.
Knowledge of the layout of data combined with an
affinity approach can also help reduce interpro­
cessor communication and the number of svn­
chronization points.

Finally a compiler strategy must be scalable if it
is to be generally applicable. Any compiler-intro­
duced temporaries must fit in the appropriate part
of the memory hierarchy for all data and problem
sizes. Clearly, having a copy of all array data in
every processor is not a scalable approach. The
general strategy is as follows:

Preprocess. A program may contain GOTOs and
induction variables which make analvsis difficult.
At this stage control flow normalization and in­
duction variable recognition are performed so as
to aid the parallelization and subsequent stages. If
an array access is a simple (linear) function of a
DO loop then there exists a large body of tech­
niques to analyze and transform the enclosing
loop. Sometimes, an array access is a linear func­
tion of a loop but it is hidden by an aliasing vari­
able. Recognizing such aliasing of iterators is
called induction variable recognition and. in itself,
does not improve program performance, but does
enable subsequent transformations.

Parallelize. Only loop parallelism is investigated.
Transformations for parallelism are based upon
accurate dependence information and loop distri­
bution. An enormous amount of research has
been undertaken in this area [9, 12, 17, 18, 19],
and there still remains much to do. No original
methodology is claimed, the approach taken for
the purposes of the experiment was based on tra-

68 O'BOYLE AND Bl'LL

ditional vectorizing compiler techniques. After the
program has been ''·cleaned up'' by removing GO­
TOs, loop distribution was aggressively used to
expose parallelism. Distributing a loop containing
two statements results in two new separate loops
each with one statement. Loosely speaking, re­
ducing the number of statements in a loop in­
creases the probability that it may be executed in
parallel. The main restriction on parallelization is
data dependence. While flow (or true) depen­
dence cannot be removed, scalar expansion and
statement reordering can be used to remove some
output and anti-dependencies which are due to
storage reuse rather than any flow of information.
At this stage only uncovering of parallelism is ad­
dressed: there is no regard to how much overhead
this may lead to, as this is the concern of later
stages.

Align. In the compilation model used,. data are
eventually allocated to a processor. Alignment is
concerned with the relative orientation of arravs
with respect to a common index space and with
maximizing the number of references that are lo­
cal. lf two arrays are said to be aligned on an in­
dex, then no matter what the form of the subse­
quent data partition, corresponding elements of
each array will be mapped to the same processor.
For example, consider the arrays A (10, 10).
B (10, 10). If they are aligned, then elements
A (1, 1) and B (1, 1) will map to the same proces­
sor as will elements A (X, Y) , B (X, Y) for any val­
ues of X andY in the range 1 to 10. If a statement
of the form A (I, J) = B (I, J) + . . exists in the
program then this alignment will imply that no
nonlocal communication of B will take place. The
processor that is writing to A (I, J) will have
A (I, J) local to it due to the local-write imple­
mentation, and as B (I, J) will be mapped to the
same processor as A (I, J) . it too will be local.
Therefore, at compile-time, we know there will be
no communication necessarv. If however. the
statementwereoftheformA(I,J) =B(J,I) +

. then communication would take place given
the above alignment. IL however, B were stored
transposed relative to A then again no communi­
cation would be needed. Determining the best rel­
ative storage to minimize communication
throughout the program is the concern of this
stage.

Partition. To determine the overall data parti­
tion, parallelism and overheads are examined.
each of which will suggest a particular data parti-

tion for a program section. In [14: four techniques
are described which suggest a particular data par­
titioning to minimize a particular cost. The rela­
tive significance of each cost will determine a par­
ticular partltloning. In general there is a
trade-off-each cost will suggest a conflicting data
layout. The availability of certain post partition
transformations may also have an effect on parti­
tioning and must be considered where appropri­
ate. The basic approach is based on concentrating
any cost analysis on the "most significant" parts
of the program and determining when a cost or
transformation will have any significant impact.
Given all this local information for "sif!nificant re­
gion" a global decision is made.

Synchronization. Synchronization can be a sig­
nificant overhead in parallel programs. lt should
be proportional to the amount of communication.
but naive analysis can lead to the insertion of ex­
cess synchronization points. This is often the case
where barrier synchronization is used to ensure
that data dependence is honored. lt is possible to
exploit the SPMD model of computation used in
this strategy to reduce the amount of synchroniza­
tion. By detecting those dependencies that are en­
tirely local, synchronization points can be re­
moved.

lVlapping. After the data layout has been deter­
mined, it is necessary to generate the parallel pro­
gram based on this decision. As this is an SP:VID
implementation, there is only one fork which oc­
curs at the beginning of the parallel region. To
ensure a local-write rule, only one thread ever
writes to any particular array element. Essentially,
the range of the iterators in a thread is limited by
the bounds of the arrav elements written to. If
there is any sequential work to pel'form. one
thread will execute. while the others wait at a later
synchronization point. This approach prevents
the high cost of forks and data movement. but is
less dynamic. Whilst data cannot be statically al­
located to processors on the KSR-1. threads ean
be. If only one thread writes to a piece of data that
data will be allocated at the site of that thread and
will remain there a::; no other thread will ever wish
to have ownership of it. Hence it is possible to
exploit data locality based on alignment and lay­
out on a COMA architecture.

Nonlocal Data Reuse. Once a nonlocal arrav ele­
ment has been referenced it is desirable to store it
locally if it is to be referenced again. Such a

TWO APPROACIIES FOR DISTRIBLTED SHARED MEMORY 69

scheme exploits temporal locality by detecting
data reuse in the program. Much research in com­
piler restructuring and architecture design has
been directed at providing such a facility. Essen­
tially by examining array references, it is possible
to determine if data access is invariant of an item­
tor or combination of iterators. For a fuller de­
scription of this method see [15]. In this article,
the data reuse method is extended by considering
only those array accesses that are known to be
nonlocal. Perfectly aligned data will be local and
need not be considered.

Each of the above stages is applied in sequence
to give a parallel FORTRAN program, as shown in
Figure 3.

3.2 Programmer

The objective in this experiment, in common with
much scientific parallel programming, is to mini­
mize the parallel execution time for an existing
piece of sequential code. This minimization exer­
cise is, in general, constrained by the amount of
programmer effort available. ln this study, an at­
tempt is made to produce an efficient parallel im­
plementation while keeping code change,.;. and
therefore programmer effort, to a minimum. The
methodology described here has been developed
during approximately 18 months of programming
experience on the KSR-1. The results of applying

FIGURE 3 Flow diagram for compiler approach.

this methodology to large-scale applications are
reported in [6 J and [7]. Although in some re­
spects, notably in certain cures for some perfor­
mance bugs, the approach is machine specific.
much of it will be applicable to other SV:VI archi­
tectures. It is, however, notable different from the
approach that is required on traditionaL message­
passing, distributed memory architectures.

The approach taken here is one of incremental
parallelization, and relies heavily on the use of
profiling and program instrumentation. The pro­
gramming model adopted is essentially a shared
memory model, where by default all data are glob­
ally accessible. All code is executed by a single
thread (the master thread), unless the code is en­
closed in a parallel construct, such as a parallel
region or tile directive (see Section 2.2). The
master thread controls the svnchronization neces­
sary at the beginning and end of each parallel
construct.

The approach can be thought of as a progres­
sive reduction in parallel overheads. For a pro­
gram running on p processors. the parallel over­
head of' is defined as the difference between the
actual execution time and that predicted by a na­
ive Amdahl's Law model (where all code is as­
sumed to be parallel), i.e.,

p

where T,, is the execution time for the sequential
version and TP is the execution time for the paral­
lel version on p processors. It is helpful to classify
the overheads into a number of classes according
to their source. There seems to he no general con­
sensus as to how best to define this classification:
see [5] and [4] for two examples of classification
schemes. The classes used here are intended to be
as program oriented as possible, and therefore
largely hardware independent, because their pur­
pose is to help identify the program constructs
which are causing poor performance, rather than
hardware bottlenecks. These classes are

1. Cnparallelized code.
2. Load imbalance in parallelized sections.
3. Memory access costs. These can be subdi­

vided into remote memory accesses (move­
ment of data between cells and local mem­
ory accesses (movement of data between
levels of memory hierarchy within a cell).
l\"ote that memory access costs can either
increase or decrease when the code is para!-

70 O'BOYLE A:\D BCLL

lelized, so it is possible for negative over­
heads to occur.

4. Synchronization. This is the cost of barriers
and locks, and of any idle time caused by
contention for locks.

5. Scheduling. This is the cost of any compu­
tation necessary to determine at nin-time
which tasks are to be scheduled on which
processor.

At any stage of the parallelization process. the
strategy is to measure the contribution of the over­
head in each of the above classes for a given prob­
lem size, and to identify the sections of source
code responsible for these contributions. The pro­
grammer than attempts to reduce the most signifi­
cant overheads by changing the parallel code.
This process is then repeated until the program­
mer runs out of time or new ideas. Sometimes a
point may be reached where no further progress
seems possible. The programmer may then decide
to backtrack to a certain point in the process. and
try again in a different direction.

Naturally the programmer must take care that
any transformation of the program preserves the
program semantics. This is normally achieved by
checking the results generated by a sample input
data set. This is not entirely foolproof. however, as
although incorrect results indicate an incorrect
transformation, the converse is not true. A much
more difficult issue is whether a code transforma­
tion can affect the numerical stability of an algo­
rithm.

Initially, of course, all the overhead will be due
to unparallelized code. Thus the first few steps of
the parallelization process will consist of exposing
and exploiting parallelism in appropriate sections
of the sequential code. To aid this process, the
programmer must first obtain an easily readable
form of the code. The most important factor here
is a simple control flow structure, with as many
GOTO statements replaced by conditionals as
possible. Nonstandard language features such as
the DO WHILE statement are helpful here. Clear
visual layout (indentation of loops and condition­
als) and removal of induction variables are less
important, but may be of assistance. ""1uch of this
work (except the removal of induction variables)
can be automated using commercially available
tools. Next the programmer must identify the im­
portant parts of the code; i.e., where most of the
execution time is spent. In simple cases this can
be done by inspection, but, in general, it is neces­
sary to obtain a profile by code instrumentation.

The instrumentation can be in the form of a profil­
ing tooL such as the standard Unix utility GPROF,
or by hand-inserted calls to a timer routine. Usu­
ally the latter is more satisfactory .. if more labori­
ous. W'ith profiling information in hand, the pro­
grammer sets out to expose parallelism in the most
expensive sections of the eode. In cases where the
code consists mainly of loops, an automatic paral­
lelization tool mav be of some assistance. Current
commercially available tools, however. can only
apply a limited amount of restructuring. and for
more complex loops, or where no loops are explic­
itly present. this process must be done by hand.
Fortunately, programmers often have a very pow­
erful tool at their disposal-they can reason about
the problem at a higher level of abstruction in
terms of the algorithm which the code imple­
ments. Parallelism mav be obvious at this level
even if it is deeply obscured at the code leveL be­
cause at the algorithm level there is a more ab­
stract, higher-leveL description of tasks and data
objects. It is often easier to identify independent
tasks at the algorithm leveL rather than sets of
independent arithmetic operations at the code
level. If the algorithmic structure is not available to
the programmer, thanks to inadequate or unavail­
able documentation, then provided something is
known about the abstractions employed at the al­
gorithm level, reverse engineering of the algorithm
may be possible.

Having exposed parallelism in a particular sec­
tion of code, the programmer may be presented
with a number of choices as to how to exploit it.
Some of these options may be immediately re­
jected if it is obvious that they will incur unaccep­
tably high overheads. Having done this, the choice
will normally be determined by the amount of ef­
fort involved in terms of changes to the code. Fur­
ther analysis of overheads will decide on whether
more effort on this section of the program might be
beneficial.

Once unparallelized code is no longer the dom~
inant source of overhead. programmers can turn
their attention to reducing overheads in the paral­
lel sections of code. The part of the parallelization
strategy which is causing the most overhead is tar­
geted for alteration. The programmer now has to
find an alternative strategy that will reduce the
total overheads. This is largely a matter of reason­
ing about the program (possibly at the algorithm
level) using a rough cost model for overheads,
combined with a certain amount of inspiration.
While it is impossible to give a general "recipe"
for parallel programming, there are certain tech-

TWO APPROACHES FOR DISTRIBLTED SHARED .\1E.\IORY 71

niques, some generally applicable. others archi­
tecture specific, which often prove useful in re­
ducing the various sources of overhead.

Load Imbalance

Load imbalance may be either due to processor,;
having different amount,; of arithmetic operations
to do, or to processors spending different amounts
of time in memory acce,;s operations. In the
former case, block interleaving of loop iterators is
a common solution, provided that the number of
computations is a suitably smooth function of the
iterator. If it is not smooth, then it may be neces­
sary to devise an explicit scheduling strategy. :\!lost
run-time self-scheduling policies, the simplest of
which is first -come-first -served. are rarely a suc­
cess in scientific applications. since they tend to
destrov data localitv.

There may be a number of causes for im­
balance in memory accesses. If the pattern of im­
balance changes from one instance of the loop to
the next then it is often a symptom of false shar­
ing; see later for possible cures. If the pattern is
repeated from one instance of the loop to the next
then it may be a genuine requirement of the algo­
rithm, in which case the techniques used to bal­
ance computations may be applied, though it
should be noted that there will be a tradeoff be­
tween remote access and load imbalance. and the
optimum solution may not be load balanced.

Another possibility is that the imbalance is a
result of cache interference misses being much
more severe for some values of the it era tor than for
others. It may be possible to reorganize data
structures to avoid this.

Remote Memory Accesses

If significant numbers of remote memory accesses
are occurring then it will be necessary to deter­
mine whether they are genuinely required by the
parallel algorithm, or whether they are a result of
false sharing. In the KSR-1 memory system, false
sharing can occur at both the subpage level and
the page level. False sharing of subpages can be
overcome by padding and aligning of arrays (or
scalars) to ensure that no two threads access dif­
ferent words on the same subpage. It may also
help to avoid tiling over the first index of arrays, if
possible, or to use tile sizes which are a multiple of
the subpage size. In order for a thread to access a
subpage, the page on which the subpage lies must
be resident on the requesting cell. False sharing at
the page level can result if many threads access

subpages that reside on the same 16K page. Since
all the threads accessing a page must have space
allocated for that page. capacity misses may cause
pages to be displaced to other cell memories. with
a resulting cost when they are next required. The
solution to this problem is to reorganize the data
structures or the parallelization strategy such that.
as far as possible, each thread accesses data
which occupy a contiguous region of the virtual
address space.

If genuine communication is a significant
source of overhead, then it will be necessary to
reorder computations to improve locality. For ex­
ample, if the parallization strategy consists of a
spatial decomposition of a regular grid. with
neighbor-wise communication. then choosing
subdomains with a minimum boundary length
may reduce the number of remote data accesses.
A frequent source of communication on SV.\1 sys­
tems is sequential sections of code which may ac­
count for a small proportion of the run-time in the
sequential version. but cause a significant number
of remote accesses in the parallel version because
data are gathered by the master thread and subse­
quently scattered again.

Local Memory Accesses

Local memorv access overheads are normallv a
result of the parallelization stratet,'!· causing a loss
of locality in the subcache. The solution is to reor­
der the computations so as to maximize the reuse
of data items that are loaded into the subcache. In
scientific codes with large arrays, ensuring stride­
one memory accesses through the arravs is fre­
quently of significant benefit.

Synchronization

If synchronization costs dominate, then the pro­
grammer should check whether all synchroniza­
tion points are indeed necessary to ensure that the
program generates correct results. The KSR For­
tran tile directive implies a barrier synchroniza­
tion at the beginning and end of the tiled loop
nest. These barriers may not always be necessary,
particularly if the tiled loop is contained in an
outer loop. Loop fusion can be used to reduce the
number of synchronization points, as can the
parallel region directive combined with calls
to barrier routines.

If locks are used, then overheads can result
both from the actual calls to the lock routines. and
from any contention for the locks. If contention is
significant, then it pays to reduce the length of any

72 O'BOYLE A!';D BULL

critical sections as much as possible. If on the
other hand the overhead arises largely from the
calls themselves, it may be beneficial to reduce
the number of locks, even if this means increasing
the length of the critical section. Note that on the
KSR locks are implemented via atomic status bits
on subpages. Accessing these directly is signifi­
cantly cheaper than using the mutex lock rou­
tines.

Scheduling

Although run-time scheduling is convenient, as it
allows the number of threads to be varied without
recompiling, it can be costly. On the KSR-1,
scheduling can contribute at least as much to the
cost of the t i 1 e directive as does barrier syn­
chronization. This can be minimized by supplying
as much information as possible to the run-time
system, or even by doing the scheduling in user
code, using the parallel region directive.

Tradeoff situations are verv common-reduc­
ing one source of overhead frequently results in
the increase of another. Furthermore, the sources
of overhead may not be localized in one section of
the code-changes to one section may affect the
overheads in another. In such situations it will be
necessary to run experiments to determine which
parallel strategy is the best. The run-analyze­
modify process can be iterated, including possible
backtracking, until either performance is satisfac­
tory or other constraints force it to come to an end,
as illustrated in Figure 4.

Modify parallelisation strategy

FIGURE 4 Flow diagram for programmer approach.

4 COMPILER METHOD

4.1 Preprocessing and Parallelization

A considerable amount of preprocessing must
take place before TRED2 can be sensibly parallel­
ized. Firstly, control-flow normalization is at­
tempted where the GOTOs are replaced by condi­
tionals, leaving the structure of the code as intact
as possible. Secondly, induction variable substi­
tution takes place, which is then followed by for­
ward substitution of scalar temporaries which
hold array values. For example, consider the pro­
gram in Figure 5a, where I and L are induction
variables. All occurrences of I are replaced by
N + 2- I I and all occurrences of L are replaced by
N+l-II to give Figure 5b. A full listing of the code
after this process has been applied is given in the
Appendix.

Extracting parallelism by loop distribution is by
no means trivial; while it is relatively easy to see, in
Figures 5a and 5b, that the K loop will provide
some parallelism and its two statements do not
interfere, the I I and J loops look sequential. This
is, in fact, the conclusion of Gupta [8] when using
the Parafrase environment. However. if certain
transformations are applied. the program in Fig­
ure 5c can be obtained where the distributed J

loop is also parallel.
To get to this form requires careful analysis of

the order of access to each of the arrays. In Figure
5a statements 2 and 3, within thP K loop. do not
refer to each other and can thus be easily loop
distributed to give Figure .Sb. Each of the separate
references to Z in the code fragment of Figure 5b
refers to a different region of the array. Z (J, I) in
the first line accesses the strictly upper triangular
region of the Z array. On the next line the read of
Z (J, J) is simply the diagonaL while the remain­
ing read of Z (K, J) is to the strictly lower triangu­
lar region of the Z array. :\'one of these accesses
refer to the same region of the Z array and hence
there is no order placed on the evaluation of the
statements due to the data dependencies arising
from the access to Z.

There is no cross-iteration data dependence
with respect to G, but there is a flow dependence
from statement 1 to 2, 2 to 3, and 3 to 5. therefore
the lexicographic order 1 < 2 < 3 < 5 must be
maintained. G must be scalar expanded before
loop distribution can take place to allow each iter­
ation of the distributed J loops to refer to the cor­
rect value of G.

The only remaining variable preventing distri-

TWO APPROACllES FOR DISTRIBUTED SHARED :\1EYIORY 73

DOII=2,N DO II = 2,N DO II = 2,N

I = N+2-II
L = I-1

DO J = 1 ,N+1-II DO J = 1,N+1-I
1: Z(J,N+2-II) = D(J) 1: Z(J,N+2-II) = D(J)

END DO 2: GG(J) = E(J)+Z(J,J)•D(J)
DO K = J+1,N+1-II DO J = 1,N+1-II

1:
2:

DO J = 1 ,L 3:
Z(J,I) = D(J)

GG(J)=GG(J)+Z(K,J)•D(K)
END DO

DO K = J+1,N+1-II
4: E(K) = E(K)+Z(K,J)•D(J)

G = E(J)+Z(J,J)•D(J) DO K = J+1,N+1-II END DO
END DO DO K = J+1,L 4: E(K) = E(K)+Z(K,J)•D(J)

G=G+Z(K,J)•D(K) END DO 3:
4: E(K) = E(K)+Z(K,J)•D(J) 5: E(J) = GG (J)

END DO
5:

END DO
E(J) = G

END DO

END DO

6: G= GG(N+1-II)

END DO

2:

3:

DO J = 1 ,N+1-II
GG(J) = E(J)+Z(J,J)•D(J)

END DO
DO J = 1,N+1-II

DO K = J+1,N+1-II
GG(J)=GG(J)+Z(K,J)•D(K)

END DO
END DO
DO J = 1,N+1-II

5: E(J) = GG(J)
END DO

6: G= GG(N+1-II)

END DO

(a) Original source code. (b) After mner loop drstnbutwn. (c) Fully loop drstnbuted.

FIGt:HE 5 Parallelization.

bution of the J loop is the variable E. There is
cross-iteration antidependence from statement 2
to 4. The values written in statement 4 are read bv
statement 2 on the next iteration of the J loop. If
loop distribution were performed then statement 4
would have to precede statement 2 (see [14 j). The
output dependence from "t to 5 implies that state­
ment 4 must precede 5 if J were distributed. This
gives two partial orders on the statements. G re­
quires 1 < 2 < 3 < 5 and E requires "t < 2 < 5.
Fortunately these orders are not conflicting: giving:
a legal order (amongst others) of 1. 4. 2 .. 3 . .S. The
final loop distributed version is shown in Figure .Sc
where it is easy to determine that each of the loops
is parallel. Any one of these stages in itself is not
very complex. However. the correct ordering of
analvsis and transformation is difficult and often
defeats parallelizing compilers.

4.2. Alignment

Alignment has direct global impact: the location
of a value must be consistent throughout its po­
tential multiple usages in a program. In this exper­
iment, a restricted method is used whereby only

index reordering is considered. Alignment is ~P­
complete [11 j, so to reduce the complexity of de­
ciding the overall alignment. only the most signifi­
cant regions of the program are examined. These
are the regions where the rnost conrmunication
and computation are expected and correspond to

the deepest loop nests and largest arrays. In the
presence of conditionals static estimates based on
control-flow information are used to determine
the significant regions. A global alignment graph is
created where an arc between two indices indi­
cates that it is desirable that the indices be
aligned. After applying a variant of the index do­
main alignment algorithm [11 i. the following
global alignment. using a linear algebraic repre­
sentation. was determined for the referenced ar­
rays E. Z. D .. and GG.

This indicates that the one-dimensional arravs E

and D should both be aligned with the first index
of Z while GG should be aligned with the second.

74 O'BOYLE A:\'D BCLL

4.3 Global Data Partitioning

Partitioning analysis is applied to all the signifi­
cant statements, where each statement will sug­
gest a particular data partition. The most popular
partition(s) are stored in a set. Para is the set of the
most popular partitions if the parallelism analysis
is applied, Align is the corresponding set based on
alignment, Load that on load balance, and Region
that on the region of access. The region of access
analysis tries to determine the best data partition
based on the assumption that data reuse transfor­
mations will take place after partitioning.

Table 1 shows the results of applying each form
of analysis for the TRED2 code based on the sig­
nificant regions a,b,c,d,e (see code in Appendix).
Here 1 denotes partitioning by the first index of Z,
2 by the second index, 1 1\ 2 by both indices. and
0 by neither. As far as parallelism is concerned.
all partitions were equally acceptable. The load
balance analvsis found no suitable iterators. while
alignment preferred either the first index or the
second index but not both. Finally the region of
access preferred index 2 or indices 1 and 2. Ap­
plying the trade-off algorithm [14] to the TRED2
example gives the result that data should be parti­
tioned along the second index. I'\ one of the analy­
ses gave a unique choice, implying the certain sec­
tions have conflicting requirements. Other
programs will have different behavior. Because no
one data partition is clearly superior throughout
the whole program. it seems likely that the parti­
tioning decision in this program is not crucial, and
other factors such as later optimizations may
dominate. Once the global partition has been de­
cided it is necessary to generate the code that each
thread will execute. The remainder of this section
describes the code generation and subsequent
postpartitioning transformations.

Table 1. Partition Decisions for Each Analysis

Stat. Para Load Align Region

a 1,2,1/\2 0 1 1
b 1,2.1/\2 0 2 2
c 1,2,1/\2 0 1 1 1\ 2
d 1,2,1/\ 2 0 2 2
e 1,2,1/\2 0 1,2,1/\2 1 1\ 2
Indices
1 5 0 3 1
2 5 0 3 2
1/\2 5 0 1 2

4.4 Synchronization

Svnchronization between threads was achieved
using a barrier synchronization method. A call to
a subroutine Lock is inserted at each synchroni­
zation point, in which each thread atomically in­
crements a shared counter. After this "checking­
in," each thread calls a subroutine Spin, where it
spin-waits until a synchronization variable is un­
set by the last thread exiting the subroutine Lock.
At the time hand-coded routines were used but it
seems that the svstem barrier routines mav actu-. .
ally be faster. If a naive synchronization method
were employed, whereby a barrier is placed at the
end of every parallel loop nest, then the number of
synchronization points for the TRED2 code would
be 36. By detecting those dependencies that are
entirely locaL synchronization points can be re­
moved reducing the total to 14.

To illustrate this point consider the fragment in
Figure 6. The only synchronization point required
is following the final El'\DDO due to a flow depen­
dence on GG (J) from statement 3 to statement 5.
The flow dependencies from statements 1 to 2, 2
to 3, and 3 to 4 can be removed as all writes are
locaL the reads are aligned, and are therefore also
local. Output dependence from statement 1 to 4
and 2 to 3 can be removed due to the SP~ID im­
plementation and finally the antidependence from
2 to 4 can be removed as the writes and reads are
totally local.

1

DO J = 1, N+1-II
DO K = J+1 ,N+1-II

E(K) = E(K)+Z(K,J)•D(J)
END DO

END DO
DO J = 1, N+1-II

2 GG(J) = E(J)+Z(J,J)•D(J)

3

END DO
DO J = 1, N+1-II

DO K = J+1 ,N+1-II
GG(J) = GG(J)+Z(K,J)•D(K)

END DO
END DO
DO J = 1, N+1-II

4 E(J) = GG(J)
END DO

5 G = GG(N+1-II)

FIGURE 6 Synchronisation example.

TWO APPROACI IES FOR D!STRIBCTED SHARED YIEYIORY 75

C*KSR*PARALLEL REGION(numthreads=P)
call SUBTRED2(...)

C*KSR*END PARALLEL REGION

FIGURE 7 Parallel region.

4.5 Mapping

After the data layout and synchronization points
have been determined, it is necessary to generate
the parallel program based on this decision. The
appropriate basic program construct provided by
KSR Fortran is the parallel region construct.
Csing this construct it is possible to generate an
SP.\1D implementation.

The basic format of the parallelized and parti­
tioned code is shown in Figure ? . This will create p
parallel threads of activity, which are responsible
for the execution of the whole program: all syn­
chronization must be explicitly handled within the
code of each thread.

All of the global array data present in the se­
quential program is passed as arguments to the
subroutine SUBTRED2. The data are declared at
the beginning of the main program and again as a
formal parameter within the subroutine. These ar­
rays will be read and written to by the threads and
this will form all the communication within the
implementation. Local variables declared solely
within the subroutine will be private to each
thread (i.e. each will have it',; own copy) and will
include iterators, loop bounds. and compiler­
introduced temporaries. The range of the iterators
in a thread is limited by the bounds of the array
elements written so as to ensure local writes. For

DO J = l,N+!.-II
DO K = J ,N+l-II

Z(K,J) = Z(K,J)-D(J)•E(K)-E(J)•D(K)
END DO

END DO
DO J = l,N+l-II

D(J) = Z(N+l-II,J)
END DO

example, consider column 1 in Figure 8: Z is to be
partitioned along its second index and hence J
will be partitioned. D is aligned and will be simi­
larly partitioned.

After removing redundant constraint,; (J :::=: 1,

J :S N + 1- I I) in the first loop nest, the program
in column 2 is generated. Here xLO and xHI are
the local lower and upper bounds of array data.
The bounds on the data are calculated at the be­
ginning of the program. Some loops may have to
be executed serially even though the o;ource pro­
gram contains parallelism because of the SP.VID
model used. For instance at one point in the pro­
gram, a column of the z array can be written in
parallel. However. as the partitioning is by
column, it will be scheduled to one processor and
the available parallelism is not exploited.

All scalar variables in the source program are
privatized. This implieo; that each processoL in
parallel, muo;t do the necessary work to calculate
its value, rather than waiting for it to be calculated
on one processor and its value accessed when
needed by other processors. Although replication
increases the size of program data thio; would oc­
cur anyway within the ALLCACHE memory sys­
tem when the scalar is referenced. Furthermore a
synchronization point is avoided and interstate­
men! locality may be enhanced.

False Sharing

Although the compiler o;tratef,'Y is based upon an
extremely simple distributed memory modeL a
concession to SV.\1 was made by considering false
sharing in two instances. All global data objects
are subpage aligned by the subpage directive.
This means that each object starts on a subpage

ID = ipr_mid()+1
ZLO (ID-1)•(N/P)
DLO ZLO
ZHI ID•(N/P)
DHI ZHI
DO J = ZLO,ZHI

DO K = J ,N+1-II
Z(K,J) = Z(K,J)-D(J)•E(K)-E(J)•D(K)

END DO
END DO
DO J = DLO,min(N+1-II,DHI)

D(J) = Z(N+1-II,J)
END DO

FIGURE 8 Mapping.

76 O'BOYLE AND BULL

DO K = DLO,DHI
SCALE = SCALE + DABS(D(K))

END DO

DIMENSION PSCALE (16,P)

PSCALE(1,ID) = O.ODO
DO K = DLO,min (DHI,H+1-II)

PSCALE(l,ID) = PSCALE(1,ID) + DABS(D(K))
END DO
call Barrier()
DO I = l,P

SCALE= SCALE+ PSCALE(l,I)
END DO

FIGLRE 9 Partitioned reduction.

boundary, and no two objects reside on the same
subpage. This helps remove false sharing by en­
suring that partitioning of data occurs along sub­
page boundaries. Reduction parallelism was ex­
ploited in a modified manner to that described in
[13] so as to avoid false sharing. The source pro­
gram shown in column 1 of Figure 9 is translated
into the form in column 2.

Each thread writes the partial sum of the locally
available elements of D into its local element of the
global PSCALE array. PSCALE is expanded to a
16 X P array to prevent false sharing. Sixteen ele­
ments reside on a subpage, and this expansion
can be seen as padding the array such that each
thread writes to a separate subpage. \V'ithout this
expansion, up to 16 processors would be trying to
gain write ownership of one subpage at any one
time. Once each partial sum is calculated, every
processor accesses every other processor's partial
sums and accumulates them into a local private
copy of the scalar scale. Thus the reduction par­
allelism available has been exploited without in­
curring false sharing at the expense of one barrier.

4.6 Data Reuse

Once a nonlocal array element has been refer­
enced, it is desirable to store it locally if it is to be

DO J = ZLO,ZHI
DO K = J,N+1-II

Z(K,J) = Z(K,J)-D(J)•E(K)-E(J)•D(K)
END DO

END DO

referenced again. Such a scheme exploits tempo­
ral locality by detecting data reuse in the program.
For a fuller description of this method see [15;. [n
this article, the data reuse method is extended by
considering only those array accesses that are
known to be nonlocal. Perfectly aligned data will
be local and need not be considered. For exam­
ple, consider the program fragment shown in
column 1 of Figure 10.

References D (J) and E (J) are local as they are
aligned with the second index of Z. The nonlocal
references D (K) and E (K) are invariant of iterator
J. On applying the data reuse transform, the pro­
gram shown in column 2 is derived. This reduces
the number of nonlocal array accesses by 2 X

(ZHI - ZLO + 1). The applicability of the region
of access analysis depends on the ability to exploit
data reuse. This postpartition transformation is
therefore integral to the partitioning algorithm de­
scribed earlier.

Spatial Locality

The main shortcoming of the compiler approach
is due to inaccuracies in the assumed architecture
model. Divergence has already taken place when
considering false sharing in compiling for reduc­
tion parallelism. While the KSR-1 is a distributed
memory machine with a single address space it

DO K = ZLO,H+1-II
TD = D(K)
TE = E(K)
DO J = ZLO, min (ZHI,K)

Z(K,J) = Z(K,J)-D(J)•TE-E(J)•TD
END DO

F.Nnnn

FIGURE 10 Data re-use transformation.

TWO APPROACHES FOR DISTRIBUTED SHARED MEMORY 77

also has the additional features of cache-only,
SVM.

The compiler model assumes that the onlv
communication overhead is between processor;,
and that it is a simple function of the amount of
remote data accesses. Both these assumptions are
not correct. The main impact on the compiler
strategy is that striding through memory in the
correct direction is important. In other words.
spatial locality is significant, but is currently com­
pletely ignored in the data reuse section,. where
only temporal locality is considered. Furthermore.
the main overhead is not due to increased in~
terprocessor communication, but rather because
of ~arg~ intra processor communication. ~ot taking
stnde mto account means that there will be a sub­
cache miss when accessing each element of z in
four of the five significant regions. The main
memory, or cache, is large enough so that, even
when striding in the wrong direction, the cache
lines (or sub pages) will remain local until reused.
However, this is not true of the subcache. which is
much smaller. .

Ideally interprocessor and intraprocessor com­
munication should be optimized using a hierar­
chical memory model as described in [15]. How­
ever, since at present this often induces excessive
loop overhead, a more simplistic method was
used, where loops are reordered such that the in­
nermost iterator strides through memorv with a
step of one. Loop interchange can be applied on
all the statements with stride problems and is a
postpartition transformation, i.e., it does not af­
fect any of the previous sections. In particular it
ha~ no eff~ct on data partitioning and mapping.
This techmque was used, with and without inter­
leaving, to give two new programs. Overall the
data sizes interleaving proved expensive. Inter­
leaving should have improved performance, but it
seems that the overhead due to the mod operator
removed any benefit due to better load balancing.
A mor~ efficient implementation of interleaving
may give better results, but due to time con­
straints, this was not further investigated in this
article.

5 PROGRAMMER METHOD

Starting Point: Control flow normalized code
with variable substitution, produced as described
in Section 4.1. Working from a control-flow nor­
malized version is important as it is much easier to

build a mental picture of the control structure of
the code. _The variable substitution is less impor­
tant, but It allows an easier evaluation of memorv
access patterns. ·

Step 1: Identifv the "important'" sections of the
code. .

TRED2 has no subprograms, so this step reduces
t~ identifying the loop nests which take the longest
time_ to execute. This is achieved by adding timing
routmes round every loop in the code. There are
n:o loops at the outermost level. Both contain sig­
mficant amounts of work, but a cursorv examina­
tion shows that data dependencies exist between
iterations of these loops. Both are sufficientlv
co~plex that restructing the code to expose parat"­
lehsm would be a formidable task. If this is indeed
possible, it could only take place without unrea­
sonable effort by restructuring at the algorithmic
level, as the complexity of analvsis and transfor­
mation required at the .code lev~l would defeat all
but the most dedicated programmer. At the next
level of loop nest, three loop nests account for over
99% of the execution time on a single processor
for problem size N = 400. These are shown in
Figure 11.

The inner (K) loops in Fragments 2 and 3 (but
not that in Fragment 1) could be parallelized as
they stand. However, the timing results and ana­
ive operation count suggest that unless N is verv
large (many thousands), the granularitv of thes~
loops is too small for the KSR -1 to ac.hieve anv
speedup, because a tile directive is imple~
mented via barrier synchronizations at both the
beginning and the end of the loop. (Here program­
mers are appealing to experience-they know that
the overhead incurred in tiling a loop is.~ 1 ms. If a
loop executes in less than ~ 1 ms it is certainlv not
worth parallelizing.) In some circumstance~ the
repeated synchronization is not necessarv and
this is a drawback of the t i 1 e directive. I~ 'these
cases, however, the synchronization would be
necessary to ensure correct results. Thus, to
achieve any parallel performance, the program­
mer must concentrate on parallelizing the J loops.

Step 2: Try to expose parallelism with an auto­
matic tool.

The automatic parallelization tool KAP is applied
to the code and its treatment of each of the three
fragments observed. KAP successfully parallelizes

78 O'BOYLE A:\D BULL

Fragment 1

Fragment 2

Fragment 3

DO J = 1, N+1-II
Z(J,N+2-II) =D(J)
G =E(J) +Z(J,J)•D(J)
IF (II+J .LE. N) THEN

DO K = J+1 ,N+1-II
G =G +Z(K,J)•D(K)
E(K) =E(K)+Z(K,J)•D(J)

END DO
END IF
E(J) =G

END DO

DO J = 1,N+1-II
DO K = J ,N+1-II

Z(K,J) =Z(K,J)-D(J)•E(K)-E(J)•D(K)
END DO
D(J) =Z(N+1-II,J)
Z(N+2-II,J) =O.ODO

END DO

DO J = 1,1-1
G =O.ODO
DO K = 1, I-1

G =G +Z(K,I)*Z(K,J)
END DO
DO K = 1,1-1

Z(K,J) =Z(K,J) -G•D(K)
END DO

END DO

FIGURE 11 Important fragments in TRED2.

the J loop of Fragment 3 and (after trying a variety
of combinations of options) the K loop of Frag­
ment 2, but nothing in Fragment 1.

Step 3: Exploit parallelism in Fragment 3.

Following KAP, a tile directive is added to the J

loop of the third fragment as it stands, using the
default strategy (slice). The scalars G and K are
declared as private variables to ensure that each
thread has its own copy of them. This reduces the
execution time for this loop by a factor of 6.5 on
eight cells for this loop (N = 400). The default
choice of tile size, however, is always a multiple of
16, and since the upper loop bound is increasing
by one each time the loop is executed, this can
result in some poor load balancing. Thus the tile
size was set to be r i - 1/Nl, giving a reduction in
execution time of 7. 7 times on eight cells for this
loop.

Step 4: Expose parallelism in Fragment 2.

Attention is now concentrated on Fragment 2. as
this appears easier to deal with than Fragment 1.
The reason KAP fails to parallelize the J loop is a
data dependence on array D. However, since each
iteration of the J loop writes to D (J) but sub­
sequent iterations only read D (J + 1) . . . D (N-

1 +I I) , the loop can be split as shown in Figure
12.

The double-nested loop, which contains most
of the work in the fragment, is now clearly paral­
lelizable. Based on the known cost of tiling a loop,
the other loop contains too few arithmetic opera­
tions to be worth parallelizing, and so remains se­
quential.

Step 5: Exploit parallelism in Fragment 2.

The new double loop has a triangular iteration
space, and therefore slice strategy would result in
load imbalance. Ylod strategy (which performs a
block interleaved partitioning of the loop) is used
to improve the load balance. The tile size is cho­
sen by experiment: although a tile size of 1 would
give the best load balance, there is an overhead
associated with tile generation which is propor­
tional to the number of tiles. Thus the program­
mer searches for the value which minimizes the
execution time for this loop. For N = 400, values
in the range 1 to 20 are considered, as it is soon
apparent that the optimal value lies between these
two. unfortunately there are now some nonlocal
memory accesses to the array Z, because the par­
titioning strategies for Fragment 2 (mod) and
Fragment 3 (slice) conflict. Since the dominant
overhead is now the unparallelized code of Frag­
ment 1, the programmer refrains from any further
optimization of Fragment 2 at this stage. All three

DO J = 1 ,N+1-II
DO K = J ,N+1-II

Z(K,J) =Z(K,J)-D(J)*E(K)-E(J)•D(K)
END DO

END DO
DO J = 1 ,N+1-II

D(J) =Z(N+1-II,J)
Z(N+2-II,J) =O.ODO

END DO

FIGURE 12 Fragment 2: parallel version.

TWO APPROACHES FOR DISTRIBCTED SHARED MEMORY 79

fragments reference the two-dimensional array Z,
which is by far the largest data object in the pro­
gram, so the programmer will want to choose tiling
strategies for all three fragments which give sensi­
ble data access patterns for Z.

Step 6: Expose parallelism in Fragment 1.

Fragment 1 is the hardest of the three to parallel­
ize; it is not at all easy by inspection to spot a
transformation which exposes parallelism. How­
ever the problem can be simplified with the follow­
ing observations:

The statement

Z(J,N+2-II) =D(J)

writes to column N+ 2- I I of Z. but the rest of
the loop only writes to columns 1 to N+ 1- I I.
Also the array D is not written to in this frag­
ment. Thus this statement can be distributed
into a separate loop.

The conditional

IF (II+J .LE. N) THEN

END IF

is superfluous, because it is implied bv the
bounds of the loop it contains.

Thus the fragment can be rewritten as in Figure
13 and the programmer can concentrate on the
second J loop. It is still not clear how to proceed
from here, so a decision is made to view the prob­
lem at the algorithm level rather than at the code

DO J = 1, 1+1-II
Z(J,I+2-II) = D(J)

EIDDO
DO J = 1, 1+1-II

G = E(J)+Z(J,J)•D(J)
DO K = J+1 ,1+1-II

G = G+Z(K;J)•D(K)
E(K) = E(K)+Z(K,J)•D(J)

EIDDO
E(J) = G

EIDDO

FIGURE 13 Simplified Fragment 1.

DO J = 1, 1+1-II
Z(J,I+2-II) =D(J)
G =E(J)
DO K=1,J

G=G+Z(J ,K)•D(K)
EIDDO
DO K=J+1,1+1-II

G=G+Z(K,J)*D(K)
EHDDO
E(J) =G

EIDDO

FIGURE 14 Fragment 1: parallel version.

level. This is a linear algebra kernel code. so it
may be possible for the programmer with suffi­
cient experience in this area to work out what this
loop is doing in terms of matrix/ vector operations.
A "paper run" of the fragment with N=4 is carried
out, and the pattern of accesses to E, D, and Z
leads the programmer to recognize that this loop
has the form of adding a matrix-vector product to
a vector. If the subarrays D (1: N + 1- I I) and
E (1: N+ 1- I I) are thought of as vectors d and e,
then this loop has the forme:= e + Yd for some Y.
Further inspection shows that if the square subar­
ray Z (1: N+1-II, 1: N+1-II) is thought of as a
matrix Z, and the strictly lower triangular part of Z
denoted by L and the diagonal part by D, then
Y = L + D +LT. lt is now evident that this loop is
parallelizable. since the product of each row of the
matrix L + D + LT with d can be computed inde­
pendently. With this in mind, the fragment is re­
written as in Figure 14, where the two J loops have
been fused together again. The J loop can be par­
allelized. Note that use of G here as a temporary
variable is not necessary to exploit parallelism.
However, it prevents false sharing of subpages of
the array E. Note that this is the only one of the
three fragments where false sharing is a potential
problem, since it is the only one where writes to a
one-dimensional arrav occur. In the other two
fragments all the writes in parallel loops are to Z,
and since it is the second index which is parti­
tioned, there is no possibility of significant false
sharing.

Step 7: Exploit parallelism in Fragment 1.

A t i 1 e directive is added to the J loop. Although
this loop is load balanced in terms of floating point
operations, it is not balanced in terms of local/

80 O'BOYLE AND BLLL

nonlocal memory accesses, because the Jth itera­
tion makes J accesses to a row of Z, which are
mostly nonlocal, and N + 1-I I-J accesses to a
column of Z, which are all local. Thus mod strat­
egy is used to achieve block interleaving.

Step 8: Data access patterns.

Use of timers, hardware monitoring information,
and an event logging tool (GIST) shows that by
this stage the overheads are no longer dominated
by unparallelized code, but by load imbalance
and remote memorv accesses. Both of these can
be reduced by considering data access patterns.
The array Z is the only two-dimensional array, so
it is only necessary to consider accesses to Z when
optimizing for data alignment. In Fragments 1
and 2 it is necessary to distribute Z by interleaved
blocks of columns in order to achieve load bal­
ance. Thus the obvious choice is to use inter­
leaved blocks of columns for all three parallelized
loops. To ensure that the same columns of Z are
always accessed by the same processor, an affin­
ity region directive is added to the code, which
forces the mod strategy to be used on all tiled
loops inside it. The programmer also needs to
choose a sensible block size. Experiment shows
that a block size of 4 is optimal for N=400. Very
small block sizes (1 or 2) give the best load bal­
ance, but produce substantial overheads associ­
ated with tile generation. For larger N the block
size should be scaled with N so that the number of
blocks is constant with problem size. Thus a heu­
ristic block size of max(4,N/100) is chosen. This
could possibly be refined, given additional pro­
grammer effort.

Step 9: Alternative parallelization of Fragment 1.

A large proportion of the remaining overheads are
associated with Fragment 1. At least part of the
reason for this is that, having exposed parallelism,
the loop

DO K=l, J
G=G + Z (J, K) *D (K)

END DO

makes nonunit strides through array Z, resulting
in an increased subcache miss rate. In order to
preserve unit stride through Z, a complete rethink
of the parallelization strategy for this fragment is
undertaken, and an alternative strategy is chosen.
It may be noted that this fragment computes addi-

tive updates to the array E. It is therefore possible
to accumulate the updates computed by each
thread in a local copy of the array E. and then
perform a reduction operation to add in all the
updates to E itself. In other words, the original J
loop can be made parallel by making private cop­
ies of E. This technique is frequently used in N­
body problems for computing the sum of forces on
particles due to interactions with other particles,
as a means of exploiting reduction parallelism
with little synchronization required. The resulting
code is shown in Figure 15, where we must ensure
that the arrav ETEMP is initialized to zero at the
start of the program. The first J loop may then be
tiled as before, keeping it within the affinity re­
gion to maintain data locality and good load bal­
ance. Note that KSR Fortran does not support pri­
vate arrays, and so the programmer is forced to
use array expansion and indexing by process
number. Thus for the first time the code is no
longer a sequential code with annotations. as it
now makes explicit reference to thread IDs and
the number of threads being used.

The amount of work in the second loop is pro­
portional to both the problem size Nand the num­
ber of threads p. It is possible to parallelize this
loop, but it will only be worth doing so if the
amount of work it contains is sufficient. A simplis­
tic analysis suggests that it should be parallelized
if N(p - 1) > c for some constant c. To parallelize
this the loop order is inverted and a temporary
scalar variable is introduced to minimize false
sharing, as shown in Figure 16.

DO J = 1, L
Z(J ,L+1) =D(J)
IAM=IPR_MID()
G=Z(J, J)•D(J)
DO K=J+1,L

G=G+Z(K,J)•D(K)
ETEMP(K,IAM)=ETEMP(K,IAM)+Z(K,J)*D(J)

END DO
ETEMP(J,IAM)=ETEMP(J,IAM)+G

END DO
DO IP=O,NTHREADS-1

DO J=1,L
E(J)=E(J)+ETEMP(J,IP)
ETEMP(J,IP)=O.

END DO
END DO

FIGURE 15 Fragment 1: altemative parallel version.

TWO APPROACHES FOR DISTRIBUTED SHARED MD10RY 81

DO J=1,L
G=O.O
DO IP=O,NTHREADS-1

G=G+ETEMP(J, IP)
ETEMP(J,IP)=O.

END DO
E(J)=E(J)+G

END DO

FIGURE 16 Fragment 1: parallelized reduction loop.

Note that the J loop is placed outermost to
avoid the unnecessary synchronization which
would result if it were innermost. This gives non­
unit stride through ETEMP, but since each thread
accesses only N elements of ETEMP, and 1V is
much smaller than the number of words in the
subcache, this should not result in any loss of per­
formance due to subcache misses.

Since this loop nest has a rectangular iteration
space and makes no reference to Z, there is no
need for it to be within the affinity region.
Therefore to minimize false sharing and tiling
overheads the J loop is tiled using slice strategy.
The constant c is determined by experiment-a
value of 1,000 is found to be satisfactory. I\ote
that this parallelization strategy requires s~me ex­
tra memory (for the local copies of E). The amount
required is only O(Np), compared to O(N2) for z,
and is therefore not a significant added demand
on memorv.

Step 10: Alternative parallelization of Fragment
3.

Since the J loop of Fragment 3 has a rectangular
iteration space, the only reason for tiling it with
mod strategy is to maintain data locality. How­
ever, since Fragment 3 is contained within a sepa­
rate outer loop from Fragments 1 and 2, the re­
sulting reduction in nonlocal memory accesses is
not very significant. On the other hand, the use of
mod strategy increases the overhead associated
with tile generation, and causes a small amount of
load imbalance, particularly when the length of
the loop is small. Thus there is a trade-off situa­
tion, and experiments show that slice strategy, as
described in Step 3, is slightly more efficient for
this fragment, and so is readopted.

Step 11: Additional parallelism in Fragment 2.

In Step 4 the J loop of Fragment 2 was split to give
two loops, of which the first was tiled, but the sec-

ond remained sequential. The decision not to tile
the second loop was based on the amount of com­
putation it contains. However, when the code is
run using more than one thread, the cost of this
loop increases, as it then produces a significant
number of nonlocal memory accesses. If this loop
is tiled (using mod strategy within the affinity
region) this does not eliminate nonlocal ac­
cesses, but they are now distributed between
threads, thus resulting in improved performance.

6 EXPERIMENTAL RESULTS

In this section we present the results of running
various versions of TRED2 on the KSR-1. Results
are given for three versions:

1. Compiler Version developed by the ~~com­
piler" in Section 4.

2. Programmer Version developed by the pro­
grammer in Section 5.

3. KAP Version obtained by preprocessing the
original source code with KAP.

All versions were compiled with the -r8 flag to
ensure that double precision real variable:-; are
handled as 64-bit floating point numbers. (\fith­
out this flag, they are handled as 128-bit num­
bers, and floating point arithmetic is done in soft­
ware). The KAP version was preprocessed with
the flags -popt=2-autotile=all (see [10]).
The resulting programs were then run using the
allocate_cells command to ensure one
thread per cell execution and to avoid any time
slicing with other processes in the machine. The
initialization of the arrays and the printing of
results are excluded from the timings. Table 2
shows the execution time in seconds for the three
versions, for problem sizes N = 128, 256, 512,
1,024, and 2,048 respectively, with the exception
that the KAP version was not run for the largest
problem size, owing to the excessive time that
would be required to do so.

Figures 17 to 19 present the same results for
N = 128, 512, and 2,048, in terms of temporal
performance in solutions per second, which for
TRED2 is simply the reciprocal of the execution
time. The naive ideal performance is computed by
multiplying the performance of the original se­
quential code by the number of processors; this is
analogous to linear speedup on a speedup dia­
gram.

82 O'BOYLE Al'\D BLLL

Table 2. Elapsed Times in Seconds for TRED2

;V Version

Compiler 5.1
128 Programmer 4.2

KAP ;3.6
Compiler 43.2

256 Programmer ::r-3.5
KAP :30.4
Compiler :H:3

512 Programmer 264
KAP 245
Compiler 2.772

1024 Programmer 2.077
KAP 2,006
Compiler 29.4:30

2048 Programmer 22.8'?0

For N 128 performance gains in all parallel
versions are poor. \Vith such a small value of ,V the
granularity of the parallel computations is too fine
for the KSR-1 to give significant performance im­
provement over the sequential version. and all the
parallel versions are dominated by synchroniza­
tion overheads. There is little to choose between
Programmer and Compiler for this problem size,
except on 16 processors. where Compiler takes a
significant drop in performance. This is due to the
effects of false sharing which become important
when Nip< 16, the number of words on a sub­
page. KAP is the fastest version on one processor,
but it scales poorly, only just outperforming Com­
piler on 16 processors. Indeed, for all problem
sizes up to 1,024, KAP performs very poorly,
never achieving more than about two times the
performance of the sequential code.

1.4

1.2

~
0 . .,
! 0.8

" I 0.6
.g
&: 0.4

0.2

0
I 2 4

Compiler -+--·
Programmer ..._

KAP ·G ..

ideal - ·

8
No. ofcens

·0

16

FIGURE 17 Temporal performance of TRED2. ;V =
128.

:\o. of Processors

2 4 8 16

2.9 1."? 1.2 2.1
2.6 1.6 1.2 1.1
2."? 2.2 1_() 1.9

22."? 12.3 7.2 5.2
17.7 9.8 6.1 4.4
21.9 17.8 15.0 1:3.8
179 9:3.6 50.'+ :30.3
1:37 71.7 :J9.0 2:3.3
173 1:36 116 107

1.403 728 :379 211
1.111 :'i62 :306 171
1,407 1.099 9-t9 874

15 .. 600 9.461 6.22S :3.782
11..420 5.033 2.52:3 1.417

With N = 256, 512, and 1,024, Programmer
outperforms Compiler by 20 to 30% regardless of
the number of processors. The scaling behavior of
these two versions is very similar for these problem
size::;, and steadily improves as the problem ::;ize
increases.

For N = 2,048, the memory requirement ex­
ceeds the memorv available on a single cell. Thus
for small number.s of processors, higlt numbers of
page misses are generated. On this problem size ..
Programmer scales very welL with some super­
linearity observed, whereas Compiler is again
30% slower on one processor, but over 2.5 time;;
slower on 16 processors.

6.1 Human Effort
The work described covers a long period and >vas
concurrent with other projects and commitments.

0.05

0.045

0.04

~ 0.035
§
·::: 003

!
~

0.025

a 002
.g
&: 0.015

0.01

0.005

0

Compiler ¥+···

Programmer -+­
KAP <>···
ideal • ·

I 2 4 8 16
No. of cells

FIGURE 18 Temporal performance of TRED2, .V =
512.

TWO APPROACHES FOR DISTRIBCTED SHARED .\1E.\IORY 83

0.0008

0.0007 Compiler -+--

Programmer ~
ideal -·--

0.0006

~
0 0.0005 '§

g
0.0004

~
E 0.0003
~
~

0.0002

0.0001

0
I 2 4 8 16

No. of cells

FIGURE 19 Temporal performance of TRED2 .. \ =

2,0"1:8.

The programmer spent approximately eight work­
ing days optimizing the code over a 4-month pe­
riod. In particulaL Step 6 (obtaining a parallel
version of Fragment 1) took about a day.

The compiler version took considerably more
time. The strategy was based on previous work but
applying it to a general Fortran program required
3 months research while the actual implementa­
tion on the KSR-1 took another :3 months. Ensur­
ing that the synchronization points preserved pro­
gram meaning (and did not deadlock) was the
most time-consuming phase: the implementation
of interleaving was a close second. The strategy
has recently been implemented in Sage++ r3J
taking 8 man-months.

7 PERSPECTIVES

7.1 On the Compiler Method

Manv of the differences between the two ap­
proaches arise from the compiler and programmer
employing distinctly different programming
models. The compiler's model is based on the
partition of data. whereas the programmer's
model is essentially a shared memory approach.
with emphasis on the partition of computation. Of
course the programmer has to be aware that mem­
ory accesses are not uniform. but data layout is
only considered when it is perceived that com­
munication is contributing significantly to the
overheads. On the other hand, the compiler ap­
proach is heavily data oriented. and the enforce­
ment of the local-write rule results in code which is
strongly reminiscent of a message-passing para-

digm, even though there are no explicit messages.
One effect of this difference is that the program­
mer has to make relatively few changes to the
source code, while the compiler code is almost un­
recognizable from the sequential version. and is
also difficult to read. With the continuing poor
performance of "black-box" style parallelizing
compilers, it is becoming clear that it is necessary
for the programmer to be able to understand and
influence compiler decisions. Because the compil­
er's output code is so hard to interpreL the com­
piler's decisions would have to be communicated
to the programmer via some interface other than
simply the transformed code.

As is clear from the programmer's analysis of
Fragment 3, the data-oriented approach is notal­
ways optimal. In this ease the load imbalance in
the affinity-based schedule employed by the com­
piler outweighs the communication costs in the
programmer's version. Indeed. load balancing ap­
pears to be a weak area in the compiler strategy.
While, in general. the programmer is able to de­
sign quite sophisticated schedules, the compiler is
limited to interleaving, and even this seems messy
and expensive to implement. The local-write rule
employed by the compiler can be overrestrictive.
Some parallel loops become sequentialized. and a
sequential loop with data dependencies between
iterations would require a lot of synchronization.
Notice that the programmer does not have to
worry about making local copies of remote data.
as this is provided automatically by the ALL­
CACHE memorT svstem.

The compiler's partitioning trade-off algorithm
appears naive. lt imposes an order on consider­
ations which is program independent. takes no
account of any machine parameters. and treats all
significant regions as equally significant. Deci­
sions are based on a scoring mechanism: a parti­
tion is chosen because it is optimal for the most
significant regions. even though it could be disas­
trous for other regions. and therefore not the over­
all optimal choice. The compiler assumes that
communication is more important than synchro­
nization. For the KSR-1. which has relativelv fast
communication. but relatively slow synchroniza­
tion, compared with other parallel architectures.
this may not be a sound assumption. Having said
all this, the compiler algorithm does do a good job
on TRED2! The compiler does of course lack the
advantage of profiling information to guide it.
which the programmer usefully utilizes. 1\'everthe­
less, it would seem likely that the compiler would
benefit, in the general ease, from a more quantita-

84 O'BOYLE AND BULL

tive assessment of the overheads associated with
each partitioning.

The compiler's programming model does have
some marked benefits. The compiler is able to do
transformations which would be very unpleasant
to perform manually, and has no worries about
the correctness of any transformations made. It
appears considerably easier for the compiler to
spot unnecessary synchronization and eliminate
it. The compiler is also much better equipped to
detect false sharing, and the local-write rule
makes it relatively easy to avoid. For the program­
mer, false sharing can be quite difficult to detect.
Note, however that the compiler does not take into
account false sharing at the page (rather than
sub page) level, which can result in excessive rep­
lication of data, though this problem is not en­
countered in TRED2.

Overall, the programmer's method results in
faster code with far fewer changes to the original
source. However, much of the method is reliant on
intuition and experience, combined with the
availability of detailed profiling information. The
compiler is restricted to performance prediction
rather than performance measurement. Its pro­
gramming model appears unnecessarily restric­
tive, and it is clear that some architectural param­
eters should be taken into account in order to
provide better performance prediction. Having
said this for the test case we have used in this
experiment, the compiler far outperforms the cur­
rent commercially available compiler KAP, and
comes quite close to the performance achieved by
the programmer.

7.2 On the Programmer Method

One obvious difference between the two ap­
proaches is that the compiler approach applies a
lot more analysis and transformations but is out­
performed by the programmer. The major feature
of the programmer method is the heavy use of pro­
filing to guide program optimization. On the other
hand it is somewhat ad hoc in nature. It seems
that much of the knowledge of program and ma­
chine behavior is informal in nature and is not
applied in a systematic step-wise manner so that it
may be generalized for other programmers. How­
ever, this is a reasonable approach, if given a cer­
tain time constraint and a particular program to
optimize, rather than programs in general.
Clearly, modeling the KSR-1 as a single-level dis­
tributed memory machine gives encouraging
results, but is too inaccurate to compete with the
more intimate knowledge of the programmer.

The KSR programming model leaves much to
be desired. It is considered that tiling innermost
loops is not worthwhile due to tile overhead. How­
ever much of this tile overhead is due to unneces­
sary barrier synchronizations after parallel loops.
This leads to the fusion of loops, trying to tile outer
loops, and leaving inner parallel loops untiled.
This unnecessary sequentialization also increases
communication. All data referenced within a se­
quential loop will move to wherever the master
thread is scheduled. An affinity-based approach
keeps the data still and sequentializes by synchro­
nization between processors. This is a KSR For­
tran problem rather than a KSR-1 feature. yet is
rarely considered worth tackling.

This compiler approach uses a static allocation
of data based on the assumption that data move­
ment due to write invalidation or false sharing is
very expensive. This is certainly true in software­
based SVM systems such as KOAN, but on the
KSR-1 it seems that this is not alwavs the case. In
the third fragment of Figure 11 the programmer
found that the overhead due to load imbalance
using an affinity-based schedule is greater than
that using a loop-based scheme.

Overall the main difference is that the program­
ming approach is more effective per program in
terms of performance and effort, but seems rela­
tively ad hoc and, of course, has to be repeated for
each application program. Initially there seems lit­
tle that can be gained from one implementation to
guide the next on a possibly different SYM rna­
chine. However, by carefully examining the tech­
niques used, it seems possible that some may be
incorporated into a compiler allowing the pro­
grammer to optimize at a higher level.

7.3 On Current Differences and
Future Developments

At first glance, there may seem to be little com­
monality between the approaches used by opti­
mizing compilers and programmers. This is par­
ticularly evident if one compares the resulting
code. Perhaps the most significant difference is
that programmers optimize in a cyclic manner
(modify, run, repeat until satisfied) which is in
stark contrast to the compiler's single pass ap­
proach. The programmer uses profiling informa­
tion extensively, while the compiler does not use it
at all. The approaches to program parallelization
are notably different, with the compiler relying on
loop distribution, while the programmer deter­
mines parallelism at the highest loop level, main­
taining as much original structure as possible.

TWO APPROACIIES FOR DISTRIBLTED SHARED ,\1E.VIORY 85

Breaking a problem (multistatement imperfectly
nested loop) into many simpler subproblems
(multiple perfectly nested loops) is an attractive
solution to the compiler, but for the programmer,
the original code structure has meaning and it is
easier to work with a few complex loop nests than
multiple simpler ones. 1\evertheless, there is defi­
nite common ground in that both approaches are
concemed with reducing overheads, and both use
a similar classification of overheads in order to
guide decisions. Both programmer and compiler
also use broadly similar techniques to reduce
overheads, though the fact that each uses a differ­
ent programming model tends to obscure this.

This experiment highlights a problem common
to all compiler schemes which try to be applicable
to a range of architectures however narrowly de­
fined. The relative impact of any overhead will
varv from machine to machine and should influ­
ence any compiler strategy. Rather than generat­
ing a new strategy for every machine type, what is
needed is an explicit cost model based upon ma­
chine parameters, which will guide compilation.
This model must incorporate those parameters
that are relevant to the particular compilation
model used and must guide rather than evaluate
program transformations. Clearly, generating a
possibly infinite number of programs and then
checking it against a cost model is not practically
feasible. Cnderstanding the important costs can
only be gained from those using the machine­
programmers. By incorporating their knowledge
into a compiler, some of the time-consuming pro­
cess of parallelizing and mapping a program may
be saved.

This experiment also exposes the essentially ad
hoc nature of human parallel program develop­
ment. Although we have shown that the program­
mer, through profiling and analysis of overhead
sources, has a more or less systematic method of
identifying problems in a parallel implementation,
the solution of these problems still relies to a large
extent on experience and intuition. There remains
much potential to make this process more system­
atic, and hence more accessible to the nonexpert.
The ability to work together with a compiler that is
able to automate sophisticated transformations,
give useful and intelligible feedback on its deci­
sions, and possibly achieve some degree of perfor­
mance prediction will be of significant benefit.

It is clear that the role of optimizing compilers
in parallel scientific computing is as a tool to assist
programmers, rather than as a replacement for
them. If the compiler is to be an effective tool, then
it will have to fit into the programmer's cyclic de-

velopment method-this has a number of impli­
cations for the compiler. Firstly, the compiler
must be able to follow directives placed in the pro­
gram as well as perform optimizations automati­
cally. Programmers will always have domain­
specific knowledge unavailable to the compiler
and must therefore be allowed to override any
compiler decision. Naturally, this implies that the
compiler must report its decisions and the reasons
why it made them in a manner that is understand­
able to the programmer. This information will
allow the programmer to provide appropriate in­
formation/ directives leading to a better imple­
mentation without requiring the programmer to
completely restructure the code. Ideally, optimiz­
ing the program would consist of a number of iter­
ations where different directives are inserted.
rather than rewriting sections of the program. If we
were to extend this idea, programmers would be
encouraged to write their program in languages
such as High Performance Fortran (HPF), For­
tran90, or even higher level ones. This will aid
portability and maintainability, as only the direc­
tives should have to change.

To facilitate this, optimizing compilers will have
to be more open; each stage (parallelizing, map­
ping, etc.) must be able to take information from
previous stages or from directives. They will also
have to provide sensible implementations in the
presence of partial direction. IL for example. the
programmer specifies how one section of code is to
be mapped, then the mapping of the remaining
program sections should accommodate this infor­
mation. This is essential if compilers are to evolve
beyond concentrating on local loop analysis to
global program-wide knowledge.

A prototype of the compiler strategy described
in the article is now implemented. The compiler is
to be extended in the light of this experiment.
Each of the compiler phases will be broken into
units where important decisions are based on in­
put values rather than hard-coded intemal algo­
rithms. These values may be generated by earlier
phases or directly from directives. This allows
variable control by the programmer and, because
of modularity, simplifies targeting the compiler for
different platforms and incremental addition of
functionality.

Since the compiler can at best contain a rela­
tively simple model of machine performance, pro­
grammers will want to continue to use profile in­
formation to guide optimization even if they are
working together with a sophisticated compiler.
Thus for maximum benefit a compiler should be
part of an integrated development environment

86 O'BOYLE A~D BCLL

that supports editing, interactive compilation,
running programs, performance monitoring. and
presentation of profiling information. The chal­
lenge is to define a directive system which allows
higher-level control than, say, enforcing a particu­
lar loop transformation. This will include control
of execution model (SPYID, fork/join, multi­
threading) and strategy where the relative cost of
overheads can be defined (i.e., load balance.
communication, synchronization, etc.). Giving the
"right" information back to the user is essential
and this must be defined by the user. Experience
within our group has shown that different users
have different requirements and that interfaces
must allow some customization. The programmer
will have control on the level of detail in compiler
feedback and will be able to view the program in a
number of ways, e.g., by significant regions, vari­
able name, synchronization point. etc. The
FORGE system is an early example of such a sys­
tem [1].

8 CONCLUSION

For the case of TRED2, for which it is possible to
completely statically analyze data accesses. but is
otherwise nontrivial to optimize for parallel execu­
tion, the compiler strategy described in Section :3
is shown to give almost comparable performance
to an expert programmer, and to outperform the
commerically available parallelizing compiler,
KAP, by a significant margin.

Through the detailed description of the appli­
cation of programmer and compiler strategies to
TRED2, both differences and common ground
between the two strategies have been highlighted.
Strengths and weaknesses of the strategies have
been identified, giving insight into how the two
approaches should be integrated in a unified pro­
gram development environment.

Future experiments on different programs and
architectures will aid the development of the com­
piler and its user interface. This system will allow
the programmer to concentrate on those areas
where the compiler is poor and try complex strate­
gies which would be too costly to try by hand. ln
this way it is hoped that a more useful partnership
between programmer and compiler will be
achieved, resulting in a systematic combined
strategy allowing rapid development of efficient
parallel programs.

REFERENCES

[1 J A. P. R., Forge 90: Automatic Parallclizer for
High Performance Fortran 77 on Distributed
Memory System Cser's Guide. Placerville. CA:
Applied Parallel Research, 199:3.

[2] F. Bodin and .\1. O'Boyle, A Compiler Strategy for
SV.\L in B. Szymanski and B. Sinharoy, Eds.,
Languages, Compilers and Run- Time Systems
for Scalable Computers, Kluwer Academic Pub­
lishers, May 1995, pp. 5?-68.

[3] F. Bodin, P. Beckman. D. Gannon, and J. G. S.
Srinivas, "Sage++: A Class Library for Building
Fortran and C++ Restructuring Tools .. , pre­
sented at the Second Object-Oriented 1\"umerics
Conference. Oregon. April 1994.

r4] H. Burkhart and R. Millen. ·'Performance-mea­
surement tools in a multiprocessor environment.··
IEEE Trans. Cumput .. vol. 38, pp. ?23-?3?.
1989.

[5] M. E. Crovella and T. J. LeBlanc, .. The search for
lost cycles: a new approach to parallel program
performance evaluation,., Lniversity of Roches­
teL Department of Computer Science. Tech. Rep.
4?9, December 1993.

[6l G. K. Egan. G. D. Riley, and J. M. Buli"Paralleli­
sation of the SDE.\1 distinct element strPss analv­
sis code on the KSR-1. .. in Proc. ACJ! Inter­
national Conference on Supercomputing. pp.
85-92. 1994.

[?] C. Falco Korn, J. .\L Bull. G. D. Riley, and P. K.
Stansby, '·Parallelisation of a three-dimensional
shallow water estuary model on the KSR- 1, · · Sci.
Prog. vol 4, no. 3, pp. 155-1?0, 1993.

[8] M. Gupta. "Automatic data partitioning on dis­
tributed memory multicomputers.·· Lniversity of
Illinois at Urbana-Champaign, Centre for Reli­
able and High Performance Computing. Tech.
Rep. LILL-E:\G-92-223?, CRHC-92-19. Sep­
tember 1992.

[9] W. Kelly and W. Pugh, "Generating schedules
and code within a unified reordering transforma­
tion framework," Lniversity of Maryland Tec.;h.
Rep. UMIACS-TR-92-126, August 1992.

[10] K. S. R., KSR Fortran Programming, \'\'altham,
MA: Kendall Square Research. 1992.

[11] J. Li and .'\1. Chen, "Index domain alignment:
minimising cost of cross-referencing between dis­
tributed arrays." in IEEE Pro c. Third Symposium
on the Frontiers of .Massive!;' Parallel Computa­
tion, pp. 424-433, 1990.

[12] L.-C. Lu, "A unified framework for systematic
loop transformations," presented at the 3rd AC~l
Symposium on the Principles and Practice of Par­
allel Programming, 1991.

[13] M. F. P. O'Boyle, "Program and data transforma­
tion for efficient execution on distributed memory
architectures," University of .\lanchester, Tech.
Rep. 93-1-6, January 1993.

TWO APPROACHES FOR DISTRIBCTED SHARED MEMORY 87

[14] M. F. P. O'Boyle, "A data partitioning algorithm
for distributed memory compilation.·· in Proc. of
PARLE 9-f. :\"ew York: Springer Verlag, 1994.

[1.5] M. F. P. O'Boyle, ·'Hierarchical locality optimisa­
tions for :'-JU:\1As. ,. in Proc. EuroJ1icro PDP,
Sanremo, pp. 106-114, 199.5.

[16] D. A. Padua and .\1. J. Wolfe. "Advanced com­
piler optimizations for supercomputers, .. Com­
man. ACHvol. 29, pp. 1184-1201.1986.

[17] W. Pugh, 'Tniform techniques for loop optimisa­
tion," presented at the International Conference
on Supercomputing. 1991.

[18] M. Wolfe. "Optimising supercompilers for super­
computers," in C. Jesshope and D. Klappholz.
Eds., Research ,Honographs in Parallel and Dis­
tributed Computing. London: Pitman. 1989.

[19J :\1. E. Wolf and .VI. Lam. ·'An algorithmic ap­
proach to compound loop transformations,,. in
Advances in Languages and Compilers for Parul­
lel Processing. A. !\'icolau. D. GPlernt!'r. T. Gross.
and D. Padua. Eds .. London. pp. 24:3-259.
1991.

Appendix 1. TRED2 listing

DO I = 1, N
DO J = 1, N

Z(J, I) = A(J, I)
END DO
D (I) = A (N, I)

END DO
IF (N .NE. 1) THEN
DO II = 2, N

H = O.ODO
SCALE= O.ODO
IF (II .LE. N-1) THEN

DO K = 1, N+1-II
SCALE= SCALE+ DABS(D(K))

END DO
IF (SCALE .EQ. O.ODO) THEN

E(N+2-II) = D(N+1-II)
DO J = 1, N+1-II

D(J) = Z(N+1-II,J)
Z(N+2-II,J) O.ODO
Z(J,N+2-II) = O.ODO

END DO
ELSE

DO K = 1, N+1-II
D(K) = D(K) I SCALE
H = H + D(K) * D(K)

END DO
G = -DSIGN(DSQRT(H) ,D(N+1-II))
E(N+2-II) =SCALE * G
H = H- D(N+1-II) * G

b:
a:

c:

D(N+1-II) = D(N+1-II) - G
DO J = 1, N+1-II

E(J) O.ODO
END DO
DO J = 1, N+1-II

Z(J,N+2-II) = D(J)
G = E(J) + Z(J,J) * D(J)
IF (II+J .LE. N) THEN

DO K = J+1, N+1-II
G = G + Z(K,J) * D(K)
E(K) = E(K) + Z(K,J)

END DO
END IF
E(J) = G

END DO
F = O.ODO
DO J = 1 , N+ 1-II

E(J) = E(J) IH
F = F + E(J) * D(J)

END DO
HH = F I (H + H)

DO J = 1 , N+ 1-II

* D(J)

E(J) = E(J) - HH * D(J)
END DO
DO J = 1,N+1-II

DO K = J, N+ 1-II
Z(K,J) Z(K,J)-D(J)

*E(K)-E(J)*D(K)
END DO
D(J) = Z(N+1-II,J)
Z(N+2-II,J) = O.ODO

END DO
END IF

ELSE
E(N+2-II) = D(N+1-II)
DO J = 1 , N+ 1-II

D(J) = Z(N+1-II,J)
Z(N+2-II,J) O.ODO
Z(J,N+2-II) = O.ODO

END DO
END IF
D (N+2-II) H

END DO
DO I = 2,N

Z(N, I-1) = Z(I-1,I-1)
Z(I-1,I-1) = 1.0DO
IF (D(I) .NE. O.ODO) THEN

DO K = 1, I-1
D (K) = Z (K, I) I D (I)

END DO
DO J = 1, I-1

G = O.ODO
DO K = 1, I-1

88 O'BOYLE AI\D BULL

d:

e:

G = G + Z (K, I)

* Z(K,J)
END DO
DO K = 1, I-1

Z(K,J) Z(K,J)- G
* D(K)

END DO
END DO

END IF
DO K = 1,I-1

Z (K, I)

END DO
END DO

END IF
DO I = 1, N

O.ODO

D (I) = Z (N, I)

Z(N,I) = O.ODO
END DO
Z (N, N) 1. ODO
E(1) = O.ODO

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

