

Edinburgh Research Explorer

A dynamic partial reconfiguration design for camera systems

Citation for published version:
Khalifat, J, Ebrahim, A, Adetomi, A & Arslan, T 2015, 'A dynamic partial reconfiguration design for camera
systems'.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/a-dynamic-partial-reconfiguration-design-for-camera-systems(040fedc9-3238-4b50-a9f9-102fe6086a7d).html

A Dynamic Partial Reconfiguration Design for

Camera systems

Jalal Khalifat, Ali Ebrahim, Adewale Adetomi and Tughrul Arslan

System Level Integration Group, Institute for Integrated Micro and Nano Systems

University of Edinburgh

Edinburgh EH9 3JL, Scotland, UK
Email: {J.Khalifat, A.Ebrahim, a.adetomi, T.Arslan }@ed.ac.uk

Abstract-- The image-processing pipeline is the core part of any

camera system including digital still cameras, camcorders,

camera phones and video surveillance equipments. The image-

processing pipeline consists of a number of processing stages that

enhance the image or remove any effects that are caused by

surrounding conditions. These stages are computationally

intensive and need special requirements to meet the real time

processing. This paper discusses the pipeline parts and presents a

high-performance and cost-effective implementation of the

pipeline on Field Programmable Gate Arrays (FPGAs) using

Dynamic Partial Reconfiguration (DPR) feature to exploit the

FPGA resources over time and space. The paper shows that the

implemented system adds much of flexibility to camera systems

by using a reconfigurable region. The system can use an

unlimited number of image processing pipeline stages to process

the images without the need of huge number of logic resources to

fit all the stages. Moreover, the stages are not fixed in this system,

they can be changed upon the user's decision .The architecture is

designed to process still images of size 1920x1080. Each stage

could process a full frame within 7.25 ms. A fast configuration

engine is designed and deployed in the system. The engine shows

that it can outperform the engine provided with zynq SoC by

three times. The overall throughput of the system reaches 250

Megapixel/s.

Keywords—Image processing pipeline ; DPR; ICAPE2; Real

time processing; Camera ;

I. INTRODUCTION

With the increasing number of smart devices being used in

our daily life, capturing our life moments has been becoming
an essential part of our life style. Therefore, most of the
companies try to embed a digital camera in their smart devices.
The image processing systems in general, require a high
computation power; therefore, the structure of these systems
should fulfill specific requirements of power consumption,
performance and throughput to be a valid image processing
system. Traditionally, these systems are built using Application
Specific Integrated Circuit (ASIC) due its low power
consumption, high-speed optimization and low unit cost.
Nowadays, Field Programmable gate arrays (FPGA) appeared
to be a competitive environment in this field. Modern FPGAs
have number of features that could make them a good choice
for such systems such as low power consumption compared to

the old generations, high speed, fast time to market and the
most important feature is their flexibility. The term flexibility
refers to a number of aspects in FPGAs and the main aspect is
the Reprogrammability [1], which enables you to adapt to
changing standards and support design reuse. Moreover,
FPGAs provide additional flexibility to the designers by using
the Dynamic Partial Reconfiguration (DPR) feature which
exists in modern FPGAs. DPR is the feature, which allows
changing the functionality of part of the design while the rest of
the design is working. This feature can reduce the needed
resources for a specific system and the consumed power.
Accessing the FPGA's configuration memory is performed
internally through the Internal Configuration Access Port
(ICAP).

The operations in digital cameras can be divided into 3
main parts: the input, the processing and the storage/output
parts. The input part captures the image data using sensors. The
processing part performs the baseline and enhanced image
processing on the raw data produced by the camera sensors to
make them look like what we see using our eyes. This part is
usually called image-processing pipeline. The Final part is the
storage and output part, which either saves the result in non-
volatile memory or shows it on the screen. Obviously, the
image-processing pipeline is the core part of any digital camera
and decides the quality of its images. Moreover, it requires a lot
of computation power as it consists of number of complex
algorithms working sequentially. The critical issue in building
this part is the timings demands. Therefore, it is important to be
built in high performance environment such as ASIC, Digital
signal processors (DSP) or FPGAs but not using General
Purpose processors (GPP).

There are a lot of research discussed in this field but most
of them are focused in the traditional way of building such
system. With the appearance of Modern FPGAs, a number of
research has discussed developing such system on FPGAs.

In [2], Texas instruments developed a full commercial
imaging System on Chip (SoC), which consists of ARM
processor and DSPs and application specific hardware. The
processing pipeline implemented in a configurable manner to
combine the performance advantage from the hardware with
flexible control to fine-tuning of the algorithms parameters.
Xilinx has built imaging processing pipeline [3] on 7000 All
prorammable SoC in a configurable manner to adjust the

algorithm parameters on the fly either manually by the user or
automatically based on statistical information gathered from
the frames data. Moreover, number of research such as [4]-[7]
focused on implementing individual parts of the image
processing pipeline on reconfigurable platforms and evaluate
its performance, resource utilization and efficiency in general.

This paper presents an implementation for an image-
processing pipeline on FPGAs, which uses DPR feature to
increase the possibility of using maximum number of imaging
enhancement stages. Moreover, it shows how the
implementation utilises the resources, and reduces the power
consumption. It also presents a brief introduction of the image
processing pipeline stages. Finally, it contains implementation
results and comparison to other similar designs.

The rest of the paper is organized as follows. In section II,
we provide some background information on the main
elements of a typical image processing pipeline components
based on different conventional processors. In section III, core
design tools are introduced and examples of the design process
are given. In section IV, we show the architecture of the
system, the design components and a designed configuration
engine. In section V, we show the experimental results. Finally,
section VI concludes the paper.

II. IMAGE PROCESSING PIPELINE

The data captured by the camera sensors should match the
scene seen by our eyes. Unfortunately, this does not happen.
Therefore, a number of image enhancement and constructing
stages are required to adjust the scene data to look similar to
the scene seen by the eyes. In this context, different companies
use its own image-processing pipeline. Fig.1 shows the image
processing pipeline is used in Texas Instruments [2] based on
DaVinci technology. A typical image-processing pipeline
consists of a number of stages as follows:

Figure 1. DaVinci imaging-processing pipeline [9].

A. Color Interpolation

In digital cameras, the charge-coupled device (CCD) or
complementary metal oxide semiconductor (CMOS) image
sensors are covered with a Color Filter Array (CFA). Each
sensor is overlaid with one type of color filter. This
arrangement results in an incomplete image samples with two
missing colors from each pixel as shown in the case of
(RGGB) arrangement of the Bayer color filter array in Fig.2.
Therefore, a color interpolation algorithm is needed to
construct the full image and predict the missing colors in each
pixel. A lot of color interpolation algorithms are presented in
the literature such as [8] and [9].

Figure. 2. Bayer Filters and Image sensors.

B. Automatic White Balance (AWB)

Automatic white balance is the process of keeping the color
of objects constant automatically under different illumination
conditions (light sources) by calculating a number of
parameters from the image data [10]. These parameters are
used to change the image pixel values to keep the color
constant. A number of algorithms have been proposed in the
literature such as Gray World Assumption (GWA) [11], Perfect
Reflector Assumption (PRA) [12], Retinex theory, standard
deviation-weighted gray world and Gamut mapping method
[13] and others.

C. Gamma Correction

It is the adjustments applied during the display of a digital
representation of color on a screen in order to compensate for
the fact that the e-cathode ray tubes used in monitors in general
produce light intensity, which is not proportional to the input
voltage [2]. Therefore, if the image has to be displayed on a
screen, linear RGB components should be converted to a non-
linear signal. Gamma Correction controls the overall brightness
of the image frames, as they usually appear too dark on screen.
The parameters used in gamma correction depend on the
characteristics of the display.

D. Color Correction

The images captured by digital cameras are affected by
many environmental contents like illuminations or the object's
color properties. Because of that, we need to map the captured
images data to the device color space. This can be done using a
color compensation chart [2]. Many algorithms have been
proposed in the literature dealing with this reproduction image
processing pipeline stage.

E. Other stages

There are number of other components of the image
processing pipeline such as noise reduction, RGB to YCC
Conversion, Edge enhancement and contrast enhancement.
Each of these stages enhances the frame in some way and
removes any effects that are caused by the surrounding
conditions.

In addition, the compression stage is a post-processing
stage, which is used to reduce the total image data for storage
purpose. There are number of compression standards widely
used but the main one, which is used in digital cameras is the
JPEG standard.

All the aforementioned components need an intensive
computation power to meet the real time processing which
general-purpose processors cannot provide. Therefore, these
components traditionally are implemented in hardware
environments.

III. DEVELOPMENT TOOLS

The following tools have been used in the development of
this system:

A. Vivado Integrated Design Environment(IDE).

Part of the Vivado design suite. It is the new generation of
Xilinx development tool. It is replacing the Xilinx Integrated
Synthesis Environment (ISE) and Xilinx platform studio
(XPS). It is mainly used as a solution for designing embedded
processing systems. Moreover, it is used in synthesis and
analysis of HDL designs, perform timing analysis and
examining RTL designs.

B. Vivado High Level Synthsis (HLS)

The tool accelerates the IP creation by enabling C, C++ and
system C to be targeted into xilinx devices without the need to
create RTL manually using Hardware Description Language
(HDL). This tool has been used to develop the image
processing pipeline components.

C. Software development kit (SDK)

The tool is used as an environment for creating embedded
applications on the embedded processors such the ones exist in
the Zynq SOC and on the industry leading MicroBlaze. The C
developed software is used to control the design and the DPR
swapping process.

The steps of developing the system based on the
aforementioned tools as follow:

1) Develop the image processing pipeline components in

C language individaully and let the vivado HLS converts the

codes to xilinx IPs that can be used directly in the system.

2) Develop the full system using Vivado IDE with only

one component of the image processing pipeline.

3) Create application for the embedded design using the

drivers provided by each IP in the design. The application

should run on the vivado SDK.

4) Apply dynamic partial reconfiguration on the part that

holds the image processing pipeline component.

IV. CAMERA SYSTEM IMPLEMENTATION

The proposed implementation is illustrated in Fig. 3. The
design exploits the feature of DPR to reduce the resources and
power consumption. The system is divided into two parts: the
static part and reconfigurable part. The static part contains a
simple processing pipeline mainly to allow the user to capture a
specific scene. Also it contains the FMC-IMAGEON VITA
Receiver core [14][15], HDMI output interface and the IPs
which are used in data communication between the modules
and memory such as Video Direct Memory Access
(VDMA).The reconfigurable part contains the part of the
design, which can be replaced regularly to change the system
functionality (image processing pipeline stages).

A. Static design.

In the static design, the simple processing pipeline consists
of color filter array interpolation, color space converter and
Chroma resampler Xilinx IP cores. The cores are used only for
showing the data received by the design in the output side to let
the user capture the desired scene. Also in the static design,
FMC IMAGEON VITA Receiver core controls and
synchronizes the stream of data from the image sensors and the
user design. The HDMI output core controls the flow of data
with the HDMI interface. The VDMA is used to redirect the
captured data to the DDR memory and return it back to the
design. This action allows us to process any frame of the data
once the user presses the capture button. At that moment, the
system will keep the last frame in the buffer.

B. Reconfigurable design.

The reconfigurable part consists of the image processing
pipeline stage. Only one stage exists in the design at a time.
The stages are swapped sequentially by using the DPR feature.
To configure the stage dynamically, the current configured
stage should be completely isolated from the system before
configuring the new stage otherwise; an unknown data will be
sent to/from the reconfigurable region during the configuration
process, which leads to hang the entire system. The user should
reset the Reconfigurable Module (RM) itself and disconnect
any data bus is connected to the RM specifically the AXI bus.

Figure 3. Camera System Implementation

Fig.4 shows the way of isolating the RM using user signals.
These signals are controlled from the user application.

The output Res[0:0] is the isolation signal which prohibits
the M00_AXI bus to send or receive data from the
reconfigurable IP (CFA_DPR32_0). Moreover the gpio_io[0:0]
will reset the RM before any configuration attempt. These
signals will be released after the configuration process.

Three stages of the image-processing pipeline have been
implemented using Vivado HLS tool: Demosaicing, Automatic
white balance and noise reduction. Demosaicing stage has been
implemented based on Adams-Hamilton interpolation
algorithm [8]. The automatic white balance stage is divided
into two stages to reduce the resources utilisation and the
implementation is based on gray world and retinex theory [16].
The noise reduction stage is based on 3x3median filter.

In Zynq boards, the Processor Configuration Access port
(PCAP) is used to configure the full or partial bitstreams. The
PCAP configuration path is shown in Fig.5. Although the
configuration primitive provided in the FPGA can support up
to 400 MB/s configuration throughput, the transfer rate through
the PCAP is approximately 145 MB/s [17]. The overall
throughput is limited by the PS AXI interconnect. Therefore,
this limitation could cause some problems for complex designs,
which have large reconfigurable regions. To overcome this
limitation, a fast configuration engine has been designed and
deployed to increase the configuration speed and to utilise the
full speed of the ICAP primitive. The configuration engine
consists of a Direct Memory Access (DMA) to move data from
the memory to the ICAP primitive in addition to the ICAP
interface. The ICAP interface is a direct interface. The valid
data signal is connected to the ICAP enable signal in a write
mode as the new generation of ICAP in 7-series devices has no
busy signal [18]. Fig.6 shows the designed configuration
engine diagram. The DMA IP is configured with max burst
option to increase the overall throughput. The Configuration
engine is only 847 LUT and utilises only 1.5% of the
programmable logic in Zynq 7020 SoC.

Figure 4. Isolation process of the Reconfigurable module

Figure 5. PCAP configuration path [17].

Configuration Engine

DMA

Max burst 256

ICAP permitive
ICAP

Interface

DDR

memory
HP port

Figure 6. Configuration Engine.

V. EXPERIMENTAL RESULTS

The system has been implemented on Zynq-7020 SoC
evaluation board. The system has three different frequencies,
200 MHz for the IMAGEON VITA Receiver core, 150 MHz
for the image-processing pipeline and 100 Mhz for the
configuration engine as this is the maximum operational
frequency for the ICAP primitive. Moreover, the 100 MHz is
used to synchronise the AXI control buses with Processor. Two
different sets of reconfigurable modules have been
implemented; the first set processes one pixel per clock cycle
to get a throughput around 125MPixels/s. On other hand, the
second set of modules processes two pixels per clock cycles,
which leads to achieve a double throughput compared to the
first set.

The reconfigurable region size depends on the resources
utilized by the largest stage among the image-processing
pipeline stages. In this design, the reconfigurable region is
approximately 15% of the total chip area if the first set of
modules are used. Fig.7 shows the floor planning of the
implemented system and Table 1 shows the resources
utilization for different IPP stages for the two set of modules.
The system has been tested with only three different stages.
The reconfigurable region should have 20% more resources
compared to the largest stage for routing purposes. All the
stages have been implemented using Vivado HLS tool.

 Figure 7. Implemented system floorplanning.

TABLE I. RESOURCES UTILIZATION OF THE RECONFIGURABLE

MODULES

IPP stage

Resources (set 1/set 2)

LUT

(1/2)

RAMB18

(1/2)

DSP48

(1/2)

Slices

(1/2)

Color Filter array

Interpolation +

Median Filter

5379 /

7420
23 / 23 0 / 0

1390 /

1802

Automatoc White

Balance part1

4230 /

5123
0 / 0 13 / 15

1105 /

1312

Automatoc White

Balance part2

5802 /

7211
0 / 0 6 / 12

1450 /

1723

Reconfigurable

Rrgion

6400 /

8000
40 / 40 20 / 40

1600 /

2000

Based on Table I different sizes of reconfigurable regions
provide different Bitstream sizes. Therefore, the needed
configuration time will vary from size to size. Table II shows
the size of the partial bitstreams for each set of the
reconfigurable modules and the configuration time for each
bitstream using the two different methods. Bigger Bitsreams
need more time to be configured. The designed configuration
engine will reduce the gap band, which will increase the
system performance, as the total needed time for configuring a
stage will be reduced. The configuration engine is three times
faster than the one, which is provided with Zynq SoC.

TABLE II. SIZE OF THE BITSTREAMS OF RECONFIGURABLE MODULES

AND CONFIGURATION TIME

Design

Size of

bitstream (KB)

Configuration time (ms)

PCAP
Configuration

Engine

RMs Set 1 (1ppc) 436 KB 3.54 1.11

RMs Set 2 (2ppc) 581 KB 4.72 1.47

 In term of the total time, Fig.8 shows the timing for the
system execution path. Obviously, it shows that the overhead
in the system is the time for configuring a new stage. Table III.
shows the total execution time for the system and how the
designed configuration engine reduces the overhead in the
configuration. This overhead is proportional with the number
of IPP stages. As shown in Table III, a good improvement has
been achieved when the stages are bigger and consume more
logic resources.

IPP stage execution Conf. Time IPP stage execution Conf. Time

Time

IPP stage execution
Conf.

Time
IPP stage execution

Conf.

Time

Time

14 ms

3.54 ms 3.54 ms

14 ms

14 ms

1.11

ms

1.11

ms

14 ms

Figure 8. The System total execution time and configuration time

improvement.

As mentioned previously, the system is designed in a DPR
manner as only one of the stages exists on the FPGA logic at a
time. This method allows unlimited number of stages to be
used dynamically. On the other hand, the static design will
allow using a few number of stages as the FPGA logic is not
enough to fit all the stages at once. As a result, the total FPGA
resources which would have been used to design the system
with DPR is around 80% of the total resources. Therefore, it
would not have been possible to implement the system as a
static design with all the possible stages. Table IV shows the
resources utilization for the DPR implementation. Not all the
resources are fully utilized except the LUTs.

TABLE III. EXECUTION TIME OF THE CAMERA SYSTEM FOR NUMBER OF

IPP STAGES

IPP stage

Time (ms)

Set 1 (1 ppc) Set 2 (2 ppc)

PCAP
Conf.

Engine
PCAP

Conf.

Engine

CFA Interpolation +

Median Filter

14.5 14.5 7.25 7.25

Configure next stage 3.54 1.11 4.72 1.47

Automatoc White

Balance part1

14.5 14.5 7.25 7.25

Configure next stage 3.54 1.11 4.72 1.47

Automatoc White

Balance part2

14.5 14.5 7.25 7.25

Total Time 50.58 45.72 31.19 24.69

Improvement 9.6% 20.8%

TABLE IV. RESORCES UTILIZATION OF THE IMPLEMENTED DESIGN

Design

Resources / Utilization

LUT Slices RAMB DSP

DPR- (1 ppc)

39526 /

78%

11431 /

85.9%

43 /

30.7%
56 / 26%

DPR- (2 ppc)

41632 /

80%

11835 /

88.9%

48 /

34.3%
56/ 26%

The implemented system processes images with HD
resolution (1920x1080). The image sensors generate the image
data and pass it directly to the system. Fig.9 shows the
produced images after different image processing pipeline
stages. Fig.9a shows the initial raw image from the sensor,
Fig.9b shows the image after the color filter array interpolation
stage and Fig.9c shows the image after the AWB stage. The
AWB stage is divided into two parts, the first part is dedicated
for reading the parameters and the second part uses the
extracted parameters to modify the image pixel contents.
Therefore, the image will be produced after executing two
consecutive stages. The quality of the image depends on the
quality of the algorithm is used in each stage. To have a system
with good quality images, top algorithms in the state of art
should be used. These algorithms will need more computation
power compared to most of algorithms in the literature. The
quality of the images is not provided in this work, as the
algorithms can be changed dynamically.

(a)

(b)

(c)

Figure 9. Output images. (a) raw image (b) Color filter array interpolation

output (c) AWB output.

VI. CONCLUSIONS

In this paper, we have presented an implementation of a
reconfigurable camera system. The image-processing pipeline
parts in the camera system have been implemented using the
DPR technique to show that it is possible to fit all the possible
stages or as much as needed in a compact design. Moreover, it
shows that this technique adds a lot of flexibility to the system
by providing the possibility of changing the functionality and
choosing between different algorithms for the same function.
The system has been implemented on Zynq 7000 All
programmable SoC (z-7020) and it has been tested using 2.3
Megapixel VITA 2000 CMOS image sensor and display
screen. The image processing pipeline parts have been
developed using vivado HLS tool, which reduces the total
development time. Although the parts are consuming much
resources as they are computationally intensive, the
implementation is highly cost effective and is in real time. The
system is dedicated to process images of size 1920x1080 based
on the input images sensors. A fast configuration engine has
been designed and deployed to increase the configuration speed
and increase the performance of the system. The system
architecture achieved the needed clock speed by real time
processing applications.

As a future work, we will focus on enhancing the
performance of the system and add more flexibility in term of
the size of RM on the FPGA. Moreover, we will examine the
power consumption of this system based on different scenarios.

REFERENCES

[1] J. Chiang, S. Zammattio, WP: “Five ways to build flexibility into

industrial applications with FPGAs,” Altera Corporation, September
2014.

[2] J. Zhou, WP: “Getting the Most Out of Your Image-Processing

Pipeline,” Texas Instruments, Octorber 2007.

[3] M. Bergeron, S. Elzinga, G. Szedo, G. Jewett, T. Hill, XAPP794:
LogiCORE 1080p60 Camera Image processing Reference Design

(v1.3), Xilinx Inc., December 2013.

[4] W. C. Kao, S. H. Wang, L. Y. Chen and S. Y. Lin, "Design
considerations of color image processing pipeline for digital

cameras", IEEE Transactions on Consumer ElectroniCS, vo1.54,

no.4, pp. 1144- 1152, November 2006.

[5] Xin Zhao; Ying Yi; Erdogan, A.T.; Arslan, T., "Dual-core

reconfigurable demosaicing engine for next generation of portable
camera systems," Design and Architectures for Signal and Image

Processing Conference (DASIP), pp.289, 294, 2010.

[6] C. Chen, S. Tan, W. Huang, “A novel hardware-software co-design
for automatic white balance, ” Proceedings of the 7th Conference on

7th WSEAS International Conference on Multimedia, Internet &
Video Technologies - Volume 7 (MIV'07), Lang Congyan (Ed.),

Vol. 7. World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point, Wisconsin, USA, 203-212.

[7] X. Tan, S. Lai, B. Wang, M. Zhang, Z. Xiong, “A simple gray-edge

automatic white balance method with FPGA implementation,”
Journal of Real-Time Image Processing, January 2013, 1-11.

[8] J. F. Hamilton and J. E. Adams, "Adaptive Color Plane

Interpolation in Single Sensor Color Electronic Camera," U. S.
Patent, No. 5629734, 1997.

[9] W. T. Freeman, "Median filter for reconstruction missing color

samples" U.S. Patent No. 4,724,395(1988).

[10] G. Zapryanov, D. Ivanova, I. Nikolova, “Automatic white balance

algorithms for digital still camera- a comarative study,” Information
Technologies and Control 01/2012; 1:16-22.

[11] M. Fedor, “Approaches to color balancing,”

PSYCH221/EE362course project, Department of Psychology,
Stanford University, U.S.A., 1998.

[12] J. Chiang and F. Al-Turkait, “Color balancing experiments with the

HP-photo smart-C30 digital camera,” PSYCH221/EE362 course
project, Department of Psychology, Stanford University, U.S.A.,

1999.

[13] D. A. Forsyth, “A novel algorithm for color constancy”,
International Journal of Computer Vision, vol. 5 (1), 1990, pp. 5 –

36.

[14] Avnet EM. , “HDMI Input/Output FMC Module.” Internet:
https://www.em.avnet.com/en-

us/design/drc/pages/supportanddownloads.aspx?RelatedId=442,
[Jan. 30, 2015].

[15] ON semiconductor. VITA 2000 2.3 Megapixel 92 FPS Global

Shutter CMOS Image Sensor.

[16] E. Y. Lam, “Combining Gray World and Retinex Theory for

Automatic White Balance in Digital Photography,” Proceedings of
the Ninth International Symposium on Consumer Electronics, June

2005, pp. 134-139.

[17] UG585: Zynq-7000 All Programmable SoC Technical Reference
Manual v1.9.1, Xilinx Inc., November 2014.

[18] UG470: “7 Series FPGAConfiguration User Guide.” v1.9, Xilinx

Inc., November 2014.

