

Edinburgh Research Explorer

Adaptive Block Pinning for Multi-core Architectures

Citation for published version:
Kumar, R, Chaturvedi, N & Sudarshan, TSB 2008, Adaptive Block Pinning for Multi-core Architectures. in
web proceedings of 15th International Conference on High Performance Computing, student symposium
HiPC-SS08.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
web proceedings of 15th International Conference on High Performance Computing, student symposium HiPC-
SS08

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/adaptive-block-pinning-for-multicore-architectures(ff971c61-80c4-4839-a0f6-0918a3a6ec36).html

Adaptive Block Pinning for Multi-core Architectures

Rakesh Kumar
1
, Nitin Chaturvedi

1
, T S B Sudarshan

2

1
Student, Electrical and Electronics Engineering Group

2
Assistant Professor, Computer Science & Information Systems Group

Birla Institute of Technology and Science, Pilani

{h2006119, nitin80, tsbs}@bits-pilani.ac.in

Abstract
Difference between speed of processor

and memory is increasing with advent of every

new technology. Chip Multi Processors (CMP)

have further increased the load on the memory

hierarchy. So it has become important to manage

on-chip memory judiciously to reduce average

memory access time. The previous research has

shown that it is better to have a shared cache at

the last level of on-chip memory hierarchy.

Sharing last level of cache gives rise to a new

category of cache misses; those were not present

in uniprocessor, called “inter-processor misses”.

This paper proposes a technique to eliminate

inter-processor misses by giving replacement

ownership of a block to a processor who brought

it into the cache. This reduction in inter-

processor misses, which constitutes 40% of over

all misses, will result in performance

improvement. Also two different ways of

relinquishing the ownership of a block are being

proposed, so that if some other processor, other

than owner, can make use of the block in a more

efficient way, ownership will be transferred to the

new processor.

1. Introduction

In CMP, last level of on-chip memory can

be organized as either shared or private cache.

Private caches have the advantage of low access

latency but these caches fail to make optimum use

of on-chip memory space because some blocks

may need to be replicated. While shared caches

make optimum use of on-chip cache space, they

suffer from high access latency compared to

private caches.

Authors: Rakesh Kumar, Nitin Chaturvedi

L Hsu [3] has shown that organizing last level

cache as shared cache gives better performance

than private caches. Organizing last level cache as

shared cache gives rise to another type of misses

that were not present in the private caches: “inter-

processor misses”. A miss is called inter-

processor miss, in a dual core system with cores

P1 and P2, when P2 evicts a block which was

brought into the cache by P1 and due to this

eviction P1 suffers a miss and vice versa. As

shown in fig.1 inter-processor misses constitutes

about 40% of over all misses. So, it is a

worthwhile goal to reduce these misses. To

eliminate inter-processor misses, Shekhar [1]

gives replacement ownership of a set to a

processor, who brings in the first block into that

set and only this processor is allowed to evict the

blocks from the set. Ownership is only for

replacement; other processors can read and write

into the set but can’t evict the blocks.

Fig 1) Distribution of Compulsory, Intra-

processor and Inter-processor misses in L2

cache SPEComp Benchmarks [1].

This paper provides a fine control over

the replacement ownership. Instead of giving

ownership of complete set, this paper proposes a

technique to provide ownership of individual

blocks in a set and it will be shown that this fine

control will result in a better utilization of the

blocks inside a set. “Processor Owned Private”

(POP) caches were proposed by [1]. One POP

cache is associated with each processor.

Ownership is only in terms of replacements; any

processor can read and write in any POP cache.

Rest of the paper is organized as follows:

Related work is described in Section 2. Section 3

explains proposed architecture and ownership

relinquishing techniques. Section 4 provides

proposed implementation details and Section 5

concludes.

2. Related Work

Many researchers are extensively

working on managing shared caches in Chip

Multi Processors (CMP). M. Dubois [4] first

introduced a class of misses that was not present

in the uniprocessors. This category is called

coherency misses, and is present only in Multi

Processors. These misses occur because of

invalidation of cache blocks shared between

private caches of multiple processors. These

misses can further be divided into true and false

sharing misses.

 Shekhar [1] introduced another way of

categorizing misses in multiprocessors. This is

known as CII misses. CII are compulsory misses,

intra-processor misses and inter-processor misses.

In proposed architecture, inter-processor misses

are eliminated by giving replacement ownership

of a block to a processor, while Shekhar

eliminates inter-processor misses by giving

replacement ownership of a set to a processor.

For “hot set” [1] ownership of complete set is

given to a single processor. But if set is not a hot

set, giving ownership to single processor will

increase load on the POP caches of other

processors. As shown in fig 2, only about 9% of

memory addresses results in hot sets, so number

of hot sets is not going to be too large. As a result,

most of the sets will not be owned by single

processors, this releases load on POP caches.

Qureshi [2] divides number of blocks in a

set among different processors. Here, at the end

of a time frame, miss rate is measured, which

means any action to reduce the growing miss rate

can be taken only at the end of time frame. This

paper proposes an implementation where

corrective action can be taken at any time when

miss rate grows above a given threshold value.

Fig 2) Memory addresses leading to Inter and

Intra-processor misses [1].

3. Architecture

3.1 Block Ownership

Inter-processor misses occurs because a

block brought into the cache by one processor is

evicted by other processor and the original

processor suffers a miss due to this eviction. A

simple way to avoid these misses is to give

ownership of a block to a processor, the one who

brought the block into the cache, so that only the

processor with ownership has the permission to

evict the block. This can be done by defining

replacement ownership of the block. For example,

in a dual core processor with cores P1 and P2

where both P1 and P2 are generating addresses

whose index bits correspond to this set. In the

absence of block ownership, any processor, say

P2, suffering a miss may evict a block from this

set which belongs to P1, this eviction may cause a

miss for P1 when next time it accesses the block

which is just evicted by P2. If block replacement

ownership is given to processors, P2 will not be

able to evict a block owned by P1 and vice-versa.

But eliminating inter-processor misses in this way

may lead to an increase in intra-processor misses.

Number of intra-processor misses will depend on

whether the set is a “hot set” or not.

Giving block ownership in a hot set will

increase intra-processor misses, since now a

processor has less number of blocks to choose

from, to replace a block while it requires more

number of blocks in that set. So, hot set miss rate

is high either due to inter-processor misses or due

to increased intra-processor misses. To reduce

this increase in intra-processor misses, POP

caches are used. If during last N access to a set

there are M or more misses, where M is the

threshold value, then the set is considered to be a

“hot set” and the ownership of one of the

processor is cancelled and the processor will now

bring its blocks from memory to its POP cache

instead of the hot set. This will reduce the traffic

to hot set and eventually miss rate will come

down. This process of canceling the ownership of

processors from a particular set may lead to a

situation where only one processor owns all the

blocks in a set. Here the ownership of a processor

is cancelled if it owns least number of blocks.

If a set is not a hot set, means not many

addresses are being generated by processors with

the index address of this set, then proper

distribution of block ownership among the

processors is necessary, to reduce the miss rate.

Consider a case when P1 owns most of the blocks

and rarely using some of these blocks while P2

has ownership of few blocks and suffering misses

in that set because it has fewer blocks to choose

from when evicting. If the ownership of less

frequently used blocks of P1 is transferred to P2,

over all miss rate can be reduced. Algorithm used

for relinquishing the ownership is explained in

section 3.4. Also by allowing all the processors

to share “non-hot set” the load on the POP cache

can be reduced.

3.2 Cache initialization

To give block ownership, (log n) bits in

each block are needed to indicate owner of the

block, where n is number of processors. When

first time a processor brings a block from memory

to cache, its id number will be written in the

ownership bits of the block. Now only this as

processor can evict the block from cache, as long

it keeps ownership, not any other processor.

3.3 Cache HIT and MISS

Cache is organized as POP caches and a

common cache. When any processor faces an L1

cache miss, in addition to common L2 cache, POP

caches of all the processors are also checked for

requested block. If there is a miss in common L2

cache and hit in one of the POP cache, request is

served from POP cache. These two are non-

inclusive in nature.

When a cache miss occurs, it may result in

following scenarios:

1) Requested block address may point to a set

where some of the blocks are not owned by

any processor. In this case, requested block

will be transferred from memory to the

indexed set and ownership bits will be set

with the id of the requesting processor.

2) Requested block address may point to a set

where all the blocks are owned by

processors other than the one with a miss. In

this case, a block can not be replaced from

this set because requesting processor doesn’t

own any block. So, data from memory will

be transferred to the POP cache of the

processor suffering miss.

3) Requested block address is pointing to a set

where requesting processor owns some of

the blocks. In this case processor will

replace one of the blocks owned by it with

the new block. Block to be replaced can be

selected by LRU. In this case, block to be

replaced is one which is least recently used

blocks among the blocks owned by the

processor, which need not be the least

recently used block of the set.

3.4 Ownership Relinquishment

This paper proposes two methods to relinquish

the ownership of a block:

In the first method, one counter per block is

used. The counter is initialized to half of the

maximum count. Every time when the block is

accessed and results in a hit, counter value is

increased by one. If counter reaches maximum

value i.e. all 1’s it will stay there. If a processor

experiences a miss in a particular set, then

counters corresponding to all the blocks owned

by other processors are decremented by one. If

any counter hits zero, ownership of this block is

cancelled and given to the processor whose miss

makes the counter to hit zero. Qualitatively, a

counter hitting zero means that the processor

owning it is not using it effectively and this block

can be used more effectively by other processor.

This technique has a major drawback that

numbers of counters required are equal to the

number of blocks in the cache. This huge

hardware requirement makes this technique less

attractive.

Fig 3) Block Diagram for proposed Architecture

 The other technique for ownership

relinquishment requires just two counters C1 and

C2 per set as shown in fig 3. C2 is used to

determine whether or not a set is a “hot set” and

C1 is used to fine tune the number of block

owned by each processor in a set. Selecting two

counters is based on the observation that miss rate

in a set can rise because of two reasons:

I) Set is a “hot set” and most of the

processors are trying to put their blocks in

the same set and hence intra-processor

misses are more.

II) Set is not a hot set but distribution of

blocks in the set is not proper, i.e.

processor requiring more blocks owns less

blocks and processor owning more blocks

is not utilizing them.

Counter C1 produces a high output if there are X

misses in last Y accesses to a set and counter C2

produces a high output if there are M misses in

last N accesses to that set. Here M is a multiple of

X and N is a multiple of Y. Multiplication factor

in both cases is same. So, if miss rate increases

above a particular value, C1 will detect it first,

and the set is assumed not to be hot set at this

point. The ownership of the blocks in the set

which are not being utilized properly is cancelled.

To do this, whenever C1 produces a high output,

ownership of the least recently used block in the

set is cancelled, so that a processor suffering

more misses can acquire the ownership of this

block and miss rate comes down. Qualitatively, in

canceling ownership of least recently used block,

it is assumed that this block is not being utilized

properly by owner and is required by other

processor than the current owner. Once

ownership of a block is cancelled, C1 is reset to

it’s initial value, if miss rate still remains high

after few such attempts, number of such attempts

is determined by ratio of N to Y, C2 will also

produce a high output and the set is treated as a

hot set, means every processor is trying to put its

blocks in this set. As stated earlier, the ownership

of all the blocks of a particular processor is

cancelled and this processor will now bring any

new blocks to its POP cache instead of the “hot

set”. This cancellation of ownership of blocks

will continue until either miss goes below the

threshold value or complete set is owned by

single processor. This will reduce the load on the

hot set and miss rate will reduce.

4. Proposed Implementation

Proposed architecture will be simulated

using Simics full system simulator [5]. In addition

to Simics, General Execution-driven

Multiprocessor Simulator (GEMS) [6] which is

based on Simics, will be used for simulating the

complete architecture.

 The optimum values of the parameters

used in the design will be evaluated using

simulations. These parameters are size of C1 and

C2 counters or in turn the values of N and Y, the

number of access in which miss rate is to be

calculated. Another parameter is threshold value

of miss rate and the value of M and X, the

number of misses in N and Y accesses

respectively. To find out optimum value of miss

rate, applications can be run beforehand to get the

information about miss rate as a function of

number of blocks per set, and then decide, when

does miss rate becomes insensitive to increase in

number of blocks. Also, effective miss rate for

different combinations of applications can be

found out. Miss rate for different combinations of

applications may vary, while initializing the

system, operating system can change the value of

miss rate threshold, depending upon which

application mix is to be run. SPEC 2006

benchmark will be used in the simulations to find

out values of these parameters.

5. Conclusion

 Inter-processor misses constitutes 40% of

total number of misses in a Chip Multi Processor

with shared level 2 cache. This paper proposed a

new architecture to eliminate these misses

without a significant increase in intra-processor

misses. Proposed architecture gives replacement

ownership of a block to one of the processors and

only owner can evict a block form cache, thus

eliminate inter-processor misses.

 This paper also showed that if a processor

is not utilizing blocks owned by it optimally,

ownership of block can be transferred to other

processors. This paper showed two techniques to

relinquish the ownership of a block. In future,

better ways of selecting a processor to give

ownership to, when ownership of a block is

relinquished has to be investigated.

6. References

[1] Shekhar Srikantaiah, Mahmut Kandemir, Mary

Jane Irwin. “Adaptive Set Pinning: Managing Shared

Caches in Chip Multiprocessors.” Proceedings of

ASPLOS'08, ACM/IEEE, pages 135-144 March, 2008.

[2] M. K. Qureshi and Y. N. Patt. “Utility-Based

Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared

Caches.” In Proc. of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, pages

423-432 , 2006.

[3] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D.

Newell. “Exploring the cache design space for large

scale cmps.” SIGARCH Computer Architecture News,

33(4):pages 24–33, 2005.

[4] M. Dubois, J. Skeppstedt, L. Ricciulli, K.

Ramamurthy, and P. Stenstrom. “The detection and

elimination of useless misses in multiprocessors.” In

Proc. of the 20th Annual International Symposium on

Computer Architecture, pages 88–97, San Diego, 1993.

[5] P. S. Magnusson, M. Christensson, J. Eskilson, D.

Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A.

Moestedt, and B. Werner. “Simics: A full system

simulation platform.” Computer, 35(2): pages 50–58,

2002.

[6] Milo M.K. Martin, Daniel J. Sorin, Bradford M.

Beckmann, Michael R. Marty, Min Xu, Alaa R.

Alameldeen, Kevin E. Moore, Mark D. Hill, and David

A. Wood, “Multifacet's General Execution-driven

Multiprocessor Simulator (GEMS) Toolset” Computer

Architecture News (CAN), pages 92-99, November

2005.

