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Genomes of cryptic chimpanzee Plasmodium
species reveal key evolutionary events leading
to human malaria
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Katharina S. Shaw1, Ahidjo Ayouba4, Martine Peeters4, Sheri Speede5, George M. Shaw1,2, Frederic D. Bushman2,

Dustin Brisson6, Julian C. Rayner7, Paul M. Sharp3 & Beatrice H. Hahn1,2

African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which

gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to

sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and

Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that

these parasites indeed represent distinct species, with no evidence of cross-species mating.

Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very

recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of

a multigene family involved in erythrocyte remodelling, and show that a short region on

chromosome 4, which encodes two essential invasion genes, was horizontally transferred into

a recent P. falciparum ancestor. Our results validate the selective amplification strategy

for characterizing cryptic pathogen species, and reveal evolutionary events that likely

predisposed the precursor of P. falciparum to colonize humans.
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P
lasmodium falciparum, the cause of malignant malaria in
humans, is only distantly related to other human malaria
parasites and has been classified into a separate subgenus,

termed Laverania1. Both chimpanzees and gorillas have
long been known to harbour parasites morphologically
indistinguishable from P. falciparum, but only one ape
Laverania species, P. reichenowi from chimpanzees, has been
described1. P. falciparum and P. reichenowi are closely related,
which led to the hypothesis that they had co-diverged with their
hosts, since the human–chimpanzee common ancestor 5–10
million years ago2. However, we and others have obtained
evidence that points to the existence of additional Plasmodium
species naturally infecting apes3–7. Phylogenetic analyses
of faecal-derived mitochondrial, apicoplast and nuclear
DNA sequences demonstrated that wild-living chimpanzees
(Pan troglodytes) and western gorillas (Gorilla gorilla) are each
infected with at least three divergent, host-specific, parasite
lineages that appear to represent distinct Laverania species7.
Moreover, one of the newly identified species from western
gorillas is very closely related to P. falciparum. In phylogenetic
trees of full-length mitochondrial DNA (mtDNA) sequences, all
extant strains of P. falciparum form a monophyletic clade within
the radiation of this gorilla parasite, indicating that P. falciparum
originated following a relatively recent jump from gorillas to
humans7. P. falciparum differs from other human malaria
parasites in many aspects of its biology, in particular its
virulence8. Thus, characterizing its ape Laverania relatives
provides an opportunity to understand the pathogenicity of this
parasite and the reasons for its emergence.

With the exception of P. reichenowi, none of the other ape
Laverania species have been formally identified. In one study,
falciparum-like ring stages were observed in chimpanzee blood
samples, and divergent mtDNA sequences were obtained that
were classified as a new species, P. gaboni3. A third species of
chimpanzee parasites, termed P. billcollinsi, has been identified
solely on the basis of DNA sequences, albeit from mitochondrial,
apicoplast as well as nuclear genomes7,9,10. Similarly, the three
distinct gorilla parasite species, P. praefalciparum (the precursor
of P. falciparum), P. blacklocki and P. adleri, have not been
cultured or visually characterized, but are clearly defined based on
DNA sequence data7,9,10. Given the similarity of P. gaboni to
P. falciparum (and thus to P. reichenowi) in microscopic studies,
it seems likely that all of these ape Laverania parasites represent
cryptic (morphologically indistinguishable) species. Because of
the endangered status of African apes that prohibits blood
collection from wild populations, and ethical concerns that
preclude experimental infection of captive individuals, it has not
been possible to obtain the morphological and biological data
required for classical taxonomic approaches. Nonetheless,
existing genetic data indicate that ape Laverania parasites fall
into six distinct clades, each at least as divergent from one
another as P. falciparum is from P. reichenowi9. Moreover, the
strict host specificity of these parasites, as well as their prevalence
and distribution throughout the range of their natural host
species, argue strongly that the ape Laverania species are actively
transmitted and cause productive infections.

Many apes appear to be simultaneously co-infected by more
than one Laverania species7. Elucidation of the mechanisms that
prevent these parasites from interbreeding, as well as the basis of
their host specificity, is of obvious interest. One approach to
examine whether the Laverania species are truly isolated, and to
understand their evolutionary history and host tropism, would be
to obtain their genome sequences. However, this has been
hampered by a lack of ape blood samples containing high levels of
parasites and the fact that none of these parasite species can be
cultured. All Plasmodium reference genomes generated to date

were derived from purified parasites that were grown to high
titres in red blood cells (RBCs) in vitro or in susceptible host
species in vivo11–15. Since RBCs from chimpanzees and gorillas
are not readily accessible, efforts to propagate ape Laverania
parasites in vitro have remained unsuccessful. To date, only a
single-genome sequence of the chimpanzee parasite P. reichenowi
has been determined, following extensive in vivo passage
and amplification in experimentally infected, splenectomised
chimpanzees12,16. However, this method of parasite enrichment is
no longer considered ethical.

In this study, we apply a strategy that permits the selective
amplification of near-full-length Plasmodium genomes from ape
blood with microscopically undetectable parasitemia. Using this
approach, we obtain genome sequences from three chimpanzee
parasites, one classified as P. reichenowi and two as P. gaboni
based on short PCR fragments. The genome-wide analyses
provide new insights into the evolutionary history of
P. falciparum. Remarkably, each of the two chimpanzee
Laverania species exhibits about 10 times more within-species
genetic diversity than is found among a global sample of
P. falciparum, indicating that the human parasite has been
through a severe genetic bottleneck, consistent with a very recent
origin. We also describe the rapid expansion and diversification
of a multigene family (FIKK) that is unique to the Laverania
subgenus, as well as a horizontal transfer of a short (8 kb)
chromosomal region that encodes two functionally related,
essential invasion genes. Thus, we validate a new approach for
characterizing cryptic pathogen species, and reveal adaptive
processes that may have allowed the gorilla precursor of
P. falciparum to cross the species barrier to humans.

Results
Selective whole-genome amplification of Laverania parasites.
Traditional whole-genome amplification methods utilize the
highly processive phi29 polymerase and random primers to
generate DNA fragments of up to 70 kb in length, but amplify all
templates within a sample with near-uniformity17,18. Since
microbial and host genomes differ in the frequency of common
sequence motifs, we reasoned that it should be possible to design
primers that would amplify pathogens selectively, even if they
represented only a small fraction of the sample DNA. Testing
this concept on Wolbachia-infected fruit flies, we found
that selective whole-genome amplification (SWGA) generated
sufficient quantities of bacterial genomes for next-generation
sequencing19. To extend this method to more complex eukaryotic
pathogens, here we tested whether SWGA could amplify the
multi-chromosomal genomes of Plasmodium parasites from
unprocessed human and ape blood samples.

To identify primers that would selectively bind to Laverania
DNA, we determined the frequency of short sequence motifs
(8–12 bp in length) in both the P. falciparum and human
genomes (Supplementary Fig. 1). This approach identified 2,418
motifs that occurred frequently (that is, were spaced on average
o50,000 bp apart) in the P. falciparum genome, but only rarely in
the human genome (that is, were spaced on average 4500,000 bp
apart; Fig. 1a). These same motifs were also over-represented in
P. reichenowi relative to the chimpanzee genome, suggesting that
they could be used to selectively amplify other Laverania parasite
species (Fig. 1b). To identify the best possible primers, we first
filtered the 2,418 motifs based on their DNA-binding properties
and then selected two primer sets based on their ability to bind
evenly across the P. falciparum genome (Supplementary Fig. 1).

To validate the SWGA primer sets, we tested them using
human DNA samples spiked with known quantities (0.001–5%)
of P. falciparum DNA. These experiments showed that SWGA

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11078

2 NATURE COMMUNICATIONS | 7:11078 | DOI: 10.1038/ncomms11078 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Millions of base pairs sequenced 

Average distance between sequence motifs
in the P. reichenowi genome (kb) 

00 2525 5050 75 100100

10,000 10,000

100

1,0001,000

11

100

75

12 bp
11 bp
10 bp
9 bp
8 bp

A
ve

ra
ge

 d
is

ta
nc

e 
be

tw
ee

n 
se

qu
en

ce
 m

ot
ifs

in
 th

e 
ch

im
pa

nz
ee

 g
en

om
e 

(k
b)

 

A
ve

ra
ge

 d
is

ta
nc

e 
be

tw
ee

n 
se

qu
en

ce
 m

ot
ifs

in
 th

e 
hu

m
an

 g
en

om
e 

(k
b)

 

Motif length

Set 8A
Set 6A

SWGA primers
1010

0

300
30

0

300
30

0

300
30

0

300
30

0

300
305% P. falciparum

~96,000 copies 

1% P. falciparum
~19,000 copies

0.1% P. falciparum
~1,900 copies

0.01% P. falciparum
~190 copies

0.001% P. falciparum
~19 copies

Pf3D7 Chr 14Chr 13Chr 12Chr 11Chr 10Chr 9Chr 8Chr 7Chr 6Chr 5Chr 4Chr 3Chr 2Chr 1

Average distance between sequence motifs in the
P. falciparum genome (kb) 

5% P. falciparum 1% P. falciparum 0.1% P. falciparum 0.01% P. falciparum 0.001% P. falciparum

P
er

 c
en

t p
ar

as
ite

 g
en

om
e 

co
ve

re
d

a b

c

d

Figure 1 | SWGA of Plasmodium parasites. (a,b) Selection of SWGA primer sets. (a) The average distance (kb) between the 10,000 most frequent

parasite motifs (colour coded by length) is plotted for both the P. falciparum (Pf3D7) and human (GRCh37) genomes. The red box highlights motifs that are

spaced (on average) o50,000 bp apart in the P. falciparum, but 4500,000 bp apart in the human genome. (b) Average distances between the sequence

motifs shown in a, but plotted for the P. reichenowi (PrCDC) and chimpanzee (Pan_troglodytes-2.1.4) genomes. Red dots indicate all motifs that fall within

the red box in a, with circles and stars denoting those selected for SWGA primer sets 6A and 8A, respectively (Supplementary Fig. 1). (c) Validation of the

SWGA primer sets. Human genomic DNA spiked with known quantities of P. falciparum DNA (5–0.001%) was subjected to consecutive rounds of SWGA,

using primer set 6A in the first and primer set 8A in the second round. The number of total base pairs (in millions) sequenced is shown in relation to the

per cent coverage of the P. falciparum (Pf3D7) genome for five parasite concentrations. DNA mixtures were subjected to two independent amplifications,

with individual and combined results shown in blue and red, respectively (the expected genome coverage without SWGA is shown in green). (d) MiSeq

read depth for all 14 chromosomes across the Pf3D7 genome shown for one representative amplification at each of five parasite concentrations (individual

chromosomes are drawn to scale as indicated on top). For each parasite/human DNA mixture, the percentage of P. falciparum and estimated number of

genome copies are indicated. An expanded view of coverage across chromosome 9 is shown in Supplementary Fig. 2.
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amplified P. falciparum genomes with remarkable breadth and
selectivity over a wide range of concentrations, especially when
results from independent amplifications were combined (Fig. 1c).
Of B2.5 million MiSeq reads derived from samples containing as
little as 0.001% P. falciparum DNA (19 genome equivalents),
B1.7 million (70%) mapped to the P. falciparum genome,
indicating a 70,000-fold enrichment of the parasite DNA
compared with that of the host (Table 1). Read coverage was
even across all 14 chromosomes, except for the sub-telomeres
where low sequence complexity precluded accurate mapping
(Fig. 1d). Amplification of the lowest (0.001%) parasite
concentration was more stochastic (Fig. 1d and Supplementary
Fig. 2). However, since combining multiple SWGA replicates
improved coverage even at this low dilution, it is likely that the
stochastic coverage is the result of amplification of a very limited
number of starting genomes (19 genomic equivalents). Thus,
SWGA generated high-quality Plasmodium core genomes from
samples containing large quantities of contaminating host DNA.

Sequence analysis of P. gaboni and P. reichenowi genomes. We
next used SWGA to amplify the genomes of three chimpanzee
parasites, representing both close (P. reichenowi) and very distant
(P. gaboni) relatives of P. falciparum9. Whole-blood samples were
obtained from (blood smear negative) sanctuary chimpanzees
during their annual health examination and tested for
Plasmodium infection using conventional PCR. Parasite
DNA-positive blood samples were further characterized by
limiting dilution (single template) PCR amplification of eight
mitochondrial, apicoplast and nuclear loci to determine their
Plasmodium species composition7,10. This analysis identified
one sample (SY57) to contain almost exclusively (499%)
P. reichenowi DNA and two others (SY75 and SY37) to contain
only P. gaboni DNA (Supplementary Table 1). In each case, the
parasites contributed only a miniscule fraction of the total blood
DNA (0.0054, 0.14 and 0.00081% for SY57, SY75 and SY37,
respectively). To reduce the contaminating host DNA, we
digested all samples with methylation-dependent restriction
enzymes (MspJI and FspEI) known to cleave ape, but not
Plasmodium, genomic DNA20, and then used the digestion
products for SWGA and Illumina sequencing. This approach
yielded 27, 31 and 39 million MiSeq reads for samples SY57, SY75
and SY37, respectively, of which 89, 73 and 61%, respectively,

mapped to Plasmodium sequences (Supplementary Table 1).
Sequence coverage was even across all 14 chromosomes,
including near the ends of some chromosomes, with no
evidence for selective sequence loss (Supplementary Fig. 3).
Reads from sample SY57 were mapped to the P. reichenowi
PrCDC reference sequence and shown to cover 96% of its genome
(at a fivefold or higher read coverage). Since there is no published
P. gaboni genome, reads from samples SY75 and SY37 were
mapped to the P. falciparum Pf3D7 reference sequence and
shown to cover 79 and 69% of its genome (at Z5� ), respectively
(Supplementary Table 1). This lower coverage was not due to a
reduction in selective amplification, but instead the result of the
difficulty of mapping reads to a highly divergent reference
sequence.

Using reference-guided iterative assembly21, we generated draft
genomes for PrSY57 and PgSY75, which contained 18.9 and
18.5 Mb of chromosomal, as well as 0.8 and 1.5 Mb of unplaced
(bin) sequences, respectively (Table 2). Due to the very small
quantities of parasite DNA, sequence coverage for PgSY37 was
lower, yielding 15 Mb of chromosomal and 9 Mb of unplaced
sequences. Syntenic annotation transfer and ab initio gene
prediction identified a total of 4,920, 4,962 and 4,179 full-length
and partial protein-coding genes in PrSY57, PgSY75 and PgSY37,
respectively, which included 98.3, 98.7 and 85.7%, respectively, of
the core genes in the respective reference sequences (Table 2). In
genomic regions that were syntenic among all three species, there
were only four intact P. gaboni genes that were missing in
P. falciparum and/or P. reichenowi, and only three intact
P. reichenowi and/or P. falciparum genes that were absent
from P. gaboni (Supplementary Table 2, Supplementary Fig. 4).
Of 76 pseudogenes examined in the three Laverania species, only
7, 13 and 10 were specific to P. falciparum, P. reichenowi and
P. gaboni, respectively (Supplementary Table 3). Given the
evolutionary relationships among these species9, this indicates
that the core genome of ape and human parasites is highly
conserved, even among the most divergent members of the
Laverania subgenus.

Within-species diversity in P. reichenowi and P. gaboni.
Availability of new P. reichenowi and P. gaboni genomes allowed
us to examine the within-species diversity among chimpanzee
parasites. For comparison, the intra-species diversity of

Table 1 | Selective whole-genome amplification of P. falciparum from mixtures of human and parasite DNA.

Per cent
parasite
admixture*

Total
DNA
(ng)

P. falciparum
DNA (ng)

P. falciparum
genome
copies

Total
MiSeq
reads

Reads
mapping

to the
human

genome

Per
cent

human
reads

Reads
mapping

to the
P. falciparum

genome

Per cent
P. falciparum

reads

Unmapped
reads

Per cent
unmapped

reads

Fold
parasite

enrichment

5
P. falciparum

50 2.5 96,507
3,157,170 9,156 0.3 2,968,254 94.0 179,760 5.7 19
2,570,124 7,064 0.3 2,408,319 93.7 154,741 6.0 19

1
P. falciparum

50 0.5 19,301
3,412,530 34,936 1.0 3,152,623 92.4 224,971 6.6 92
2,804,890 22,190 0.8 2,660,365 94.8 122,335 4.4 95

0.1
P. falciparum

50 0.05 1,930
3,422,726 43,108 1.3 3,174,382 92.7 205,236 6.0 930
2,638,548 56,552 2.1 2,444,992 92.7 137,004 5.2 930

0.01
P. falciparum

50 0.005 193
3,917,388 332,468 8.5 3,390,560 86.6 194,360 5.0 8,700
3,362,418 429,008 12.8 2,730,631 81.2 202,779 6.0 8,100

0.001
P. falciparum

50 0.0005 19
2,430,994 590,934 24.3 1,688,947 69.5 151,113 6.2 69,000
2,635,560 613,656 23.3 1,832,657 69.5 189,247 7.2 70,000

*For each parasite admixture, results are shown for two technical replicates.
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P. falciparum was calculated using published SNP data from 12
geographically diverse field isolates (see the ‘Methods’ section for
details). Comparing more than 3,000 genes, we found that the
two P. gaboni genomes (PgSY75 and PgSY37) differed at 0.4% of
all coding sites, and 1.1% of fourfold degenerate (silent) sites.
Similarly, the two P. reichenowi genomes (PrSY57 and PrCDC)
differed at 0.3% of all coding sites, and 0.9% of fourfold
degenerate sites (Table 3). Note that, for every gene, the
divergence between the two P. gaboni sequences, or between the
two P. reichenowi sequences, was lower than between these
two species, consistent with the premise that P. gaboni and
P. reichenowi are genetically isolated.

In contrast, 12 field isolates of P. falciparum selected from
countries around the world differed on average at only 0.04% of
all coding sites, and 0.08% of fourfold degenerate sites (Table 3).
To ensure that the higher diversity among the ape parasites was
not an artefact of the SWGA method, we amplified several
nuclear loci that exhibited particularly high sequence diversity
(three from P. gaboni and four from P. reichenowi) using limiting
dilution PCR (Supplementary Table 4). The resulting sequences
were identical to the SWGA-derived genomes except for two

indels in difficult-to-assemble regions, which had been excluded
from the diversity calculations, thus further validating the
accuracy of the SWGA method (Supplementary Fig. 5). The
distributions of diversity levels across genes were very similar in
P. reichenowi and P. gaboni (Fig. 2). This was also the case when
the within-species diversity for P. reichenowi or P. gaboni was
compared with the maximum pairwise divergence obtained
for each gene among the 12 P. falciparum field isolates
(Supplementary Fig. 6). In all comparisons, the difference
between ape and human parasites reflected higher diversity levels
in genes distributed across the entire core genome. Thus, for both
chimpanzee parasite species, including two P. gaboni strains from
the same location, the genetic diversity is about ten times higher
than that seen among P. falciparum strains from different
geographic regions across the globe. This reduced diversity in
P. falciparum is consistent with a severe population bottleneck,
which most likely occurred at the cross-species transmission from
gorilla to human.

Laverania-specific expansion of the FIKK multigene family.
To gain insight into the host specificity of Laverania parasites, we

Table 2 | Genome features of P. gaboni and P. reichenowi.

P. reichenowi P. gaboni P. gaboni

Genome ID PrSY57 PgSY75 PgSY37
Chromosomal assembly (bp)* 18,852,800 18,463,354 15,330,638
Chromosomal contigs 1,012 331 NAw

Unplaced assembly (bp)z 798,479 1,474,057 8,902,276
Unplaced contigs 762 818 14,793
Chromosomes 14 14 14
GC content (%) 18.6 18.3 17.1

Core protein-coding genesy 4,670 (98.3%) 4,689 (98.7%) 4,071 (85.7%)
Full-length|| 4,359 (91.8%) 4,381 (92.2%) 3,295 (69.4%)
Partialz 311 (6.5%) 308 (6.5%) 776 (16.3%)

Subtelomeric protein-coding genesy 235 (23.8%) 222 (33.2%) 108 (16.2%)
Full-length|| 182 (18.5%) 189 (28.3%) 72 (10.8%)
Partialz 53 (5.4%) 33 (4.9%) 36 (5.4%)

Other protein-coding genes# 15 51 0
Full-length|| 14 44 NA
Partialz 1 7 NA

tRNA genes 42 (93.3%) 43 (95.6%) 32 (71.1%)

rRNA genes 8 (47.1%) 11 (43.3%) 2 (7.7%)
Full-length|| 4 (23.5%) 10 (38.5%) 2 (7.7%)
Partialz 4 (23.5%) 1 (3.8%) 0

ncRNA genes 71 (75.5%) 67 (65.7%) 49 (48.0%)
Full-length|| 66 (70.2%) 61 (59.8%) 40 (39.2%)
Partialz 5 (5.3%) 6 (5.9%) 9 (8.8%)

Apicoplast genes 45 (76.3%) 58 (85.3%) NA
Full-length|| 27 (90.0%) 30 (100%) NA
Partialz 2 (6.7%) 0 NA
tRNA genes 16 (59.3%) 26 (76.5%) NA
rRNA genes 0 2 (50%) NA

bp, base pair; NA, not available.
*Length of all contigs that could be placed in chromosomes, excluding gaps.
wThe PgSY37 genome was generated by iteratively replacing the PgSY75 genome with PgSY37 reads and replacing the regions that lacked fivefold coverage with Ns; reads not mapped to PgSY75
chromosomes were assembled de novo to generate ‘unplaced contigs’.
zLength of all contigs that could not be placed in chromosomes (bin), excluding gaps.
yGene counts excluding splice variants, but including pseudogenes and partial genes; parentheses indicate the percentage of genes covered in the Plasmodium references Pf3D7 (PgSY75 and PgSY37) and
PrCDC1 (PrSY57).
||Number includes all genes that comprise Z90% of the lengths of their Pf3D7 or PrCDC orthologues/homologues, as well as all genes that comprise Z80% of the lengths of their Pf3D7 or PrCDC
orthologues/homologues and contain no assembly gaps.
zAll annotated coding sequences for which homologues could be identified by BLAST search, but did not contain a sufficiently long sequence to be considered full-length.
#Genes for which an orthologue could not be unambiguously identified in the reference genome.
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examined members of multigene families known to function at
the host-parasite interface. Many of these, including members of
the var, rif and stevor families, could not be completely assembled
because of their extreme variability and subtelomeric location,
although var-like genes have been shown to be present in all ape
Laverania species10. One family of putative protein kinases,
termed FIKK (after a conserved Phe-Ile-Lys-Lys motif in their
amino acid sequence), was of particular interest because it
expanded from a single gene, present in other Plasmodium
species, to 21 genes in both P. falciparum and P. reichenowi12,22.
Remarkably, the new P. gaboni genome contained 22 FIKK
genes, 21 of which represented clear syntenic orthologues
of corresponding P. falciparum and P. reichenowi genes
as demonstrated by phylogenetic analysis (Fig. 3a) and
chromosomal location (Supplementary Table 5). The remaining
P. gaboni gene on chromosome 9, termed FIKK9.15, did not have
an orthologue in P. falciparum and P. reichenowi. This gene
originated before the last common ancestor of the extant
Laverania (Fig. 3a), but appears to have been lost in a common
ancestor of P. falciparum and P. reichenowi (Supplementary
Fig. 7a). The closest relative of P. gaboni, the gorilla parasite
P. adleri, retained a FIKK9.15 orthologue (Supplementary
Fig. 7b). These data indicate that the FIKK gene family
underwent an unprecedented burst of gene duplications and
rapid diversification very early in Laverania evolution, followed
by a period of greatly reduced divergence rates and near stasis of
gene copy numbers after the radiation of extant Laverania species
(Fig. 3a).

Although their exact functions remain to be determined, the
P. falciparum FIKK genes are expressed at different time points
during the erythrocytic cycle23 (Fig. 3b), with all but the ancestral
FIKK8 believed to be exported into the host erythrocyte to
contribute to the remodelling of its cytoskeleton and surface
membrane structures22,24,25 The slow rate of evolution of FIKK8
(Fig. 3a) suggests that it has retained its original cytosolic
function, consistent with the very similar expression profiles of
FIKK8 orthologues in P. falciparum and P. vivax23,26. In contrast,
all other family members appear to have acquired novel,
non-redundant and seemingly essential functions, since only
very few have become pseudogenes in one or more Laverania
species. For example, FIKK14 is a pseudogene in P. falciparum
(Fig. 3a), but the gene appears functional in P. praefalciparum, as
well as P. reichenowi, P. gaboni, and P. adleri, indicating that the
inactivating mutation occurred very recently (Supplementary
Fig. 8a). Similarly, FIKK7.2 is a pseudogene in P. falciparum
(Fig. 3a), but is intact in P. praefalciparum, as well as P. gaboni
and P. adleri, although it has undergone independent inactivation
in P. reichenowi (Supplementary Fig. 8b). In contrast, FIKK9.5 is
a pseudogene in both P. gaboni and P. reichenowi, but is intact in
P. falciparum, indicating that it also must have retained its
function throughout much of the diversification of the Laverania
subgenus (Fig. 3a).

Horizontal transfer of two essential invasion genes. To
investigate whether any genes exhibit unusual patterns of
divergence among P. falciparum, P. reichenowi and P. gaboni
parasites, we calculated inter-species distances for 4,500 ortho-
logues (Supplementary Data 1). As expected from mtDNA7, the
pairwise distance between P. falciparum and P. reichenowi was
about fourfold lower than the distance of either species to
P. gaboni. However, there were four genes for which these
relationships were reversed, that is, the P. falciparum–
P. reichenowi distance was about fourfold higher than the
P. falciparum–P. gaboni distance (Fig. 4). These four genes are all
located on the same 8 kb segment of chromosome 4 (Fig. 5a)
and include two essential invasion genes encoding the
reticulocyte-binding-like homologous protein 5 (RH5) and the
cysteine-rich protective antigen (CyRPA)27,28. To investigate this
further, we amplified regions, from both within and outside the
8 kb segment, from additional ape Laverania species
(Supplementary Table 6, Supplementary Fig. 9). Evolutionary
trees derived from the EBA165 (Fig. 5c) and GAPM2
(Supplementary Fig. 9c) sequences, which lie immediately
beyond the two ends of the 8 kb segment, were consistent with
previous topologies7. However, trees based on RH5 (Fig. 5b)
and CyRPA (Supplementary Fig. 9a) sequences exhibited an
unexpectedly close relationship of the P. falciparum/
P. praefalciparum clade with the gorilla parasite P. adleri. These
discordant relationships indicate a transfer of genetic material
from an ancestor of P. adleri to an ancestor of P. praefalciparum.
Mating between members of divergent Laverania species is highly
unlikely to yield viable offspring (see the ‘Discussion’ section),

Table 3 | Nucleotide diversity within Laverania species.

Species* Nw pz p4y Genes pz p4y Genes

P. falciparum 12 0.00049 0.00081 4,734 0.00043 0.00079 3,111
P. reichenowi 2 0.00364 0.00899 4,439 0.00324 0.00876 3,111
P. gaboni 2 0.00406 0.01069 3,331 0.00381 0.01049 3,111

*Values represent mean values across genes, weighted by the number of sites in the gene. Values at the right are for 3,111 genes available for all three species, with the same set of sites used for each.
wNumber of strains.
zPairwise nucleotide diversity across all non-masked coding sites.
yPairwise nucleotide diversity across non-masked fourfold degenerate sites.
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and so the discordant evolutionary history of this 8 kb region is
most likely the result of a horizontal transfer of a small genome
fragment.

Discussion
Comparative genomic and population genetic studies require
high-quality annotated reference genomes, which have been
nearly impossible to obtain for ape Plasmodium parasites because
of the endangered status of their hosts. Here, we use an SWGA
strategy to generate Plasmodium genomes from unprocessed
blood samples containing large quantities of contaminating host
DNA. The selectivity derives from primers that anneal to DNA
motifs that are common in the parasite but rare in the host
genome, and a polymerase (phi29) that has exceptional processive
and strand-displacement functions, which mediate efficient and
high-fidelity isothermal DNA amplification17,18. SWGA obviates
the need for mechanical separation of target and background
genomes, renders next-generation sequencing more economical
and enables the molecular characterization of parasites that
cannot be cultured, such as P. vivax. Thus, SWGA precludes the
need for in vivo amplification in non-natural host species, which
can result in sequence loss or other artefactual adaptations29.
SWGA also obviates the need for large blood draws, can be used
in resource poor settings, and allows to characterize parasite
genomes from dried blood spots. Finally, SWGA can be adapted
to other microbes and/or host species, as long as appropriate
reference genomes are available for all sample constituents. For
example, we have recently amplified Plasmodium parasites from
infected mosquito DNA30, identifying vectors as a potentially
valuable source of pathogen genomes. To increase the utility and
versatility of SWGA, we are developing an automated pipeline
that permits the design, selection and in silico evaluation of
SWGA primers for different pathogen and host combinations
(https://github.com/eclarke/swga).

Although SWGA can generate high-quality Plasmodium
genomes from samples containing very small quantities of
parasite DNA (Supplementary Table 1), the method has
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limitations. SWGA is not useful for identifying copy number
variation because of the uneven distribution of SWGA-derived
sequence reads (Fig. 1d). Moreover, uneven coverage precludes
the assembly of repetitive genome regions, such as in the
subtelomers, since assemblers cannot accurately determine their

numbers. SWGA also requires stringent sample preservation.
For example, two gorilla samples (SA3066 and SA3157), which
were frozen as whole blood without preservation, failed to yield
Laverania genome sequences on SWGA, although both were low-
level parasite DNA positive (0.00073 and 0.00024%, respectively).
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Nonetheless, when the respective SWGA products were subjected
to limiting dilution PCR, gene fragments of several nuclear genes
(GAPM2, CyRPA, FIKK) were readily amplified (Supplementary
Table 6). Thus, SWGA can mediate selective amplification even
when samples contain insufficient numbers of parasite genomes
required for whole-genome amplification.

The newly generated P. gaboni and P. reichenowi genomes
provided an opportunity to examine levels of genetic polymorph-
ism within ape Laverania species, revealing that they were almost
10-fold more diverse than human P. falciparum. It has long been
suspected that P. falciparum has unusually low genetic diversity31,
although the underlying causes have been the subject of much
debate32. Genome-wide analysis of human and chimpanzee
parasites now show that this low diversity is not a general
characteristic of Laverania parasites, and therefore not simply an
artefact of their very AþT-rich genomes nor a consequence of
the recurrent bottlenecks that characterize their life cycle33,34.
The expected neutral nucleotide diversity is dependent on the
effective population size, which for a parasite is generally
dependent on the population size of its host. Numbers of
chimpanzees seem unlikely to have been ten times larger than
those of humans in the past35, and a simpler explanation for the
extremely low diversity in P. falciparum is a recent stringent
population bottleneck that likely occurred during the cross-
species transmission of its gorilla precursor7. Importantly, very
recent selection for drug resistance cannot explain the genome-
wide reduction of P. falciparum diversity. Although the spread of
resistant alleles has reduced polymorphism in narrow regions
immediately surrounding the drug-resistance loci, the high rate of
recombination in P. falciparum maintains normal diversity levels
elsewhere in the genome36,37.

Previous attempts to date the last common ancestor of
P. falciparum, that is, to determine a minimum age for the
human parasite, have yielded estimates of up to several hundred
thousand years ago38–40, but all of these made assumptions
concerning the Plasmodium molecular clock that cannot be
substantiated. In contrast, other data, including the time frames
of both the opening of niches for the major anthropophilic
vectors belonging to the Anopheles gambiae species complex41

and the spread of P. falciparum resistance mutations in Africa42,
as well as the low probability of maintaining endemic
P. falciparum infections in human hunter–gatherer
populations43,44, support a much more recent emergence of
P. falciparum. The time required to generate the observed
nucleotide diversity within P. falciparum can be estimated from
published mutation rates, combined with estimates of the number
of replication cycles that the parasites undergo per year. The
P. falciparum mutation rate has been estimated to be on the order
of 1.0–9.7� 10� 9 mutations per site per replication cycle45–47.
Although the time that P. falciparum spends in the mosquito as
well as the extent of its replication during the human blood stage
may vary, various combinations of alternative scenarios suggest a
minimum of at least 200 replication cycles per year (P.M.S,
unpublished). At fourfold degenerate sites, which are expected to
be neutral and thus to reflect mutation rates, we have found an
average diversity of 8� 10� 4 per site (Table 3). Even considering
the lowest estimates of the P. falciparum mutation rate and
replication numbers, this level of divergence could have readily
accumulated within a few thousand years. While this approach is
not sufficiently accurate to provide a firm date, it nonetheless
indicates that the level of genetic diversity observed among extant
P. falciparum strains is sufficiently low that it can easily be
reconciled with an origin of the human parasites within the past
10,000 years.

To gain insight into the biology of Laverania parasites, we
examined members of multigene families that function at the

host-parasite interface. The previous finding of var-like genes in
P. gaboni indicated that this gene family performs functions
essential for all Laverania parasites, not only P. falciparum10.
Here we show that the genes encoding members of the FIKK
family of protein kinases, which are thought to play a key role in
the remodelling of infected erythrocytes, duplicated and
diversified rapidly following the emergence of the Laverania
lineage. Thus, the expansion of the FIKK family from a single
gene in non-Laverania parasites to up to 22 genes in Laverania
parasites represents another unique feature of this subgenus
(Fig. 3). Interestingly, other exported multigene families that are
expanded in P. falciparum and P. reichenowi also have syntenic
orthologues in P. gaboni (Supplementary Table 7)48. These
include the DNAJ genes, which encode molecular chaperones in
other eukaryotes, but are thought to facilitate interactions with
the erythrocyte skeleton and possibly control knob formation in
Laverania parasites49,50. These also include genes that encode
proteins belonging the poly-helical interspersed subtelomeric
subclass b (PHISTb) family, which localize to the erythrocyte
periphery51 and in some instances interact with proteins of the
P. falciparum erythrocyte membrane protein 1 (PfEMP1) family
that are encoded by var genes24,52. Thus, the rapid expansion
and diversification of the FIKK gene family likely occurred in
concert with other exported multigene families48, which may be
responsible, at least in part, for the unique biology of Laverania
parasites, including their ability to mediate RBC cytoadhesion,
tissue sequestration and/or host immune escape8,24.

Although the origin of P. falciparum is now well-established,
nothing is known about the evolutionary and mechanistic
processes that led to its emergence. Genome-wide analysis of
the newly derived P. reichenowi and P. gaboni genomes showed
that a short region on chromosome 4, which includes the essential
invasion genes CyRPA and RH5, exhibited anomalous inter-
species divergence levels (Figs 4 and 5). Phylogenetic analyses
indicate that this reflects an exchange of DNA from an ancestor
of one gorilla parasite, P. adleri, to the ancestor of another gorilla
parasite, P. praefalciparum, before the transmission of the latter to
humans resulting in P. falciparum. While we cannot formally
exclude the possibility that the divergent fragment was generated
following introgression, several lines of evidence suggest that a
horizontal transfer of a small genome fragment is much more
likely. First, chimpanzees and gorillas are each infected with three
Laverania species; since these parasites are sympatric and most
wild-living chimpanzees and gorillas are multiply infected7, the
implication is that there are strong pre- and/or post-reproductive
barriers preventing their hybridization. Indeed, if cross-species
mating were possible, we would expect to see evidence of this in
the genomes of P. gaboni and P. reichenowi, which is not the case.
Second, to go from the initial hybrid containing 50% P. adleri
DNA, to the current situation with o0.05% P. adleri DNA, the
introgression process would have required numerous successful
generations of backcrossing to P. praefalciparum. This seems
much less likely than the asexual transfer of a small amount of
DNA, especially since cultured erythrocyte-stage parasites of
P. falciparum are known to take up DNA spontaneously from
their host cell cytoplasm53 and infected RBCs have been shown
to communicate via exosome-like vesicles that are capable of
delivering genes54. Thus, the horizontal transfer likely occurred
during the blood stage infection of a gorilla (or gorilla ancestor)
harbouring multiple Laverania species7.

Recent studies have shown that RH5, CyRPA, the
RH5-interacting protein RIPR, and likely other proteins form a
multiprotein complex that is attached to the merozoite surface28.
This adhesion complex ensures the proper positioning of RH5,
which lacks a transmembrane domain, thus facilitating its
binding to the erythrocyte receptor basigin, an obligate step in
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the erythrocyte-invasion process27. Given the essential nature of
these interactions, the acquisition of ‘matching’ RH5- and
CyRPA-coding regions on both ends of a mosaic fragment
seems unlikely to represent a chance event. Indeed, the initially
transferred fragment may have been longer, but could have been
reduced in size by successive recombination events, which would
have inevitably eaten away at the edges of the region, replacing P.
adleri-derived sequences with P. praefalciparum DNA. This
process of erosion would have continued until any further
shortening was deleterious because it failed to conserve
compatible RH5 and CyRPA proteins. Analyses of the fragment
boundaries identified the 50-break point to lie within the CyRPA
gene, but very close to the end of the region encoding the
predicted signal peptide, which would be expected to be cleaved
before binding RH5, providing strong support for this hypothesis
(Fig. 5d; Supplementary Fig. 10).

While the adaptive pathways required for the colonization of
humans remain to be elucidated, it is tempting to speculate that
the horizontal gene transfer of RH5, which encodes a major
P. falciparum host specificity determinant55, conferred a fitness
advantage that predisposed P. praefalciparum to infect humans.
However, even if this was the case, this event alone was clearly not
sufficient to facilitate the cross-species transmission, since all
characterized strains of P. praefalciparum carry the same
P. adleri-derived version of the RH5 gene. Moreover, the
horizontal transfer occurred long before the emergence
of P. falciparum (Fig. 5b). All available genetic7,56 and
epidemiological56,57 evidence point to a single gorilla-to-human
transmission event, indicating that present-day gorilla parasites
do not infect humans. Thus, the P. praefalciparum strain that was
able to cross the species barrier must have carried one or more
highly unusual mutations. It is possible that these mutations
included an adaptation to a different mosquito vector, such as the
ability to efficiently infect the main human vector A. gambiae58,
when humans transitioned from a hunter–gatherer to a more
settled lifestyle. Whole-genome sequencing of P. praefalciparum,
and functional analyses of gametocyte surface proteins, such as
Pfs47 and its Laverania orthologues58, will be necessary to
elucidate this.

Methods
Ape samples. Blood samples (5–10 ml) were collected from sanctuary
chimpanzees (Pan troglodytes) living in outside enclosures in close proximity to
wild apes at the Sanaga Yong Chimpanzee Rescue Center in Cameroon (n¼ 24)
and the Tchimpounga Chimpanzee Rehabilitation Center (n¼ 1) in the Republic
of the Congo. Members of both the central (P. t. troglodytes) and the Nigeria-
Cameroonian (P. t. ellioti) subspecies were sampled. Blood was obtained for
veterinary purposes only or represented leftover specimens from yearly health
examinations. None of the chimpanzees exhibited symptoms of malaria at the time
of sampling. Most blood samples were preserved in RNAlater (1:1 vol/vol) without
further processing, except for 6 samples, which were subjected to density-gradient
centrifugation in the field to enrich for RBC (Supplementary Table 6). Briefly,
blood was diluted in PBS (1:1 vol/vol), layered over Lymphoprep (Axis-Shield), and
then centrifuged at 800 g for 20 min. After removal of the mononuclear cell layer,
the purified erythrocytes were preserved in RNAlater (1:1 vol/vol). All samples
were transported at ambient temperature and then stored at � 80 �C. Small
quantities of blood were also obtained from two western gorillas (Gorilla gorilla) of
unknown geographic origin, who were killed by hunters and confiscated by the
anti-poaching programme of the Cameroonian Ministry of Environment and
Forestry. Blood was collected from around the inflicted wounds and frozen directly
without preservation. Ape faecal samples (n¼ 38) were selected from an existing
bank of chimpanzee and western gorilla specimens previously shown to contain
Laverania parasite DNA7,10,59. These specimens were collected from non-
habituated apes living in remote forest areas, with a two-letter-code indicating their
field site of origin as previously reported7,59. DNA was extracted from whole blood
and RBCs using the QIAmp Blood DNA Mini Kit, the Puregene Core Blood Kit
(Qiagen), or the NucliSENS miniMag extraction kit (Biomérieux). Sample
collection was approved by the Ministry of Environment and Forestry in
Cameroon, and by the Ministry of Forest Economy and Sustainable Development
in the Republic of Congo, respectively. All samples were shipped in compliance
with Convention on International Trade in Endangered Species of Wild Fauna and
Flora regulations and country-specific import and export permits.

Laverania species identification. The Laverania species composition of ape
blood and faecal samples was determined by limiting dilution PCR (also termed
single-genome amplification), followed by phylogenetic analysis, essentially as
described60. Briefly, DNA was end point diluted such that fewer than 30% of PCR
reactions yielded an amplification product (according to a Poisson distribution, a
well-yielding PCR product at this dilution will contain only a single-DNA template
483% of the time)60. Amplification products were gel purified, and sequenced
directly without interim cloning. Sequences containing double peaks, indicative of
the presence of multiple templates or early PCR errors, were discarded. In addition
to yielding an accurate representation of the Plasmodium species present in the
sample, this approach also generates sequences devoid of Taq polymerase
induced misincorporations and template switching. Samples were analysed at
mitochondrial, nuclear and apicoplast loci (Supplementary Tables 1 and 6),
including portions of cytochrome B (cytB), the erythrocyte-binding antigens 165
and 175 (EBA165, EBA175), the gametocyte surface proteins P47 and P48/45
(p47, p48/45), the lactate dehydrogenase (ldh), the reticulocyte-binding protein
homologue 5 (RH5), the cysteine-rich protective antigen (CyRPA), members of
Phe-Ile-Lys-Lys (FIKK) containing protein kinase multigene family (FIKK7.2,
FIKK14 and FIKK9.15) and the Clp chaperone PfC10_API0060 (clpM; previously
termed clpC7) gene. Primers and PCR conditions have been described7,10, except
for those used for the amplification of RH5, CyRPA and FIKK genes. RH5 gene
fragments (801–869 bp) were amplified using PfrRH5F5 (50-CRAAGAATCAAG
AAAATAATCTGAC-30) and PfrRH5R5 (50-GGGACATCATTGAACTTSATTTG
TAG-30) in the first round, and PfrRH5F6 (50-TTGTTTATKCCTTCTCATAATK
CTT-30) and PfrRH5R6 (50-CACTTTGTTGTAAAATAYTTGTCATATC-30) in
the second round of PCR. CyRPA gene fragments (461–792 bp) were amplified
using CyRPA_F1 (50-TTTYATTTTTTCAAATTGTCTTAGTT-30) and CyRPA_R1
(50-ATGTCTCGCCYTTGTCGTG-30) in the first round, and CyRPA_F2 (50-GTC
RTCATGTTTTYATAAGGACTG-30) and CyRPA_R2 (50-CCATACATAAAATG
TCATCCTTCTT-30) in the second round of PCR, or CyRPA5F1 (50-AAGGACTG
ARTTRTCGTTYRTAAAG-30) and CyRPA5R1 (50-AACKTYCCTCCATARCAA
CCT-30) in the first round, and CyRPA5iF2 (50-TARTGTTCCTTGTRTTSGKGA
TAT-30) and CyRPA5iR2 (50-ATCMCCYACATAAAAATGAAATGAC-30)
in the second round of PCR. The FIKK7.2 fragment (637 bp) was amplified
using FIKK7.2_F993 (50-AAGATTCCTATTARTGCATGGRTAAA-30) and
FIKK7.2_R1782 (50-ATGATGGATCAGAACGCTTCC-30) in the first round,
and FIKK7.2_F1061 (50-AAATGCTGAAAATTATGTTATGGAAG-30) and
FIKK7.2_R1724 (50-GATYCCCAACATATATTTATCAACTG-30) in the second
round of PCR. The FIKK14 fragment (537 bp) was amplified using FIKK14_F1280
(50-TGAAATGTAGAAGTAGATTAGCAA-30) and FIKK14_R1965 (50-GTGTTA
AACCTGCTTCATGTAATCTT-30) in the first round, and FIKK14_F1321
(50-ACTGTATATAATTGGACRTTAGGTAA-30) and FIKK14_R1884 (50-CTAA
ATCATCATCATCATCATCCATA-30) in the second round. Finally, the FIKK9.15
fragment (730–733 bp) was amplified using PgSY75FIKK_F1 (50-CGGATAGAG
ATGACGTTTCACA-30) and PgSY75FIKK_R1 (50-AAGGCACATGCCTCCATA
ATA-30) in the first round, and PgSY75FIKK_F2 (50-ACAGGAGATAATGGAG
GAAATGTAG-30) and PgSY75FIKK_R2 (50-CCTACCACGTTTACTAAGTCCA
ATA-30) in the second round of PCR. For each sample, multiple single-template-
derived amplicons were sequenced and their species origin identified by
phylogenetic analysis (see GenBank accession codes in Supplementary Table 8).
This analysis permitted the identification of samples that represented single
(or near single) Laverania species infections for SWGA (Supplementary Table 1).

Laverania-specific real-time PCR. To determine the amount of Laverania DNA
within a blood or faecal sample, DNA was subjected to quantitative (q)PCR using a
7900HT Fast Real-Time PCR System and the Power SYBR Green qPCR kit
(Life Technologies). Laverania-specific forward (50-ACATGCCACATGGAAAAG
CTT-30) and reverse (50-CTGGGGCCTTGGTAAATCCA-30) primers were used to
amplify a 144 bp fragment of the nuclear ldh gene. PCR cycling conditions included
2 min at 50 �C, 10 min at 95 �C and 40 cycles of 15 s at 95 �C and 1 min at 60 �C.
To estimate the number of genome copies per well, human genomic DNA con-
taining known quantities of purified P. falciparum 3D7 DNA was used to generate
a standard curve, which was included on all qPCR plates (Supplementary Table 1).

Design of SWGA primers. In contrast to traditional phi29 whole-genome
amplification methods that use random primers to amplify all DNA templates
within a sample, SWGA requires primers that bind frequently and evenly across
the pathogen genome, but only rarely to the contaminating host DNA. To identify
such primers, we determined the frequency of all short sequence motifs (8–12 bp in
length) in both a P. falciparum (3D7) and human (GRCh37) reference sequence
and then calculated the average distance between their locations within these
genomes (Supplementary Fig. 1). This approach identified 2,418 motifs that were
spaced apart (on average) o50 kb in the P. falciparum, but 4500 kb in the human
genome (Fig. 1a). To select the best possible primers, motifs with a melting
temperature (Tm) below 18 �C and above 30 �C were discarded because they were
unlikely to properly anneal to the template DNA. Motifs that contained four or
more contiguous self-complementary bases were also eliminated to avoid the
formation of homodimers. Finally, motifs predicted to bind greater than three
times to human mitochondrial DNA were eliminated, since this circular genome
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would be disproportionally targeted by phi29 for ‘rolling-circle’ amplification.
These criteria identified 149 potential SWGA primers.

In a previous study, we found that motifs that exhibited the highest target-to-
nontarget binding ratios were able to mediate selective amplification of bacterial
genomes from infected host DNA19. However, it was unclear whether this criterion
alone would be sufficient for more complex (multi-chromosomal) eukaryotic
genomes. To design primers capable of amplifying all regions of the Plasmodium
genome, we developed a metric that scored both selectivity and evenness of
coverage. To score a set of primers, we divided the P. falciparum and human
genomes into 10-kb non-overlapping segments and calculated the proportion of
segments that contained at least one primer-binding site (Supplementary Fig. 1).
Since our goal was to identify primer-binding sites in as many P. falciparum
segments as possible, while minimizing segments containing the same binding site
in the human genome, we defined our ‘set score’ as the difference between the
former and the latter (Supplementary Fig. 1).

Starting with a set of 149 primers, there are a total of 1.2� 1015 possible
combinations of 10 or fewer primers. Since identifying the single best set would be
computationally impossible, we used a heuristic approach to search for optimal
primer combinations. Reasoning that heterodimer formation would reduce
amplification efficiency, we divided the 149 primers into eight mutually exclusive
groups, where no two primers contained four or more contiguous complementary
bases. For each group, we first scored primers individually and selected the highest
scoring primer. We then paired this primer with all other primers and identified
the highest scoring pair. This process was repeated by iteratively adding primers
until the set score no longer improved (Supplementary Fig. 1). Applying this
approach to all primer groups generated eight high-scoring sets. The two best sets,
including primer set 6A (50-TAAATAAAAA*A*A-30 , 50-CATAAAAAA*A*A-30,
50-TAAATAATAA*T*A-30 , 50-ATCATAATA*A*T-30 , 50-TAACAAAAAA*A*A-30,
50-TAATAAATAA*A*A-30 , 50-TAACATAGG*T*C-30 , 50-TAGTAGTAG*T*A-30 ,
50-ATAATAAATA*A*T-30 , 50-CATAATAATA*A*T-30) and primer set 8A
(50-TTTTTTTATT*T*A-30 , 50-TATTATTATT*T*A-30, 50-TTTTTTTAT*G*T-30 ,
50-ATTATTATG*A*T-30, 50-TTTTTTTTGT*T*A-30 , 50-TATTTATTAT*T*A-30 ,
50-GACCTATG*T*TA-30 , 50-TACTACTAC*T*A-30 , 50-TATTATTTAT*T*A-30 ,
50-TATTATTATT*G*T-30) were then tested using human genomic DNA samples
spiked with known quantities of P. falciparum DNA (Fig. 1c). All primers
contained phosphorothioate bonds between the two most 30 nucleotides (indicated
by asterisks) to prevent primer degradation by phi29. A primer design pipeline that
is applicable to the genomes of other organisms is under development (https://
github.com/eclarke/swga).

SWGA protocol and validation of primer sets. SWGA was performed essentially
as described19, following established phi29 amplification protocols, but using
primers designed to selectively amplify Laverania genomes (Fig. 1). Amplification
conditions included a 1 h ramp-down step (35 �C to 30 �C), followed by a 16 h
amplification step at 30 �C. Phi29 was then denatured for 10 min at 65 �C, and the
SWGA product was stored at 4 �C. To validate the SWGA primers, genomic DNA
extracted from cultured P. falciparum parasites (a subclone of NF54 generated by
Kirk Deitsch, Weill Cornell Medical College, which is isogenic with 3D7) and
human CD4 T cells (obtained from the Human Immunology Core of the
University of Pennsylvania Center for AIDS Research) were mixed to generate
human DNA preparations containing 5, 1, 0.1, 0.01 and 0.001% P. falciparum
DNA. SWGA was performed in a volume of 50 ml using 50 ng of DNA, 3.5 mM of
each SWGA primer (set 6A), 1� phi29 buffer (New England Biolabs), 1 mM
dNTPs and 30 units of phi29 polymerase (New England Biolabs). In all, 4 ml of
the resulting SWGA product was then subjected to a second round of SWGA using
the same amplification conditions, but a different set of primers (set 8A). Each
of the human/P. falciparum DNA mixtures was amplified separately and purified
using Agencourt AmpureXP beads (Beckman Coulter). In all, 20 ng of the resulting
SWGA products were used to generate short-insert libraries (Nextera Library
Prep Kit) and sequenced on an Illumina MiSeq, yielding 150 bp paired reads.
Enrichment was quantified by mapping paired reads first to the human and then to
the P. falciparum 3D7 genome using SMALT 0.7.6 and then calculating the
percentage of reads that mapped to P. falciparum 3D7 (https://www.sanger.ac.uk/
resources/software/smalt/).

To determine the efficiency of SWGA, we performed a rarefaction analysis,
examining both the selectivity and evenness of amplification for different ratios
of host/parasite DNA. For each human/Pf DNA mixture, subsets of reads were
randomly selected and mapped to the P. falciparum (3D7) and human reference
genomes (GRCh37) simultaneously. The per cent of the P. falciparum genome with
Z1� coverage was then calculated and compared with the expected coverage of
the same unamplified human/Pf mixture (Fig. 1c).

Selective amplification of P. reichenowi and P. gaboni genomes. To amplify
near-full-length Laverania parasite genomes from unprocessed ape blood,
we selected one chimpanzee sample (SY57) that contained mostly (499%)
P. reichenowi and two others (SY75 and SY37) that contained exclusively P. gaboni
DNA for SWGA analysis (Supplementary Table 1). Since these samples contained
very little Laverania DNA (0.00081–0.14%), we first digested them with
methylation-dependent restriction enzymes (MspJI and FspEI) to selectively cleave
the contaminating host DNA20. Briefly, 200 ng to 1 mg of total DNA were digested

with FspEI (5 U) and MspJI (5 U) for 7 h at 37 �C, after which the enzymes were
heat inactivated. The digestion products were purified and subjected to two
successive rounds of SWGA using the same conditions as described above. For
each chimpanzee sample, SWGA was performed using multiple DNA replicates
(Supplementary Table 1), with half being first amplified with primer set 8A
followed by primer set 6A, and the other half being first amplified with primer set
6A followed by primer set 8A. Amplification products were purified, pooled and
used to generate short-insert libraries (650 bp) using the Illumina TruSeq PCR-Free
Library Preparation Kit (Supplementary Tables 1 and 9). To facilitate subsequent
genome assembly, we also generated long-insert libraries (3 kb, 5 kb, 8 kb and 9 kb)
for the P. gaboni sample SY75 (Illumina Nextera Mate Pair Sample Preparation
Kit). All libraries were sequenced using the Illumina MiSeq and paired reads were
first mapped to the chimpanzee reference genome (Pan_troglodytes-2.1.4) using
SMALT. The remaining reads were then mapped to the Plasmodium genome, with
Pf3D7 serving as the reference for SY75 and SY37, and PrCDC serving as the
reference for SY57. Although SY75 (73%) and SY37 (61%) yielded fewer parasite-
specific reads than SY57 (89%), this was not due to a reduction in amplification
selectivity, but reflected the difficulty of mapping P. gaboni reads to the much more
divergent P. falciparum genome (Supplementary Table 1). Illumina sequencing
runs and accession codes are listed in Supplementary Table 9.

Assembly of P. gaboni and P. reichenowi draft genomes. Draft genomes
were generated for the P. reichenowi strain PrSY57 and the P. gaboni strain
PgSY75 using reference-guided de novo assembly with post-assembly genome
improvements12,21. First, working drafts of the PrSY57 and PgSY75 genomes were
generated by iteratively mapping (non-chimpanzee) reads to the PrCDC and
Pf3D7 references, respectively, using Geneious 6 (Biomatters Limited, http://
www.geneious.com). This mapping process, which was repeated 10 times, resulted
in a sequence that represented the read mapping consensus at all positions with
greater than or equal to fivefold coverage. At positions with lower coverage, the
sequence of the reference (Pf3D7 or PrCDC) was used instead. All reads were then
re-mapped to this consensus using two iterations. The resulting draft reference
represented the mapping consensus at all positions with greater than or equal to
fivefold coverage, with positions with less than fivefold coverage denoted by ‘N’s.

Before de novo assembly, error correction was performed on short-insert
libraries from each sample using String Graph Assembler (SGA 0.10.12, https://
github.com/jts/sga) as previously described12. For the P. gaboni sample PgSY75,
reads were also normalized using KHMER61, which uses k-mer frequencies to
estimate and normalize genome coverage in a reference-free manner, thus
facilitating subsequent de novo assembly. This process yielded 11 million reads.

After mapping reads to the working draft reference using SMALT (http://
sourceforge.net/projects/smalt/), a reference-guided de novo assembly was
generated using the Columbus extension to Velvet 1.1.06 (http://www.ebi.ac.uk/
Bzerbino/velvet/). Assemblies were produced using a variety of k-mer lengths and
coverage settings. Comparing these assemblies with the Pf3D7 and PrCDC
references, we identified several tandem duplications, which on visual inspection
were judged to likely represent assembly errors. We thus changed the assembly
parameters to minimize the number of these duplications. Specifically, we varied
k-mer length, coverage cutoff and minimum paired coverage, and analysed the
resulting assembly quality by comparing the length of contigs, maximum node
length, total assembly length and the number of tandem duplications compared
with the reference genome.

For the P. gaboni sample PgSY75, contigs produced by Velvet Columbus were
further scaffolded using long-insert libraries with SSPACE 2.0 (http://
www.baseclear.com). Scaffolding was performed iteratively, first using the 3-kb
library, then the 5-kb library and finally the 8- and 9-kb libraries. Scaffolding was
performed using default parameters, except for (i) a minimum number of mate
pairs (-k) of 10 for the 3-kb library and 5 for the 5-, 8- and 9-kb libraries,
respectively, (ii) a maximum ratio between the two best pairs (-a) of 0.6,
(iii) a minimum required overlap (-n) of 60 bp and (iv) a minimum contig size (-z)
of 500. Scaffolding was not performed for the P. reichenowi PrSY57 because
long-insert libraries were not generated for this sample.

To improve the quality of the draft references, contigs and scaffolds produced
by Velvet Columbus and SSPACE were subjected to two iterations of post-assembly
improvement using PAGIT v1 (ref. 21). Contigs were aligned against the respective
reference genomes using ABACAS 1.3.1 (http://abacas.sourceforge.net) and joined
into a single-ordered sequence separated by gaps (‘N’s). The resulting ordering was
compared with the reference genome using blastn to identify erroneously placed
contigs. ABACAS parameters for minimum per cent identity (-i) and minimum
contig coverage (-v) were varied to maximize the total number of correctly placed
contigs (for example, -i 90 was used to minimize P. gaboni contamination in the
P. reichenowi SY57 assembly). Contigs were then manually rearranged in the
Artemis Comparison Tool62 to correct any remaining placement errors. Gaps
between contigs were closed using gapfiller 1.10 (ref. 63) and IMAGE 2.4.1
(http://sourceforge.net/projects/image2/). Since the closing of gaps also produced
tandem duplications, parameters for gapfiller and IMAGE were varied to minimize
the number of duplications and maximize the number of gaps closed.

Mapping paired reads to the improved draft genome identified several instances
where Velvet or gap-closure produced erroneously assembled sequence. Since read
coverage is often reduced on both sides of an assembly error, we calculated the
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mean read coverage for a 1,750 bp window surrounding these positions (the central
750 bp which were slightly larger than the library insert size were excluded from
these calculations). We then broke the draft genome into contigs at positions where
the coverage was either below five paired reads or 10% of the mean coverage of the
1,750 bp window, and repeated the process of contig ordering and gap-closure
using the broken contigs, varying the same parameters as before.

The ordered, gap-closed, draft genome produced by PAGIT was corrected using
iCORN2 (http://icorn.sourceforge.net), which corrects SNP and indel errors based
on the read consensus. We ran iCORN iteratively until no additional corrections of
the genome were required. The final output was designated version 0.1 of both the
PgSY75 and PrSY57 draft chromosomal assemblies, with all additional edits made
after manual inspection during gene annotation and subsequent analyses.

Generation of PgSY75 and PrSY57 unplaced read bins. All contigs that could
not be placed into chromosomal scaffolds of an assembly during the PAGIT
process were put into an unplaced-read-bin (version 0.1). These ‘bins’ were then
expanded using de novo assemblies of (non-chimpanzee) reads that failed to map
to both the chromosomal assembly and the v0.1 bin. This was done by mapping all
reads from PgSY75 and PrSY57 to their respective draft assembly and bin using
SMALT, and then performing de novo assembly of the remaining unplaced read
pairs using SPAdes 3.1.1 (ref. 64). SPAdes was run using the default multicellular
mode parameters, except for the k-mer length (-k) that was set to 21, 33, 55 and 77.
For PgSY75, the resulting contigs were corrected using iCORN, using only
unmapped read pairs from the previous step and added to the unplaced bin. For
PrSY57, the combined unplaced bin contigs were screened for contaminating
P. gaboni sequences by performing blastn searches to a combined database of
PrCDC, Pf3D7 and PgSY75 chromosomes. Contigs were only retained if their best
match was to a P. reichenowi contig, exhibited Z90% identity, and had an E-value
r10� 15. Duplicated contigs, which had been assembled erroneously due to the
presence of inter-strain polymorphisms or sequencing error, were initially merged
by running dipSPAdes65 on the combined unplaced contig bins for each draft
assembly, using haplocontig mode. Each unplaced contig in the reduced bin was
then compared with the chromosomal assembly and other unplaced bin contigs
using blastn, and those that were 485% identical to chromosomal or bin contigs
were aligned to their match, visually inspected and either removed or used to
improve the existing assembly. The resulting de-duplicated bin was combined with
the v0.1 draft chromosomal assembly and designated the v0.1 draft genome.

Annotation of the PgSY75 and PrSY57 draft genomes. Annotations were
transferred to the PgSY75 and PrSY57 draft genomes from P. falciparum (Pf3D7)
and P. reichenowi (PrCDC) reference genomes, respectively. Annotation transfer
was performed using RATT (http://ratt.sourceforge.net) and corrected manually in
the Artemis Comparison Tool62 using a blastn alignment to the corresponding
reference. Genes in the draft genomes that were not present in Pf3D7 or PrCDC, or
had been missed by RATT, were identified by de novo annotation in Augustus66

using the P. falciparum species configuration. De novo annotations that overlapped
transferred annotations were removed. The remaining de novo annotations were
compared with their reference strains using blastn and tblastx to identify putative
orthologues and homologues, and corrected by visual inspection. Annotations for
which no homologue could be identified in the reference were compared
individually with all available Plasmodium genomes, and deleted if no putative
homologue could be found.

Generation and annotation of the PgSY37 draft genome. Because the small
amounts of P. gaboni DNA present in sample SY37 resulted in greater unevenness
of whole-genome amplification and sequence coverage, the PgSY37 draft genome
was assembled by iteratively mapping the SWGA generated sequencing reads to the
PgSY75 genome, using the same methods and parameters described above.
Unplaced reads were assembled using SPAdes64 and placed into the PgSY37
unplaced read bin. The PgSY37 genome was annotated by strain level annotation
transfer from the PgSY75 genome using RATT, and corrected by visual inspection.

Genes used in genome-wide analyses. Syntenic orthologues in P. falciparum
3D7 and P. reichenowi CDC were identified by chromosomal alignment. After
exclusion of (i) var, rif and stevor gene families, (ii) genes that were pseudogenes in
at least one of these Laverania species (Supplementary Table 3), (iii) genes that had
previously been suggested to be dimorphic in P. falciparum (msp1, msp2, msp3,
msp6 and EBA175), and (iv) genes for which orthologues could not be identified in
P. gaboni (Supplementary Data 1), the remaining sets of orthologues were used
for genome-wide analyses. Subtelomeric regions, which were excluded from
P. falciparum polymorphism data, were defined as regions at the ends of
chromosomes that consisted primarily of genes previously annotated as
subtelomeric or members of subtelomeric gene families, including var, rif, stevor,
PHIST, mc-2tm, hyp gene families 1–17, resa, lysophospholipase, DNAJ and
acyl-coA synthetase. Subtelomeric genes are identified in Supplementary Data 1.

Inter-species divergence. The lengths of coding sequences from the annotated
genomes were compared with their homologues or orthologues in the respective

reference sequence (PrCDC for PrSY57, Pf3D7 for PgSY75 and PgSY37). Genes
were only included in genome-wide analyses if they (i) were Z90% of the length of
the reference homologue/orthologue or (ii) were Z80% of the length of the
reference orthologue/homologue, but also lacked assembly gaps. Each coding
region was translated and queried for amino acid repeats using tblastx. Repeated
sequences were masked if they comprised at least 20 amino acids with at least
95% identity between repeat units. Low-complexity amino acid sequences were
identified in translations using segmasker (NCBI BLASTþ package) using
default settings, and masked in the corresponding nucleotide sequences. Masked
nucleotide sequences were aligned using TranslatorX and MUSCLE. After
alignment, any position that was masked, or contained an assembly or alignment
gap, was masked in all sequences. Pairwise inter-species genetic distances were
calculated in R using the ape package67 with the TN93 model of DNA evolution.
Genes with unusually high or low inter-species distances were manually inspected
and the respective alignments or masked regions were corrected if necessary. If the
best alignment required insertion of a gap not divisible by three, the gene was
excluded from intra-species diversity analyses (since these required sequence
translations). Inter-species distances were calculated using all available orthologues
for Pf3D7, PrCDC, PrSY57, PgSY75 and PgSY37.

Intra-species diversity. For P. falciparum, intra-species diversity was calculated
using previously published parasite sequence data sets of geographically diverse
field isolates collected in Bangladesh, Cambodia, DRC, Gambia, Ghana, Guinea,
Laos, Myanmar, Nigeria, Thailand, Kenya and Vietnam (Pf3k 1.0 pilot data release,
http://www.malariagen.net/data/pf3k-1). For each country, three samples were
chosen at random, reads were mapped to the 3D7 reference, and SNP variant calls
were generated for all P. falciparum strains simultaneously using the GATK 3.1-1
UnifiedGenotyper after indel realignment. To differentiate true variants from
sequencing or alignment artefacts, 354 variant calls were randomly selected and
true variants identified by visual inspection. The GATK values (QUAL, QD,
ReadPosRankSum, Genotype Quality, FS, BaseQRankSum, MQRankSum) were
then compared for each true and artefactual variant, and appropriate cutoffs were
selected to minimize false variant calls. Using only SNPs from the core genome,
the number of P. falciparum strains present in each sample was estimated using
estMOI68, with one likely mono-infection selected for each country (ERS174561,
Bangladesh; ERS050887, Cambodia; ERS347597, DRC; ERS010044, Gambia;
ERS157479, Ghana; ERS042044, Guinea; ERS174601, Laos, ERS143480, Myanmar;
ERS199640, Nigeria; ERS224908, Thailand; ERS143467, Vietnam). No Kenyan
strain was selected since all available samples were likely to represent multi-strain
infections. After exclusion of subtelomeric genes, alleles from polymorphic sites
were extracted from variant call format (.vcf) files; sites at which three or more
samples had missing data (that is, no genotype called) or where the majority
genotype was represented by o80% of mapped reads, were excluded from the
analysis; otherwise samples with missing data were assumed to have the reference
allele. Intra-species diversity (p) was determined by calculating the mean number
of differences per site for all pairwise combinations of 11 P. falciparum strains
plus the 3D7 reference. Sites masked in 3D7 (see above) were excluded from
intra-species diversity calculations. For P. gaboni and P. reichenowi, intra-species
diversity was calculated from the alignments used for inter-species genetic distance
calculations, using the ape R package to count the proportion of non-masked sites
that differed between the two strains available for each species (PrCDC and PrSY57
for P. reichenowi, PgSY75 and PgSY37 for P. gaboni).

Phylogenetic analyses. Nucleotide sequences used for phylogenetic analyses were
aligned using CLUSTAL W, followed by manual correction when necessary.
Regions that could not be unambiguously aligned were removed from further
analyses. Maximum likelihood phylogenetic analyses were conducted using
PhyML69, with iterative model fitting based on a class of evolutionary models
selected using Modeltest70. For the analyses of the FIKK orthologues, pseudogene
nucleotide sequences were translated, with indels corrected and in-frame stops
coded as ‘X’, and the deduced amino acid sequences were aligned using MUSCLE.
On the basis of this alignment, the conserved FIKK protein regions were identified.
The corresponding nucleotide sequences were then codon aligned, guided by the
amino acid alignment. To eliminate possible mutational saturation at third codon
position sites, these were removed before phylogenetic analyses using PhyML69.
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