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This opportunistic study focussed on the quantification of 

microplastics in the River Thames water column, the 

catchment responsible for draining Greater London. Two 

sites on the tidal Thames were sampled; one upstream of 

the City of London at Putney, and the other downstream at 

Greenwich. Water column samples were collected from 

June through to October 2017, being taken on the ebb and 

flood tides, at the surface and a depth of 2 m. 

Microplastics (excluding microfibres) were identified to 

test whether the load varied between the two sites in 

relation to tide, depth and season. Secondary 

microplastics, films and fragments, contributed 93.5% of all 
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those found at Putney and Greenwich. Site, tide, depth and 

month affected density, with the combined interaction of 

month and site found to have the greatest influence on 

microplastics. Fourier Transform Infrared Spectroscopy 

analysis showed that polyethylene and polypropylene were 

the most common polymers collected from the River, 

suggesting broken down packaging was the primary source 

of microplastics in these samples. Excluding microfibres, 

the estimate of microplastics in the water column was 24.8 

per m3 at Putney and 14.2 per m3 at Greenwich. These 

levels are comparable to some of the highest recorded in 

the world. 
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1. Introduction 13 

The pervasive nature of plastic pollution in aquatic habitats is now well documented in a 14 

burgeoning literature with Eriksen et al. (2014) estimating that there are some 5 trillion pieces of 15 

plastic floating in the marine environment. Plastics have been recorded from the poles (Lusher et al., 16 

2015) to the tropics (Acosta-Coley and Olivero-Verbel, 2015), from surface waters (Collignon et al., 17 

2012) to the depths of the ocean (Woodall et al., 2014) and been shown to impact on a wide range 18 

of organisms (Gall and Thompson, 2015) from zooplankton (Cole et al., 2013) to seabirds and large 19 

cetaceans (de Stephanis et al., 2013; Wilcox et al., 2015). Increasingly, focus has moved to 20 

microplastics, especially as these smaller fragments are in a size range that makes them more prone 21 
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to ingestion by aquatic organisms, which is dependent on life stage and feeding behaviour (Capillo et 22 

al., 2020; Savoca et al., 2020). 23 

By definition, microplastics are particles <5mm, but greater than 333µm (Desforges et al., 2014). 24 

Microplastics found in marine and freshwater environments can be classified as being either primary 25 

or secondary. Primary microplastics are those that are specifically manufactured to be microscopic in 26 

size and secondary are those formed within the marine or freshwater environment itself, through 27 

the fragmentation of larger plastic debris, via processes that can be biological (microorganism break 28 

down) mechanical (abrasion, erosion), or chemical (Andrady 2017; Julienne et al., 2019). A range of 29 

studies have described how the ingestion of microplastics can impact on health of organisms, 30 

possibly lead to trophic transfer (Farrell and Nelson, 2013; Wright et al., 2013) and, in some cases, 31 

the transfer of chemicals from plastics to animal tissues (Browne et al., 2013; Avio et al., 2015). 32 

More recent concerns relate to the role of microplastics in the potential transport and transfer of 33 

microbiota, including pathogens (McCormick et al., 2016; Lamb et al., 2018). To date, however, the 34 

majority of studies have focused on the marine environment although reports from estuarine and 35 

freshwater habitats have documented similar issues. These studies include occurrence in the surface 36 

waters and sediments of North American and Italian Lakes (Zbyszewski and Cocoran, 2011; Eriksen 37 

et al., 2013; Imhof et al., 2013), in Argentinian Catchments (Blettler et al., 2017) and presence in 38 

freshwater fish (Sanchez et al., 2014) and invertebrate species (Imhof et al., 2013). While these 39 

studies suggest that a broad range of aquatic taxa are likely to ingest microplastic, the toxicological 40 

effects require further research (Wagner et al., 2014; Prokić et al., 2019). 41 

McCormick et al. (2016) reported mean microplastic flow in excess of 1.3 million pieces per 42 

day downstream of water treatment plants in nine Illinois rivers and Lechner et al. (2014) described 43 

how the flow down the River Danube outnumbered fish larvae, potentially contributing 1,500 tonnes 44 

of plastics to the Black Sea per year. In the surface waters of the Rhine, Mani et al. (2015) reported 45 

densities of microplastics in excess of 890, 000 particles km-2. While Zhao et al. (2015), from a study 46 

of three urban Chinese Estuaries, reported counts of between 100–4100 pieces m-3. These are 47 

https://www.sciencedirect.com/science/article/pii/S0045653519316303#bib3
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alarming figures! Indeed, the emerging issues and knowledge gaps in freshwater systems were 48 

reviewed by Eerkes-Medrano et al. (2015). This is important as, in many cases, riverine input is a 49 

major source of plastics to the marine environment, contributing to a truly colossal global problem. 50 

For example, it has been suggested that up to 95% of plastic polluting oceans is supplied by only ten 51 

rivers (Schmidt et al., 2017), whereas a modelling study by Lebreton et al. (2017) suggested that the 52 

top twenty most polluting rivers, mainly in Asia, contribute just under 70% of the global total 53 

amount of riverine plastics, up to an estimated 2.4 million tonnes per year, entering the oceanic 54 

environment. 55 

The Thames flows through Southern England, drains the whole of Greater London, is 56 

populated by some 15 million people and, from Southend in the estuary to the west of London at 57 

Teddington (ca. 80 km), the River is strongly tidal. The River and its estuary is an important 58 

ecosystem, supporting many species of marine and freshwater fish at different developmental 59 

stages with 125 species being reported. For example, it is a key nursery area for European smelt, 60 

Osmerus eperlanus and flounder, Platichthys flesus (Colclough et al., 2002). In addition, the Thames 61 

Tideway is an important habitat for invertebrate species such as the rare depressed river mussel, 62 

Pseudanodonta complanata, and aquatic mammals such as the grey seal, Helichoerus grypus. 63 

Although, in a number of respects, the Thames is far cleaner than it has been for many years 64 

(e.g., trace metals; Johnstone et al., 2016), the issue of plastic pollution in the river remains critical. 65 

Reports have recently described the occurrence of plastics in the River Thames and interactions with 66 

the biota. Sub-surface movements of macroplastic debris in the inner estuary were described by 67 

Morritt et al. (2014) and highlighted the high contribution made by food packaging and sanitary 68 

products. To date, ingested microplastics have been reported from 9 Thames fish species with up to 69 

75% of European flounder, Platichthys flesus, containing plastic fibres (McGoran et al., 2017, 2018). 70 

Data from these studies suggest that bottom-feeding fish are more likely to be exposed to 71 

microplastics through their feeding activity although pelagic feeders e.g., O. eperlanus, have also 72 

been found to ingest plastic particles. In the freshwater reaches, microplastics, including high 73 
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amounts derived from road marking paints, have been recorded in the sediments of some tributaries 74 

(Horton et al., 2017) and the presence of mainly fibres, reported in 33% of roach, Rutilus rutilus 75 

(Horton et al., 2018). Although there is evidence that a variety of Thames fish, with different feeding 76 

habits ingesting microplastics, there are currently no reports in the literature for the quantity 77 

present in the water column of the River. As such, the main aim of this study was to estimate the 78 

microplastic abundance in the River Thames water column, at two sites on the tidal Thames, namely 79 

Putney and Greenwich. Here the results are reported of an opportunistic study linked to ongoing 80 

research of larval ichthyoplankton in the River Thames by the Zoological Society of London (ZSL). In 81 

addition, the occurrence of high concentrations of microplastics (excluding fibres) in the water 82 

column are documented at Putney and Greenwich and factors potentially influencing microplastic 83 

densities at these two sites are considered.  84 

2. Methods and materials 85 

2.1. Sampling  86 

Water column samples were taken from 2 River Thames sites (Fig. 1): Putney (51°28'09"N 87 

000°13'09"W) and Greenwich (51°28'59"N 000°01'02"W). One survey at Greenwich and one survey 88 

at Putney were undertaken each month from June to October during 2017, with up to 20 water 89 

column samples collected at each survey day. As this was an opportunistic study, undertaken 90 

alongside an already funded ZSL larval fish survey of the Thames, the water column sampling regime 91 

was constrained by the needs of the primary study. Consequently, the ability to fully sample the 92 

hydrodynamic conditions of the tidal Thames was not possible.  93 

  94 
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 95 

 

Fig. 1. The locations of the sampling sites at Greenwich (51°28'59"N 000°01'02"W) and Putney 

(51°28'09"N 000°13'09"W) on the River Thames. Also shown are the combined sewer overflows in 

the vicinity of the sampling sites.  

 96 

Samples were collected during the daytime from the ebb and flood tide, within 2 hrs either 97 

side of high water, as well as at surface and 2 m depths. A 250 µm mesh ichthyoplankton net 98 

narrowing into a cod end, with a 1.5 m total length, and 300 mm × 300 mm square opening 99 

maintained by a steel collar and rope cradle, was used to collect each sample. A Hydro-bios 438 110 100 

mechanical flow meter was placed at the net mouth, at the centre of the steel collar. Samples were 101 

collected from a stationary boat moored 10–15 m from the shore, where tidal movement allowed 102 

water to flow through the net. The net was deployed for 5 mins to collect each water column 103 

sample. Initial and end flow rates were recorded. A 4% formalin solution was used to ensure 104 

preservation of the larval fish captured. The samples were then stored until processing and 105 

subsequent transport to the Natural History Museum (NHM). Given time constraints a total of 69 106 

randomly selected samples, but covering site, month, tide and depth, collected from the River were 107 

subsequently analysed for microplastic presence and abundance, 36 from Putney and 33 from 108 
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Greenwich. An average of 7 water column samples were used to calculate the mean number of 32 109 

µm–5 mm plastics for each site within each month. 110 

Both sites were located in close proximity to outfalls where raw sewage is known to be 111 

released into the catchment during periods of rainfall. There are ca. 23 Combined Sewer Overflows 112 

(CSO) discharging into the area of study on the tidal Thames (Thames Water, 2011). Greenwich CSO 113 

is located approximately 1.5 km upstream from the sampling site in that area. The Putney site is 114 

between 2 CSOs. Hammersmith pumping station is located approximately 2.1 km upstream from the 115 

Putney sampling site and is known to release raw sewage into the River Thames at times of rainfall. 116 

In fact, rowers release notifications of sewage release regularly for this site (British Rowing, 2018). In 117 

addition, half a kilometre downstream from the Putney site, a CSO is located under Putney Bridge. 118 

Again, raw sewage was released during periods of precipitation.  119 

 120 

2.2. Laboratory Methods 121 

Formalin-preserved samples were processed in the NHM clean room laboratory. Prior to 122 

analysis, the formalin was drained off by passing each sample through a 40 µm mesh sieve under a 123 

fume hood. The formalin was collected in a container and sealed for disposal. The wet weight to 124 

nearest 0.1 g was recorded for each sample. 125 

A 20 cm diameter 1 mm mesh sieve was stacked on top of a 32 µm mesh sieve. Each sample 126 

from the Thames was placed on the surface of the 1 mm sieve and cold tap water was run gently 127 

over the sample. There were at least 3 intervals where the tap was turned off and forceps were used 128 

to remove plastics > 1 mm. To ensure all plastics were removed, the 1 mm sieve was placed under a 129 

Leica MZ6 modular stereomicroscope (magnification range of ×6.3 to ×40). The plastic was 130 

transferred to a Petri dish which was then sealed and labelled.  131 

Finer organic material and plastics ranging from 32 µm to 1 mm were retained on the 32 µm 132 

mesh sieves surface. A wet weight was obtained to the nearest 0.1 g for all the material and plastics 133 

left on the 32 µm sieves surface. A subsample of 1 g was taken from the 32 µm sieve surface and 134 
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placed in a 50 ml Falcon tube. Digestion in 40 ml of 40% KOH solution was used to remove organic 135 

matter from the 1g subsample obtained from the 32 µm sieves surface (adapted from Cole et al., 136 

2014).  137 

A batch of 4–6 samples was placed into a 40° C oven for 24 hrs to allow sufficient digestion 138 

of organic matter to take place. From previous trials, conducted during the method development 139 

stage, it was estimated that an average of 57.2% of the organic matter within each water column 140 

sample was lost during the digestion process when using the KOH solution. Digestion of over half of 141 

the organic matter present in the 1 g subsample allowed for easier observation of microplastics 142 

present when viewed under a dissection microscope. 143 

Following digestion, samples were poured through circular Whatman Qualitative 125 mm 144 

diameter filter papers, able to retain particles >11 μm. All 32 µm to 1 mm plastics within the 1 g 145 

subsample were identified and classified under a stereomicroscope. Microplastics were identified 146 

and quantified within the 1 g subsample. By multiplying up the number of microplastics found within 147 

the 1 g subsample, to that of the equivalent in the original whole sample mass obtained, the total 148 

microplastics load in the sample was estimated. 149 

Microplastics found in the water column samples were quantified and categorised by colour, 150 

shape, form and size. Two plastic size ranges were considered, namely those of 32 µm–1 mm and 1–151 

5 mm. Microfibres were seen within all water column samples, and these were not quantified or 152 

analysed for this study due to the sampling methods used and subsequent risk of contamination. 153 

Microfibre colours were, however, recorded for each sample (See supplementary material, Table A). 154 

Given the substantial amount of organic matter within water column samples, microplastics smaller 155 

than 250 µm in diameter were expected to be trapped during the sampling process by debris such as 156 

leaves etc. Therefore, the size range studied for microplastics within samples was 32 µm–5 mm in 157 

diameter. The forms used to classify plastics were films, fragments, microbeads, glitter, nurdles and 158 

cylindrical plastics. Table 1 shows, with photographic examples, how the plastic forms were 159 

categorised. Most of the plastic forms as shown in Table 1 were classified by visual characteristics 160 
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alone. Nurdles however, were often picked up and checked for hardness during the classification 161 

process.  162 

 163 

2.3. Procedural controls for airborne contamination 164 

The NHM clean laboratory was used for the isolation and identification of microplastics from 165 

water column samples. To prevent samples being contaminated by other microplastics, as well as 166 

airborne particles such as textile fibres, the following precautions were taken. The laboratory ceiling 167 

and air vents were sealed to prevent potential atmospheric fallout contamination. No fleeces or 168 

glitter make-up were allowed in the laboratory. The door entrance to the clean room laboratory was 169 

covered with cotton curtain to prevent potential atmospheric fallout contamination when entering 170 

and leaving the room. The water outlet in the clean room was covered with a 40 µm mesh to remove 171 

contamination from microplastics present in the tap water. Latex gloves were worn at all times when 172 

handling samples. Once isolated, plastics were placed in Petri dishes and these were sealed with 173 

Parafilm®. Cotton clothing was worn underneath pure cotton laboratory coats during both the 174 

isolation and identification procedures in the clean room as well as during Fourier Transform 175 

Infrared Spectroscopy (FTIR) analyses in a separate NHM laboratory.  176 

Throughout the plastic isolation and identification processes, a Petri dish containing a filter 177 

paper dampened with filtered water was placed at the working space within the clean room, either 178 

next to the sink or microscope, to record any potential sample contamination. Upon completion of 179 

the laboratory work, these Petri dishes were examined under a dissection microscope and only clear 180 

microfibres were found on the filter papers, which were potentially cotton or synthetic. This 181 

contamination had no effect on further analysis or results as microfibres were not considered in the 182 

present study. 183 

 184 

Table 1 185 

Description of different plastic forms encountered during this study. 186 
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 187 

Plastic Form Characteristics Image 

Films A 2-dimensional 

structure often 

irregular or rectangular 

shape. 

 

Fragments A 3-dimensional 

structure that was not 

spherical or cylindrical, 

often irregular in shape. 

 

Microbeads A regular spherical 

shape. Often blue, pink 

or green in colour.  

Glitter Plastics with a 

hexagonal shape that 

reflected light.  

Nurdles Rounded hard and 

compressed plastic. 

 

Cylindrical Plastics Cylindrical shape with a 

filled or hollow centre. 

 

 188 

2.4. Estimating plastic density 189 

To calculate plastic density in the River Thames, the number of items, ranging from 32 um–5 190 

mm, within each water column sample were counted. The flow meter readings were used to 191 

calculate the volume of water filtered in each sample by applying the following formula:- 192 
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 193 

Volume of water (m3) = calculated flow (number of revolutions/turns of the flow metre) × rotor 194 

constant (0.3) × opening area (m2) of the sampling net (0.09) 195 

 196 

The number of microplastics found within a standardised volume for each sample was used 197 

to calculate density. Plastics were subsequently estimated as plastics m-3 of water for each sample. 198 

To estimate the average microplastic flow down the River Thames from June to October 199 

2017 at Putney and Greenwich sites per second, discharge estimates for the River Thames (m3 /s) 200 

were obtained from the Port of London Authority (A. Mortley, PLA, pers. comm.). Graphical models 201 

showing the River Thames discharge (m3 /s) after high water tides at Lambeth Reach and Erith Reach 202 

were used to calculate overall microplastic abundance for Greenwich and Putney respectively. At 203 

Lambeth Reach, on peak ebb tides shortly after high water, the River Thames discharge rate was 204 

estimated at 1400 m3 /s (A. Mortley, PLA, pers. comm.). At Erith Reach, on peak ebb tides shortly 205 

after high water, the River Thames discharge rate was estimated at 5000 m3 /s (A. Mortley, PLA, 206 

pers. comm.). The average number of microplastics on the ebb tide from June to October 2017 at 207 

Putney and Greenwich sites was subsequently used to calculate the number of microplastics that 208 

flowed down the River Thames per second on peak ebb tides, from June to October during 2017. 209 

Total microplastic abundance estimates for the River Thames are exclusive of microfibres.   210 

 211 

Microplastics / second in the River Thames at Putney = (microplastics m-3) × 1400 212 

Microplastics / second in the River Thames at Greenwich = (microplastics m-3) × 5000 213 

 214 

The calculated total number of plastics flowing down the Thames at Putney and Greenwich 215 

sites should be regarded as rough estimates and viewed with some degree of caution. The exclusion 216 

of microfibres from this study should also be noted when considering total microplastic abundance 217 

estimates for the River Thames. 218 
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 219 

2.5. Fourier transform infrared spectroscopy  220 

FTIR analysis was conducted in order to identify the plastic polymers found in the River 221 

Thames samples. Due to the high concentration of plastic particles present, only a small fraction was 222 

investigated. Seventy-one plastic particles were analysed using FTIR. Plastic types (Table 1) from 223 

both sites, across all months, tides and depths, were randomly selected in approximate proportion 224 

to their overall abundance for polymer identification. A minimum spectral library match of 70% or 225 

more to a material in the Euclidean search hit list was accepted. A minimal spectral library match of 226 

70% is an accepted level for microplastic polymer identification (Lusher et al., 2017). Eight of the 71 227 

plastics analysed using FTIR did not reach the minimum spectral library match for polymer 228 

confirmation, so were not included in the results. 229 

 230 

2.5.1. FTIR attenuated total reflection (ATR) spectroscopy  231 

FTIR ATR spectroscopy was employed for 63 plastics that were 0.5–5 mm in diameter. For 232 

the FTIR ATR spectroscopy, a Perkin Elmer Spectrum One spectrometer was used with a Quest ATR 233 

accessory attached, Specac Ltd. Plastic samples were scanned 10 times in the range between 4000 234 

cm−1 and 450 cm−1 and with resolution 4 cm−1. A list of spectral libraries used is provided in a 235 

supplementary materials section (Table B)  236 

 237 

2.5.2. FTIR micro spectroscopy 238 

For 8 primary microplastics ranging from 32 µm–0.5 mm, FTIR microscopic analyses were 239 

performed on a Perkin Elmer Spectrum One spectrophotometer, with an AutoIMAGE microscope 240 

attached. FTIR analyses were performed on primary microplastics such as glitter, to better study the 241 

layers within these particles. Samples were pressed before being placed under the microscope and 242 

background scans were conducted before each scan. Plastics were scanned on a single diamond 243 

window (part of the DC-3 Diamond Compression Cell, Specac Ltd), where each sample was scanned 244 
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30 times in 3 different positions. The range between 4000 cm−1 and 700 cm−1, at resolution 4 cm−1 245 

was used for each sample. 246 

 247 

2.6. Statistical analysis 248 

IBM SPSS Statistics 21 software for Windows was used to analyse the results. Microplastic 249 

density data (plastics m-3) were log transformed, and a univariate General Linear Model (GLM) 250 

identified whether site, tide, depth or month independently, or their combined interactions, had an 251 

effect on these microplastic density data. The number of 32 µm–5 mm plastics reported within all 69 252 

samples were found to be non-normally distributed (Shapiro-Wilk = 0.785, d.f. = 69, p < 0.001). 253 

Therefore, these data were log-transformed to meet the precondition of normality for univariate 254 

GLM analysis (S-W = 0.984, d.f. = 69, p = 0.515). Fishers Least Significant Difference (LSD) tests were 255 

employed for pairwise post hoc comparisons of microplastic density for the 5 different months.  256 

Mann Whitney U tests were employed to compare microplastic densities between sites for 257 

each month. 258 

 259 

 260 

3. Results 261 

Microplastics ranging from 32 µm–5 mm in diameter were found in all River Thames water 262 

column samples (N = 69). On average, 24.8 microplastics m-3 were found at Putney and 14.2 263 

microplastics m-3 were recorded at Greenwich. Secondary microplastics, namely those of the film 264 

and fragment forms, contributed 93.5% of all microplastics found at Putney and Greenwich. 265 

Across all months, microplastic density was found to be greater at Putney than Greenwich 266 

(Fig. 2). The greatest microplastic density was seen during the month of July at Putney, where on 267 

average, 36.7 microplastics ± 7.8 microplastics m -3, were found during these surveys.  268 

 269 
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Fig. 2. The mean number of 32 µm–5 mm plastics (± standard error) estimated for each water 

column sample collected from the River Thames from June to October during 2017.  

 270 

The interaction of Month*Site was found to have a significant influence on microplastic 271 

density (F4,44 = 8.510, p < 0.001). There was a statistically significant greater density of microplastics 272 

at Putney, when compared to Greenwich during July (Mann-Whitney U =7, p = 0.026) and August 273 

(Mann-Whitney U =0.000, p = 0.003). 274 

Secondary microplastics, namely films and fragments, consistently made up the majority of 275 

microplastics found at Putney and Greenwich sites (Fig. 3). 276 

 277 
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 278 

3.1. Univariate analysis 279 

With Log10 [plastics m-3] as the dependent variable, results from the GLM are shown in 280 

Table 2. Site, tide, depth and month were fixed factors for this analysis. In a step wise fashion, non-281 

significant interaction values with a p value > 0.15 were removed from the univariate GLM, thus 282 

leaving only the significant interactions affecting microplastic density. Thus, in Table 2, only factors 283 

and interaction terms that were significant are presented. Effect size was estimated by calculating 284 

eta squared (η2).  285 

 286 

 287 

Table 2 288 

Results from univariate general linear model analysis using sampling site, depth, tide and month as 289 

dependent variables. Microplastic density served as the dependent variable, defined as Log10 290 

[plastics m-3]. 291 

 

Fig. 3. The estimated mean number of 32 µm–5 mm microplastic forms at Greenwich and Putney 

from June to October 2017. 
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 292 

Factor d.f. F p η2 

Month 4 6.602 0.000 0.375 

Site 1 16.504 0.000 0.273 

Depth 1 4.397 0.042 0.091 

Tide 1 14.818 0.000 0.252 

Month * Site 4 8.510 0.000 0.436 

Month * Depth 4 3.305 0.019 0.231 

Site * Tide 1 11.411 0.002 0.206 

Month * Site * Tide 8 2.332 0.035 0.298 

Error 44    

Total 69    

 293 

The final model for analysing factors that influenced microplastic density (N = 69), 294 

included significant contributions from all four independent factors; Month (F4,44 = 6.602, p < 295 

0.001), Site (F1,44 = 16.504, p < 0.001), Tide (F1,44 = 14.818, p < 0.001) and Depth 296 

(F1,44 = 4.397, p = 0.042), as well as significant contributions from several interactions; Month*Site 297 

(F4,44 = 8.510, p < 0.001), Month*Depth (F4,44 = 3.305, p = 0.019), Site*Tide (F1,44 = 11.411, p = 298 

0.002) and Month*Site*Tide (F8,44 = 2.332, p = 0.035).  299 

 300 

3.2. Independent factors affecting microplastic density 301 

Month was shown to have a significant effect on microplastic density (F4, 44 = 6.66.2, p < 302 

0.001), where Fishers LSD post hoc analysis found a significantly lower microplastic density in 303 
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June (14.3 ± 6.1, (mean ± S.D.) plastics m-3, p = 0.015), September (21.7 ± 25.4 plastics m-3, p = 304 

0.012) and October (12.8 ± 8.0 plastics m-3, p < 0.001), when compared to microplastic density 305 

found during July (26.8 ± 18.6 plastics m-3). A statistically lower microplastic density was also found 306 

during October (12.8 ± 8.0 plastics m-3, p = 0.005), when compared to the density during August 307 

(23.6 ± 16.6 plastics m-3). With regards site, Putney (24.8 ± 17.0 plastics m-3) had a significantly 308 

higher density of microplastics than Greenwich (14.2 ± 15.7 plastics m-3). Although depth was 309 

shown to have a significant influence on microplastic density (F1, 44 = 4.397, p = 0.042), with more 310 

being found at a 2 m depth the effect size was small (η2 = 0.091). Tide was shown to significantly 311 

affect the number of microplastics, where overall, more were found on the ebb tide when 312 

compared to the flood tide. From the four independent factors, month was found to have the 313 

greatest effect size (η2 = 0.375). 314 

 315 

3.3. Combined factors affecting microplastic density 316 

The interaction of Month*Site (Figure 2) was found to have the most significant influence 317 

on microplastic density (F4,44 = 8.510, p < 0.001), from all independent factors and combined factors 318 

presented in the GLM (Table 2). The interactions of Site*Tide (F1,44 = 11.411, p = 0.002) and 319 

Month*Site*Tide (F8,44 = 2.332, p = 0.035; Fig. 4) also had a significant effect on microplastic 320 

density.  321 

For all months during 2017, at Greenwich, more microplastics were found on the ebb tide when 322 

compared to the flood tide (Fig. 4). This was also the situation at Putney, for July, August and 323 

October. This trend however, was reversed during the months of June and September, where 324 

there was a greater density of microplastics on the flood tide at Putney.  325 
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 326 

The interaction of Month*Depth was found to significantly affect microplastic density 327 

(F4,44 = 3.305, p = 0.019). This suggests that the depth of sample collection may affect microplastic 328 

density. When depth was combined with the factors of month and site (Month*Site*Depth), no 329 

statistically significant effect on microplastic density was found, this interaction therefore not 330 

included in Table 2.  331 

 332 

3.4. The effect of CSOs on microplastic density 333 

 

Fig. 4. A bar chart to show the mean number of 32 µm–5 mm microplastics m-3 on the ebb and flood 

tide at Putney and Greenwich, for each month of sampling during 2017. In total, 36 water column 

samples were analysed from the Putney and 33 from the Greenwich. Bars illustrate mean number of 

microplastics ± standard error. 
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Figure 5 shows the relationship between sewage discharged from the Hammersmith 334 

pumping station CSO, and the overall microplastic density (plastics m−3) found in the water 335 

column at Putney. 336 

337 
Fig. 5. The relationship between the sewage discharged (cubic metres) into the water column from 338 

the Hammersmith pumping station CSO from June to October 2017, and the mean number of 32 339 

µm–5 mm microplastics found in the water column at Putney. (Thames Water data). 340 

Microplastic density in the water column at Putney appears to be linked to sewage 341 

discharged from Hammersmith pumping station for all months of sampling during 2017 (Figure 5).  342 

 343 

3.5. Total plastic abundance calculated for the River Thames 344 

On peak ebb tides just after high water, there are approximately 35 thousand microplastics 345 

per second being discharged downstream at Putney, and 94 thousand microplastics being 346 

discharged downstream at Greenwich. It is important to note that, due to the tidal nature of the 347 

Thames, this rate is largely comparable on the flood tide. The total estimates of microplastic 348 

abundance on peak ebb tides at each site are shown in Table 3.  349 
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Table 3 351 

An estimation of the average number of microplastics (32 µm–5 mm), excluding microfibres, that 352 

flow down the River Thames at Greenwich and Putney each second. Estimates of two primary 353 

microplastics, (glitter and microbeads), secondary microplastics (films and fragments), and the 354 

overall total number of microplastics estimated to flow down the Thames are included. Note: total 355 

includes less frequently recorded microplastics, e.g., nurdles. 356 

 357 

 358 

Site Microbeads/sec  Glitter particles/sec  Films and 

Fragments/s 

Microplastic total / 

sec 

Greenwich 5041 523 86.6 K 94 K 

Putney 1738 1403 31.6 K 35 K 

 359 

The majority of plastics found in the River Thames water column were secondary 360 

microplastics, films and fragments. During peak ebb tides, at Greenwich, secondary microplastics 361 

contribute to an estimated 92% of all microplastics, while at Putney this was estimated to be 90%. 362 

At both sites, glitter was estimated in a lower abundance in the River when compared to 363 

microbead abundance. Greenwich was found to have a greater abundance of microbeads, in 364 

comparison to Putney (Table 3).  365 

 366 

3.6. Plastic analysis 367 

Figure 6 shows material composition found as a percentage for each plastic form. 368 

Polypropylene and polyethylene were the most frequent polymers found in the River Thames at 369 

Putney and Greenwich. 370 
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 371 

 

Fig. 6. A stacked bar chart showing the percentage material composition for each form. Polymer 

forms were identified using FTIR at a 70% minimum spectral library match. Sixty-three samples 

were analysed; 21 fragments, 31 films, 2 nurdles, 4 glitter particles and 5 microbeads. 

 372 

Polyethylene is inclusive of low, medium and high densities of this material. Films and 373 

fragments were shown to have the most diversity in material composition. These secondary 374 

microplastics were largely composed of polypropylene and polyethylene, where 42.9% of fragments 375 

and 32.3% of films were made of polypropylene, and 38.1% of fragments and 58.1% of films were 376 

made of polyethylene. Low density polyethylene was found to be the most abundant polyethylene 377 

form, where 28.6% of all fragments and 29.0% of all films analysed were formed of this material 378 

density. Reinforced polypropylene was the most abundant polypropylene form for fragments 379 
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(38.1%). Few forms analysed were found to be non-polymers (9.5% of fragments and 3.2% of films). 380 

Nurdles were made of varying polyethylene densities (50%) and polypropylene (50%). Microbeads 381 

were made of high or low density polyethylene. From the glitter particles analysed, 80% were made 382 

of polyester. 383 

 384 

4. Discussion 385 

 386 

4.1. Microplastic density and composition in the water column 387 

Whist methodologies vary between studies worldwide (Bruge et al., 2019; Eerkes-Medrano 388 

et al., 2015; Fok et al., 2020), the microplastic densities described here were high, bearing in mind 389 

that fibres were excluded. High densities of microplastics ranging from 32 µm–5 mm were found in 390 

all Thames water column samples. In total, it is estimated that, per second, 94 thousand 391 

microplastics at Greenwich and 35 thousand at Putney flow down the River Thames during peak ebb 392 

tides. It is important to note that, due to the tidal nature of the Thames, this rate is largely 393 

comparable on the flood tide. The net effect may be the concentration of high densities of 394 

microplastics in the Thames water column, some of which will ultimately find their way seawards. 395 

This may, in part, explain why such high densities are recorded in the Thames. Although a greater 396 

number of plastics per cubic metre was found at Putney when compared to Greenwich, due to the 397 

higher water flow rates at the latter, the overall plastic load per second is higher at this downstream 398 

site. It is also worth noting that, being further downstream, the River is much wider at Greenwich 399 

and has a much greater cross-sectional area when compared to that of Putney.  400 

Putney was found to have an average of 24.8 plastics m−3, in comparison to Greenwich 401 

where microplastic density was significantly less at 14.2 plastics m−3. This microplastic density range 402 

is comparable to that found in freshwater environments worldwide. For example, microplastic 403 

density in the River Thames water column (Putney and Greenwich average of 19.5 plastics m−3), is 404 

greater than microplastic densities estimated for surface waters from the River Rhine, Germany 405 
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(1.85–4.92 plastics m−3), the River Danube, Romania (10.6 plastics m−3), the River Dalälven, 406 

Sweden (4.54 plastics m−3) the River Po, Italy (14.6 plastics m−3; Van der Wal et al., 2015) and the 407 

River Chicago, U.S.A. (up to 18 plastics m−3; McCormick et al., 2014). Importantly all these studies 408 

include microfibres in the estimates. Microplastic densities in the surface waters of streams around 409 

the City of Auckland, New Zealand (17–303 plastics m−3; Dikareva and Simon, 2019) and surface 410 

water of the Yangtze River, China (4,137 plastics m−3; Zhao et al., 2014) are greater than the 411 

microplastic densities estimated for the River Thames water column in the current study. Both of 412 

these studies, however, also included microfibres. These were found to comprise 34% of all plastics 413 

on average in Auckland streams (Dikareva and Simon, 2019) and 79% of all microplastics in the 414 

Yangtze Estuary (Zhao et al., 2014). With microfibre abundance being excluded in the present study 415 

of the Thames, the likely underestimate of overall microplastic abundance in the River is worth 416 

noting.  417 

Secondary microplastics, namely films and fragments, were the most abundant plastic types 418 

found in the water column, comprising 93.5% of all microplastics found at both Thames sites. These 419 

results are in line with other studies, where the most abundant plastic types in freshwater 420 

environments were secondary microplastics. For example, a study of Auckland streams, reported 421 

that fragments and fibres respectively comprised 39% and 34% of all microplastics in surface water 422 

(Dikareva and Simon, 2019). From a study of Lake Hovsgol, Mongolia, fragments, films, and fibres 423 

were the most abundant types of pelagic microplastic pollution (Free et al., 2014) and in work of 424 

European rivers, fragmented particles were the most prevalent microplastics in the water columns 425 

of the River Po and Rhine (Van der Wal et al., 2015). 426 

The most abundant plastic forms, films and fragments, are thought to be most likely derived 427 

from the fragmentation of plastic packaging, such as bottles, food wrappers and bags (Morritt et al., 428 

2014), which would not be surprising given the high density of human activity along the River 429 

Thames (Free et al., 2014; Yan et al., 2019). The hypothesis that films and fragments are largely 430 

derived from packaging was supported by FTIR analysis, where polypropylene was found to 431 

https://www.sciencedirect.com/science/article/pii/S0045653518322008#bib16
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comprise 42.86% of fragments and 32.26% of films, and polyethylene was found to comprise 38.10% 432 

of fragments and 58.06% of films. Polypropylene and polyethylene are two of the main non-fibre 433 

plastics produced worldwide (Geyer et al., 2017), used as packaging materials because of their low 434 

cost and good mechanical performance (Siracusa et al., 2008). Further evidence that packaging is 435 

likely to be a major source of secondary microplastics in the River Thames is provided by 436 

observations of the mesoplastics within samples. Mesoplastics were frequently seen to have writing 437 

on their surface, often the labelling of a food or drink product. Some secondary microplastics found 438 

in the samples appeared to be partially coated in a coloured surface layer, potentially from the paint 439 

on cars or boats. This indicated that degradation of these plastic particles had occurred, and that 440 

these fragments had the potential to breakdown further, producing more secondary micro and nano 441 

plastics (Horton et al., 2017).  442 

With a significant source of secondary microplastics, films and fragments, thought to 443 

originate from packaging, it is doubted that runoff from land containing degraded litter is the only 444 

route of transfer for these plastics to enter the water column. Combined sewage overflows are a 445 

likely additional route of transfer for these secondary microplastics. It has also been suggested that 446 

landfill erosion may be contributing to the input of plastic waste into the Thames. Landfill erosion 447 

has already been observed at East Tilbury, Thames Estuary, causing the physical mobilisation of 448 

waste, inclusive of metal, asbestos and plastic (Brand et al., 2018). The fragmentation of plastics 449 

from these landfill sites is potentially an additional pathway of entry for secondary microplastics, 450 

films and fragments, into the Thames. Although microfibres were not quantified in this study, they 451 

were found to be present within all water column samples collected. Microfibres were often in a 452 

high abundance, where during the sieving process for microplastic isolation they were often seen in 453 

mats and clumps on the sieves surface. Microfibre dominance among collected microplastics is 454 

consistent with previous studies (Gallagher et al., 2016; Lahens et al., 2018; Jiang et al., 2019; Zhao 455 

et al., 2019).  456 
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From the present study it is estimated that 5041 microbeads flow down the River Thames at 457 

Greenwich per second on peak ebb tides, and 1738 per second on peak ebb tides at Putney (Table 458 

3). Microbeads, likely to come from exfoliants in cosmetic products (Fendall and Sewell, 2009), are 459 

thought to enter the River Thames via CSOs (Thames Water, 2011), whereby untreated sewage 460 

containing micro and macroplastic waste is released to relieve drainage systems during high flow 461 

conditions (Horton and Dixon, 2018). 462 

Combined Sewage Overflows were in close proximity to the sampling sites at Greenwich and 463 

Putney (Fig. 1). FTIR analysis found all microbeads analysed to be made of either high or low density 464 

polyethylene. Polyethylene is estimated to comprise 93% of all microbeads used in cosmetic 465 

products in Europe (Gouin et al., 2015). Glitter, a primary microplastic, is also expected to enter the 466 

water column via sewage effluent. At Greenwich, 523 glitter particles were estimated to flow down 467 

the Thames per second on peak ebb tides, and at Putney, 1403 glitter particles per second on peak 468 

ebb tides. In the literature, glitter is an incredibly understudied microplastic form, where there is no 469 

published data regarding its quantity in marine or freshwater environments. The estimates 470 

presented here may therefore be the first of glitter abundance in the freshwater environment. 471 

Most glitter is made of metalized polyethylene terephthalate (Yurtsever, 2019), however, in this 472 

study FTIR analysis found 80% of glitter particles to be made of polyester, and 20% Nylon 12. Similar 473 

small particle haberdashery products, such as beads and sequins, are also known to be formed 474 

mostly from plastic polymers such as Polyethylene terephthalate, Nylon and polyester (Yurtsever, 475 

2019). Regarding composition, glitter is a complex microplastic composed of layered polymers as 476 

well as metallised (aluminium) film (Tagg and Sul, 2019). It has been suggested that the previous 477 

omission of glitter in microplastic studies may be due to a lack of understanding regarding its 478 

composition (Tagg and Sul, 2019). In the present study, microplastic particles which had a reflective 479 

surface and a hexagonal shape were defined as glitter. A set definition of glitter was used in this 480 

study due to small fragments of reflective organic material being present in water column samples. 481 

These reflective organic particles have the potential to be mistaken for glitter particles. The 482 
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calculated values for glitter abundance may therefore be an underestimate due to the current 483 

methods of classification. Nano-glitter, commonly manufactured from polyethylene, is used by the 484 

cosmetic industry for makeup (Bakir et al., 2015). To gain a better idea of glitter abundance in the 485 

future, a size range inclusive of nano plastics (1 to 1000 nm) should be considered. 486 

 487 

4.2. Factors affecting microplastic density 488 

Across all months from June to October 2017, more microplastics were found at Putney 489 

when compared to that of Greenwich (Figure 2). This greater density of microplastics at Putney may 490 

be due to this sampling site being located between two CSO’s. Sewage treatment works are a crucial 491 

link for microplastic transport and distribution, given that plastic particles such as glitter, microbeads 492 

and microfibres will enter these water treatment works (Horton et al., 2017). The greater 493 

microplastic densities at Putney across all months, when compared to Greenwich, was found to be 494 

statistically significant during July and August. This also corresponded to the greatest volumes of 495 

sewage discharged into the Thames from the Putney CSO pumping station (Figure 5). This appears to 496 

suggest that CSO release into the Thames may have a significant impact on microplastic abundance. 497 

Furthermore, this high volume of sewage discharged into the Thames at Putney may have caused 498 

the significant differences in microplastic abundance between the two sites. The apparent link 499 

between the volume of sewage discharged into the water column at the Hammersmith Pumping 500 

Station CSO and the overall microplastic density (plastics m−3) in the water column at Putney, 501 

suggests that sewer input does affect the density of microplastic waste in the Thames. Plastic waste 502 

from sewer input is known to affect the abundance of plastic waste in the River Thames specifically, 503 

where a previous study found over 20% of the total rubbish items collected to be components of 504 

sanitary products (Morritt et al., 2014). Although CSO release may affect microplastic abundance 505 

there are clearly other sources by which microplastics are entering the Thames, unsurprising when 506 

samples were dominated by secondary microplastics, with broken down food packaging thought to 507 

be a significant source. Urban intensity (Yonkos et al., 2014; Fan et al., 2019; Luo et al., 2019) and 508 
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riverside litter deposition (Rech et al., 2015) are reported to increase microplastic pollution in the 509 

environment. These factors were expected to contribute to the microplastic contamination in the 510 

water column at both sites, however, were not considered to greatly influence variation in 511 

microplastic abundance between sites, where Putney and Greenwich are both heavily urbanised 512 

areas with high population densities. Sewage outfalls were expected to have the greatest influence 513 

on microplastic abundance variation found in the water column between sites.  514 

Surface run off from riversides during rainfall events has been suggested to increase 515 

microplastic abundance in freshwater environments (Zhao et al., 2014; Cheung et al., 2019). The 516 

greatest glitter particle abundance at Putney was found during July 2017, with this time having the 517 

greatest rainfall of the months covered by the sampling period (Met Office, 2017). Additionally, the 518 

water column samples collected from the Thames at Putney in July 2017 were collected on the 14th 519 

of July, 5 days after the Pride Festival took place in London (Pride Festival, 8–9 July 2017). It maybe 520 

that, combined with the increase in monthly rainfall, the Pride Festival and other summer events 521 

may have contributed to the increase in glitter abundance in the River Thames. During these 522 

celebrations, glitter is often worn in the forms of body paints and cosmetics. Due to the small size of 523 

glitter particles, dermal oils, or simply static force, this product adheres to the skin, often 524 

necessitating the rinsing of the product with water for removal (Tagg and Do Sul, 2019). This direct 525 

pathway to sewage treatment plants could therefore also explain a potential increase in glitter 526 

abundance in the water column of the Thames shortly after London festivals.  527 

Site and tidal state were shown to have significant effects on microplastic density. A 528 

greater microplastic density was found on the ebb tide at Greenwich for all months during 2017, 529 

this trend was also reported at Putney, however, reversed for the months of June and September 530 

where a greater microplastic density was found on the flood tide. Again, at Putney, this trend 531 

may be due to two CSOs being in close proximity to the sampling site, where the episodic release 532 

of sewage may have caused this trend reversal. It has been suggested that estuarine 533 

environments may show a reduced microplastic abundance on the flood tide due to the addition 534 
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of sea water during tidal exchange. This water contains lower levels of urban contaminants 535 

(Sutton et al., 2016). It is interesting, therefore, that this trend was seen at the downstream 536 

Greenwich site, where fewer microplastics were found on the flood tide in comparison to the ebb 537 

tide for all months (June to October 2017). Microplastics have also been reported in lower 538 

abundance on the ebb tide, perhaps due to particles returning with the incoming tides (Figueiredo 539 

and Vianna, 2018), and complex circulatory patterns (Sadri and Thompson, 2014), however, this is 540 

only likely near the mouth of an estuary (Wolanski, 2015).  541 

Depth was not considered to significantly influence microplastic density in this study, 542 

with surface mixing thought to be responsible for this result. Surface mixing has been shown to 543 

occur at a greater depth than the 2 m range used in this study, where mixing was expected to cause 544 

no significance in microplastic density profiles at surface and 5m depths (Lattin et al., 2004). 545 

Additionally, the Thames is a busy water way and river traffic at times of sampling may have 546 

disrupted the surface layers of water, causing depth to not show a significant influence on 547 

microplastic density. 548 

 549 

4.3. Impacts of microplastic pollution in the River Thames 550 

Focussing on London, tap water is largely supplied by Thames Water, where 70% of this 551 

supplied water is collected from reservoirs upstream from the River Thames (Tap Water, 2019). In 552 

this study, where a combined average of both sites sampled, found an average of 19.85 553 

microplastics per cubic metre of water in the River Thames, it is unsurprising that microplastics have 554 

been found in over 80% of tap water in London (Tap Water, 2019). Further research is needed to 555 

assess the likely transfer of microplastics in the food chain and its impacts on human health. 556 

This study provides baseline data for microplastic contamination in the River Thames water 557 

column. In comparison to published estimates of microplastic contamination in marine and 558 

freshwater environments, the River Thames is shown to be a major source of this pollutant. With the 559 

potential threats of plastic pollution to both human and ecosystem health, it is of great importance 560 
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that the input of plastic into marine and freshwater environments is reduced. In London, there are 561 

already schemes such as the #OneLess campaign led by ZSL and partners in the Marine 562 

Collaboration, aiming to reduce single use plastic water bottles in London. Similarly Thames21 563 

supports regular cleaning of the Thames foreshore, and the PLA operates passive driftwood 564 

collectors, removing more than 400 tonnes of floating rubbish from the River Thames each year 565 

(Port of London Authority, 2019) as well as launching the Cleaner Thames campaign in 2015 (Port of 566 

London Authority Cleaner Thames Campaign, 2019). Additionally, the Thames Tideway Tunnel is 567 

currently under construction, this multibillion-pound project aiming to improve water quality and 568 

reduce sewage overflows into the River Thames (Thames Water, 2011; Tideway London, 2019). The 569 

data presented here clearly demonstrate that such developments cannot come too soon! 570 

 571 

5. Conclusion 572 

 573 

This study suggests that the River Thames is a significant source of microplastics, specifically 574 

secondary microplastics. Polyethylene and polypropylene were the most common polymers in the 575 

microplastic samples from the River, suggesting broken down packaging may be the primary cause 576 

of this pollution in the Thames. Combined sewer outfalls may be significant contributors of 577 

microplastic pollution into the River. The results from this present study highlight the severity of 578 

microplastic contamination in the River Thames, and the need for the reduction of plastic input to 579 

the freshwater environment. 580 
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Figure legends 892 

 893 

Fig. 1. The locations of the sampling sites at Greenwich (51°28'59"N 000°01'02"W) and Putney 894 

(51°28'09"N 000°13'09"W) on the River Thames. Also shown are the combined sewer overflows in 895 

the vicinity of the sampling sites. 896 

 897 

Fig. 2. The mean number of 32 µm–5 mm plastics (± standard error) estimated for each water 898 

column sample collected from the River Thames from June to October during 2017. 899 

 900 

Fig. 3. The estimated mean number of 32 µm–5 mm microplastic forms at Greenwich and Putney 901 

from June to October 2017. 902 

 903 

Fig. 4. A bar chart showing the mean number of 32 µm–5 mm microplastics m-3 on the ebb and flood 904 

tide at Putney and Greenwich, for each month of sampling during 2017. In total, 36 water column 905 

samples were analysed from the Putney and 33 from the Greenwich. An average of 3 water column 906 

samples was used to calculate the mean number of 32 µm–5 mm plastics m-3 on the ebb and flood 907 

tide, at each site within each month. Bars illustrate mean number of microplastics ± standard error. 908 

 909 

Fig. 5. The relationship between the sewage discharged (cubic metres) into the water column from 910 

the Hammersmith pumping station CSO from June to October 2017, and the mean number of 32 911 

µm–5 mm microplastics found in the water column at Putney. (Thames Water data). 912 

 913 
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Fig. 6. A stacked bar chart to show the percentage material composition for each form. Polymer 914 

forms were identified using FTIR at a 70% minimum spectral library match. Sixty-three samples were 915 

analysed; 21 fragments, 31 films, 2 nurdles, 4 glitter particles and 5 microbeads. 916 
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