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ABSTRACT 

Objective: To examine etiologic stroke subtypes and vascular risk factor profiles and their 

association with WMH burden in patients hospitalized for acute ischemic stroke (AIS). 

Methods: For the Magnetic Resonance Imaging and Genetics Interface Exploration (MRI-

GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 AIS 

patients. All cases underwent standardized web-tool-based stroke subtyping with the causative 

classification of stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 

2,529 patients using a fully automated deep-learning trained algorithm. Univariable and 

multivariable linear mixed effects modelling was carried out to investigate the relationship of 

vascular risk factors with WMHv and CCS subtypes. 

Results: AIS patients with large artery atherosclerosis, major cardioembolic stroke, small artery 

occlusion (SAO), other and undetermined causes of AIS differed significantly in their vascular 

risk factor profile (all p<0.001). Median WMHv in all AIS patients was 5.86 cm3 [Interquartile 

range (IQR): 2.18 - 14.61 cm3] and differed significantly across CCS subtypes (p<0.0001). In 

multivariable analysis, age, hypertension, prior stroke, smoking (all p<0.001) and diabetes 

mellitus (p=0.041) were independent predictors of WMHv. When adjusted for confounders, SAO 

patients had significantly higher WMHv compared to all other stroke subtypes (p<0.001). 

Conclusions: In this international multi-center, hospital-based cohort of AIS patients we 

demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, 

with the highest lesion burden detected in SAO patients. These findings independently validate 

the small-vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic 

stroke.  
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INTRODUCTION  

White matter hyperintensity (WMH) is a common radiographic marker seen in the deep and 

periventricular white matter on fluid-attenuated inversion recovery (FLAIR) in magnetic 

resonance imaging (MRI).1 In acute ischemic stroke (AIS) patients, WMH is associated with 

susceptibility to infarct growth2 and poor post-stroke outcomes.3 As a radiographic manifestation 

of chronic cerebrovascular disease, WMH burden is thought to result from the impact of multiple 

vascular risk factors on the small vasculature and is known to be associated with ongoing injury, 

including higher rates of WMH accumulation and other cerebrovascular manifestations .4 In 

stroke-free adults, known vascular risk factors such as hypertension,5 carotid atherosclerosis,6 

diabetes mellitus7 and cigarette smoking8 are strongly associated with increased WMH volume 

(WMHv). However, limited data are available regarding risk factors for WMH in AIS, with age 

and elevated homocysteine levels having been previously identified.9  

Given the lack of comparative data, we aimed to assess whether risk factors contributing to 

WMH severity in patients with AIS may in part be different from those in population-based 

stroke-free cohorts. However, reliable WMH assessment in AIS is compounded by the varying 

methodology, ranging from a semi-quantitative rating scale10 to semi-/fully - automated WMH 

measurements.11,12 Furthermore, many of these approaches are challenging to apply to large 

clinical datasets of WMH. To address this gap, we used a designated artificial intelligence-driven 

deep learning pipeline to derive robust WMHv and systematically investigate determinants of 

WMHv in AIS and its subtypes in a retrospective, hospital-based cohort of 3,301 AIS patients. 

We hypothesize that WMH burden is highest in patients with SAO and that classic vascular risk 

factors contribute to a higher WMH burden. 
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METHODS 

Study design and participants 

The MRI-Genetics Interface Exploration (MRI-GENIE) Study is a large, international 

collaboration of 12 sites contributing 3,301 AIS patients with phenotypic, radiographic 

and genotypic data. A detailed description of the study design and concept has been 

published previously.13 In summary, each site received approval of their respective 

institutional review board. Patients were recruited through the Stroke Genetics Network 

(SiGN), with recruitment dates ranging from 1999 to 2012.14 MRI data were assembled 

in a central imaging repository for assessment of neuroimaging phenotypes. Here, we 

assessed 2,781 patients for whom FLAIR imaging was available for automated 

assessment. MRI sequences were obtained in the acute phase (median time to scan: <1 

day [upper quartile range 1-4 days] from symptom onset). After quality control (QC), 

2,529 AIS patients with automatedly extracted WMH volume (WMHv) from clinical 

axial FLAIR images remained available for analysis (Figure 1).15 

Standard Protocol Approvals, Registrations, and Patient Consents 

All AIS subjects were recruited in a hospital-based setting. Ethics or institutional review 

board approval was obtained as appropriate for each individual participating study. 

Informed consent including sharing of de-identified demographic, imaging and 

genotyping data was obtained from all patients or their legally authorized representative. 

Demographic and genotyping data was collected by the Data Management and 

Genotyping Core of SiGN. 

Automated WMH volume extraction 
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WMHv were successfully extracted from clinical axial FLAIR images of 2,529 patients 

(76.6%) in the MRI-GENIE cohort. All FLAIR images were acquired as per local AIS 

clinical imaging protocol. On average, the images had a mean resolution of 0.7mm in-

plane (minimum: 0.4mm, maximum: 1.9mm) and 6.3mm through-plane (minimum: 

1.0mm, maximum 65.0), whole-brain acquisition. A fully automated pipeline using deep 

learning was developed specifically for quantification of WMHv on clinical-grade MRI 

scans and applied to all patients.15 A detailed description including assessment of the 

WMH pipeline performance has been previously published.15  In brief, the pipeline has 

three main processing steps with two QC checks. First, an initial QC assessment based on 

in-plane and through-plane resolution, as well as number of slices, is performed to 

identify scans with insufficient information for WMH extraction. Brains are extracted 

from the clinical axial FLAIR images using a dedicated deep learning architecture 

(library found at http://github.com/adalca/neuron). After brain extraction, patients with 

unexpectedly low or high age-stratified brain volume, were identified and manually 

assessed for incomplete brain extraction. To account for differences in image acquisition, 

this is followed by an intensity normalization to harmonize image intensities across sites 

and scanners. Then, automated WMH segmentation is performed, again by using a deep 

learning architecture with atlas-based, spatial priors to include information on the 

distribution of WMH and differentiation from AIS artifacts such as edema, movement 

artifact, or prior stroke, with the algorithm compensating for large infarctions to avoid 

underestimation of WMH.15-17 Reasons for excluding scans during the first pass QC 

(n=254, 10% of all subjects with FLAIR) were: low number of slices, mislabeled MRI 

sequence, or significant motion artifact (n=97; 3.8%). In the second pass QC, images 
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with different slice direction (coronal [n=72; 1.1%] or sagittal [n=3; 0.1%]), persistent 

motion artifact (n=8; 0.3%), incomplete brain extraction (n=62; 2.5%) or other issues 

(n=8, 0.3%) were excluded. Finally, we excluded four subjects with WMHv 

measurement of 0cc (n=4; 0.2%).   

Acute Ischemic Stroke Subtyping 

All patients underwent systematic stroke subtyping using the CCS.18 A web-based 

standardized algorithm incorporates results of patient history, physical exam findings 

from the clinical stroke assessment, and diagnostic testing to systematically assign the 

CCS subtype. Two major CCS classifications have been established, phenotypic CCS 

reflecting the abnormal test results at the time of stroke and which does not rely on 

judgment regarding the likely etiology and causative CCS, which requires integration of 

all diagnostic tests and history to provide the most likely mechanism for the stroke. 

Throughout this article, we will refer to causative CCS as “CCS”. If presented with 

multiple competing etiologies the web-based CCS algorithm assigns the most probable 

cause. CCS subtypes include large artery atherosclerosis (LAA), major cardioembolic 

stroke (CE major), SAO, Other, and Undetermined cause of stroke (i.e., 5-item CCS 

subtypes).18 LAA, CE major, SAO, and Other categories include subjects where the 

subtype was considered either possible, probable or evident. “Undetermined” category 

included the following: cryptogenic embolism, other cryptogenic stroke, minor 

cardioembolic stroke, as well as subjects with incomplete information, or unclassified 

stroke. Each reader underwent formal training and certification prior to adjudicating CCS 

subtypes.18 
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Statistical Analysis  

Demographic data and vascular risk factors including age, sex, race, atrial fibrillation, 

coronary artery disease (CAD), diabetes mellitus, hypertension, prior stroke, and smoking 

status were abstracted from patient records by each site. Numeric variables are expressed 

as mean ± standard deviation (SD) or median and IQR, depending on normal or non-

parametric distribution. Categorical variables are expressed as counts and frequencies. 

Statistical comparison is performed across the 5-item CCS subtypes using χ2-test to 

compare categorical data, ANOVA for age and Kruskal-Wallis-Test for WMHv. Given 

the skewed distribution of WMHv, we used natural log-transformed WMHv for all 

regression analyses.  Included patients were compared to those who failed the imaging 

QC using mixed logistic regression model of “included/excluded” status with the 

demographic variables as fixed effects variables and study site as a random effects 

variable for each demographic parameter. After adjustment for site as a random variable, 

the subjects passing or failing QC did not differ significantly (data not shown). Further, 

univariable linear regression was used to identify predictors of WMHv. Variables passing 

p<0.1 were included in the multivariable model. Multiple linear mixed-effect modelling 

was used to identify independent determinants of WMHv. The multiple linear mixed-

effects model was adjusted for site as a random variable, as key variables such as age, 

race and distribution of vascular risk factors (atrial fibrillation, CAD, diabetes mellitus 

and hypertension) differed by site (data not shown). Cases with missing information for 

vascular risk factors were excluded from the final multivariable model (Table 1).  
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Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. All authors had full access to all the data in the 

study. The corresponding author had final responsibility for the decision to submit for 

publication. 

RESULTS 

This retrospective analysis was conducted based on data collected between 1999 and 

2012. Imaging data were assembled between 2012 and 2017. WMH analysis was 

conducted using de-identified clinical FLAIR images in June 2018. Of the 3,301 MRI-

GENIE patients 518 had no FLAIR sequence and 254 failed the QC assessment for the 

automated WMH extraction, leaving 2,529 AIS patients for analysis (Figure 1). Mean 

age was 63.4 (SD=14.5) years and 39.3% (n=993) of all patients were female. The 

majority of patients were Caucasians (n=2,141; 84.7%), had a prior medical history of 

hypertension (n=1,668; 66.4%) and were either current or former tobacco smokers 

(n=1,323; 54.1%). Atrial fibrillation (n=380; 15.5%), CAD (n=444; 17.9%), diabetes 

mellitus (n=581; 23.2%) and a history of prior stroke (n=248; 9.8%) were less common 

in this AIS cohort (Table 1). MRI-GENIE patients excluded from this analysis due to 

lack or poor quality images did not differ significantly in age, sex, or other vascular risk 

factors from those included. 
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Vascular risk factor profiles in CCS Subtypes 

Distribution of age, sex and vascular risk factors differed significantly across the 5-item 

CCS subtypes, except for history of prior stroke (Table 1). Patients with LAA were less 

likely to be female (n=176; 32.3%) or suffer from atrial fibrillation (n=30; 5.6%).Patients 

classified as a major CE stroke were more likely to be female (n=186; 47.2%), were on 

average older (mean=71.8 [SD=11.9] years) and were more likely to have atrial 

fibrillation (n=267; 68.8%), CAD (n=111; 28.6%), and were slightly more likely to have 

hypertension (n=288; 73.3%) in comparison with the other stroke subtypes, albeit not 

significant. Patients classified as SAO had the lowest frequency of atrial fibrillation 

(n=12; 3.2%) and the highest frequency of diabetes mellitus (n=107; 28.1%). Notably, 

patients classified as Other cause of ischemic stroke were the youngest (mean=49.0 

[SD=13.6] years) and had the lowest frequency of history of CAD (n=18; 10.2%) and 

diabetes mellitus (n=27; 15.1%).  

 

White Matter hyperintensity in CCS Subtypes 

WMHv was extracted for each patient using an automated WMH pipeline for clinical 

axial FLAIR images (example outlines in Figure 2). The median WMHv (example 

outlines in Figure 2) in the entire AIS cohort was 5.86 cm3 [IQR: 2.18-14.61cm3]. The 

unadjusted median WMHv was the highest in patients classified as CE major (8.13 cm3 

[IQR: 3.65-17.12cm3]), and second highest in SAO (7.53cm3 [IQR: 2.84-18.45cm3]). The 

lowest WMHv with a median volume of 2.16cm3 [IQR: 0.93-5.29cm3] was observed in 

patients classified as Other cause of stroke (Table 1). 
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Univariable associations with WMH volume in AIS 

In univariable analysis, age was the strongest predictor of WMHv (β=0.05, 95%CI: 0.05-

0.05, p<0.001). Further, atrial fibrillation (β=0.46, 95%CI: 0.31-0.61), CAD (β=0.41, 

95%CI: 0.27-0.55), diabetes mellitus (β=0.35, 95%CI: 0.23-0.48), hypertension (β=0.82, 

95%CI: 0.72-0.93) and prior stroke (β=0.55, 95%CI: 0.37-0.72) were significant 

univariable predictors of WMHv, all lower than p<0.001. Likewise, a history of current 

or former smoking contributed to a higher WMHv in univariable analysis (β=0.13, 

95%CI: 0.03-0.24, p=0.015) (Table 2). 

Multivariable associations with WMH volume in AIS 

The multivariable analysis included all variables passing the threshold of p<0.1 and was 

adjusted for site as a random variable. Age (β=0.05, 95%CI: 0.04-0.05), hypertension 

(β=0.35, 95%CI: 0.27-0.47), history of prior stroke (β=0.45, 95%CI: 0.32-0.63), current 

or former smoking status (β=0.19, 95%CI: 0.10-0.28) (all p<0.001) as well as diabetes 

mellitus (β=0.11, 95%CI: 0.03-0.24, p=0.041) remained independent predictors of 

WMHv (Table 2).  

Adjusted WMH volume in CCS subtypes 

WMHv for the 5-item CCS subtypes was re-assessed when adjusted for the identified 

multivariable predictors of WMHv, as well as for site as a random variable by comparing 

the residuals of the multivariable linear mixed-effects model by CCS subtype. Cases 

classified as SAO demonstrated the highest adjusted residual WMHv (1.47cm3 [IQR: -
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1.52-3.15cm3]) in the Bonferroni-adjusted group-wise comparison of CCS subtypes 

(Figure 3). 

 

CCS-subtype specific associations with WMH volume 

Contributors to WMH burden were also assessed by CCS subtype (Table 3). In LAA, age 

(β=0.05, 95%CI: 0.04-0.05, p<0.001) and smoking status (β=0.68, 95%CI: 0.34-1.01, 

p<0.001) were independently associated with higher WMHv. In CE major, only age 

(β=0.05, 95%CI: 0.04-0.05, p<0.001) emerged as an independent predictor of WMHv in 

the multivariable model. In contrast, age (β=0.04, 95%CI: 0.03-0.05, p<0.001), 

hypertension (β=0.43, 95%CI: 0.16-0.70, p=0.002) and prior stroke (β=0.52, 95%CI: 

0.11-0.93) emerged as independent predictors of WMHv in SAO. In cases with Other 

causes of stroke, age (β=0.04, 95%CI: 0.03-0.06, p<0.001) and prior stroke (β=0.90, 

95%CI: 0.13-1.66, p=0.021) were associated with higher WMHv, and female sex (β=-

0.37, 95%CI: -0.72- -0.02, p=0.040) was associated with lower WMHv. Lastly, in 

patients with Undetermined cause of stroke, age (β=0.05, 95%CI: 0.04-0.05, p<0.001), 

hypertension (β=0.58, 95%CI: 0.42-0.74, p<0.001), prior stroke (β=0.38, 95%CI: 0.15-

0.61, p=0.001) and smoking (β=0.23, 95%CI: 0.09-0.37, p=0.001) were independently 

associated with higher WMHv, whereas CAD was associated with lower WMHv (β=-

0.26, 95%CI: -0.45- -0.05, p=0.011).   
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DISCUSSION  

In this large multi-center, hospital-based cohort of 2,529 AIS patients, we demonstrate 

that vascular risk factor profiles differ across CCS subtypes. Further, we show that, as in 

stroke-free populations, age, hypertension and smoking (all p<0.001), as well as diabetes 

mellitus (p=0.041) are independent predictors of high WMHv. Additionally, when 

adjusted for confounding variables, patients with SAO exhibit the highest amount of 

WMH burden, whereas patients with CE major have the highest unadjusted WMHv. 

These findings independently validate prior studies examining patients with thoroughly 

ascertained stroke subtypes. In a study of 891 AIS patients with the Trial of Org 10172 in 

Acute Stroke Treatment (TOAST) stroke subtype classification,19 SAO patients had the 

highest amount of WMH burden across all AIS subtypes.9 Recently, a large multi-center 

study semi-automatedly assessed WMHv in 5,035 AIS patients of Korean descent.3 

Vascular risk factor profiles were compared across WMH quintiles. Overall, 

hypertension, diabetes mellitus, and atrial fibrillation emerged as independently 

associated with WMH quintile when adjusted for age and sex. While the findings were 

overall similar, our study highlights the importance of assessing vascular risk factors by 

stroke subtype, particularly when a standardized subtyping-tool like CCS is used. We 

show that in patients with SAO, a prior medical history of hypertension and stroke are 

independently associated with larger WMH burden, highlighting potentially addressable 

risk factors in SAO. Additionally, prior stroke is a predictor of WMH burden in LAA, 

SAO, Other and Undetermined cases, possibly hinting at a “vicious cycle,” where 

existing cerebrovascular burden increases the risk for further cerebral tissue injury. In 

cases of Undetermined stroke, CAD, hypertension and smoking also are significantly 
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associated with WMH burden. However, this may reflect the potentially competing 

underlying stroke etiologies.  Further, in multivariable modelling, we show that in LAA, 

only age and prior stroke were independently associated with WMHv, while in CE major 

only age independently contributed to WMH burden. Such specific CCS subtype findings 

support the concept of a different underlying etiologic disease processes. 

Consistent with prior studies, age remained as the most significant independent 

determinant of WMHv. However, the effect of age on WMH burden may differ across 

the lifespan, and it may interact with other vascular risk factors. For example, in a cohort 

of 560 AIS patients at the extremes of ages in young (<55 years) and old (>75 years), 

different vascular risk profiles emerged.23  

Among other vascular risk factors, hypertension has a well-established role in WMH 

accumulation in population-based cohorts;5 furthermore, given its robust association with 

WMHv in this large cohort of AIS patients, prior studies9,24 have most likely been 

underpowered. Likewise, diabetes mellitus has been implicated in the development and 

lesion size of WMH in stroke-free adults,7,25 but current analysis is the first to 

demonstrate an association between the WMH severity and diabetes mellitus in AIS 

patients.  

Further, we observed a relationship of AF with higher WMH burden in univariable 

analysis, which no longer persisted after adjusting for age and other potential 

confounders. Given higher incidence of AF among elderly subjects and potential co-

linearity between these two risk factors, the effect of AF on WMH burden in AIS subjects 

could not be definitively assessed and will require further study. 
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 Lastly, we confirmed smoking as an independent predictor of WMH burden. The 

importance of smoking exposure on WMH risk is further highlighted by a study from 

2015 demonstrating a dose-dependent effect of smoking in stroke-free adults.26 

Our study provides a key piece of evidence on the association between WMH burden and 

small-vessel stroke. This is of growing importance, as multiple mechanisms are 

considered for the pathophysiology of chronic cerebral ischemic changes that appear as 

WMH lesions on T2/FLAIR MRI. Among these competing factors, arteriolar sclerosis, 

capillary endothelial activation as well as immunoreactivity for hypoxia-inducible factor 

(HIF) 1 and 2 as a manifestation of ongoing hypoxia have been described.27 More 

recently, the focus for elucidating WMH pathology shifted towards the investigation of 

microstructural changes in normal appearing white matter, which possibly precede 

formation of new WMH lesions and WMH lesion progression.28 Such microstructural 

changes have been associated with hypertension, smoking, and diabetes mellitus,29 

raising the possibility of addressing modifiable vascular risk factors prior to the formation 

of new or the expansion of existing WMH. The association of microstructural white 

matter changes with worsened functional recovery after ischemic stroke further highlights 

the importance of white matter integrity.30 

Recent studies also suggest that WMH has the potential to regress over time. In a study 

investigating 190 patients with minor stroke a repeat MRI at 1 year demonstrated WMH 

regression in 71 patients.31 Patients with WMH regression also had a greater reduction in 

blood pressure, though this requires further validation in prospective cohorts. Patients 

with increasing WMH had a higher likelihood of experiencing a recurrent ischemic 
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event.31 Similarly, patients with higher levels of WMH had a higher likelihood of 90-day 

stroke recurrence.32  

 

This study has important limitations. First, imaging data were collected retrospectively, 

and their availability varied by site. Since brain MRIs were collected in the acute phase of 

AIS, variability in the quality of acquisition and clinical indication for neuroimaging is a 

significant factor in this study. Great care has been exercised in ascertaining the quality 

and operational utility of the MRI-GENIE neuroimaging database.13 Furthermore, QC for 

the automated WMHv segmentation was the key feature of this innovative MRI analysis 

pipeline and is described in detail elsewhere.15 An additional limitation of this analysis is 

related to a large proportion of AIS cases with Undetermined stroke subtype (n=1,022). 

As 5-item CCS-subtyping was performed with a standardized web-based protocol by 

trained adjudicators this may be due to either two or more equally likely competing 

stroke etiologies resulting in the classification “Undetermined” or due to lack of 

sufficient diagnostic data for a final CCS classification. The proportion of stroke cases 

classified as Undetermined in the presented MRI-GENIE cohort is slightly lower than in 

the original SiGN study (39% vs. 43%).33 In SiGN, this category was mainly driven by 

cases with incomplete clinical evaluations (55%), minor cardioembolic sources (18%), 

other cryptogenic sources (15%) and multiple competing etiologies (9%). Overall, the 

proportion of completely “unclassified” patients was small (4%). Despite the number of 

Undetermined cases, 5-item CCS has the advantage of a standardized, reproducible web-

based assessment with excellent inter-rater agreement (kappa=0.86).34 
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Notable strengths of our study include : (a) MRI-GENIE is a large imaging and genetic 

database specifically developed to enable future studies of genetic architecture of acute 

and chronic neuroimaging traits in AIS patients; (b) all cases underwent systematic 

stroke-subtyping using the standardized web-based CCS tool,18 and (c) WMH was 

segmented using an artificial-intelligence enabled automated segmentation pipeline15 

specifically designed to analyze the multi-center, clinical brain MRI of patients with AIS. 

The automated WMH pipeline has the advantage that it yields robust and reproducible 

WMH segmentations across multiple sites and that it can be applied to other acute stroke 

cohorts. The pipeline has demonstrated excellent agreement with manual assessments of 

WMH volume in AIS patients.15 Overall, the applied WMH pipeline contributes to the 

generalizability of our results to other AIS cohorts. Systematic, large-scale WMH 

assessment in AIS will allow for studying the underlying genetic architecture, as well as 

assessment of the role of WMH in AIS severity and outcome. 

 

In conclusion, we demonstrated that patients with SAO exhibit the highest amount of 

WMH when adjusted for confounders compared to other AIS subtypes, supporting the 

hypothesis that WMH lesions seen in AIS patients are the result of small vessel disease. 

Furthermore, we have shown that that the vascular risk profile differs by CCS, with 

modifiable risk factors being important contributors to the overall WMH burden in AIS 

patients. Our findings in part reconcile the previously described differences in risk factor 

profiles for WMH in stroke-free and AIS populations. Effectively addressing these 
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vascular risk factors could provide an important avenue for modifying WMH disease 

burden and thus, potentially preventing the detrimental downstream effects of high WMH 

burden in AIS patients.   
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Table 1: Basic demographics of the MRI-GENIE cohort and comparison by stroke subtype 

 ALL LAA CE major SAO OTHER UNDETERMINED p 

N** 2529 545 394 387 181 1022  

Female (%) 993 (39.3) 176 (32.3) 186 (47.2) 146 (37.7) 81 (44.8) 404 (39.5) <0.001 

Age (mean (sd)) 63.4 (14.6) 65.6 (12.3) 71.8 (11.9) 62.7 (13.5) 49.0 (13.6) 61.9 (15.0) <0.001 

Caucasian (%) 2141 (84.7) 467 (85.7) 354 (89.8) 288 (74.4) 147 (81.2) 885 (86.6) <0.001 

Atrial Fibrillation (%) 380 (15.2) 30 (5.6) 267 (68.8) 12 (3.1) 9 (5.0) 62 (6.1) <0.001 

CAD (%) 444 (17.9) 110 (20.6) 111 (28.6) 48 (12.7) 18 (10.2) 157 (15.6) <0.001 

Diabetes Mellitus (%) 581 (23.2) 146 (26.9) 96 (24.6) 107 (28.1) 27 (15.1) 205 (20.3) <0.001 

Hypertension (%) 1668 (66.4) 391 (72.1) 288 (73.3) 274 (71.5) 87 (48.9) 628 (61.9) <0.001 

Prior Stroke (%) 248 (9.8) 52 (9.6) 46 (11.7) 31 (8.1) 10 (5.6) 109 (10.7) 0.109 

Smoking (ever, %) 1323 (54.1) 336 (63.6) 182 (48.3) 214 (56.3) 86 (48.3) 505 (51.5) <0.001 

WMHv in cm3 (median 

[IQR]) 
5.86 [2.18, 14.61] 5.76 [2.48, 14.42] 8.13 [3.65, 17.12] 7.53 [2.84, 18.45] 2.16 [0.93, 5.29] 5.14 [1.94, 13.17] <0.001 

Abbreviations: CAD – coronary artery disease, CE major – cardioembolic major, LAA – large artery atherosclerosis, SAO – small artery 
occlusion, WMHv – white matter hyperintensity volume 

*Statistical comparison was performed across the CCS 5-item subtypes. χ2- test was used to compare categorical data, ANOVA was used for age 
and Kruskal-Wallis-Test was used for WMHv.  

** Missing cases: Atrial fibrillation – 30, CAD – 43, diabetes mellitus – 24, hypertension – 18, prior stroke -11, smoking status – 85. 
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Table 2: Univariable and multivariable predictors of WMH 

 Univariable Model Multivariable Model*  
Variable Estimate (95% CI) P Estimate (95% CI) P 
Age 0.05 (0.05, 0.05) <0.001 0.05 (0.04, 0.05) <0.001 
Male 0.06 (-0.05, 0.17) 0.257 -  
Caucasian 0.02 (-0.13, 0.16) 0.836 -  
Atrial Fibrillation 0.46 (0.31, 0.61) <0.001 -0.09 (-0.22, 0.04) 0.185 
CAD 0.41 (0.27, 0.55) <0.001 -0.09 (-0.20, 0.04) 0.159 
Diabetes Mellitus 0.35 (0.23, 0.48) <0.001 0.11 (0.03, 0.24) 0.041 
Hypertension 0.82 (0.72, 0.93) <0.001 0.35 (0.27, 0.47) <0.001 
Prior Stroke 0.55 (0.37, 0.72) <0.001 0.45 (0.32, 0.63) <0.001 
Smoking (ever) 0.13 (0.03, 0.24) 0.015 0.19 (0.10, 0.28) <0.001 
*linear mixed effects model adjusted for site as a random variable 

Abbreviations: CAD – coronary artery disease, WMHv – white matter hyperintensity volume, 95% CI – 95% confidence interval 
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Table 3: Predictors of WMHv by CCS Subtype 

Variable 
LAA (n=545) 

Estimate (95% CI) [p] 

CE major (n=394) 

Estimate (95% CI) [p] 

SAO (n=387) 

Estimate (95% CI) [p] 

Other (n=181) 

Estimate (95% CI) [p] 

Undetermined (n=1022) 

Estimate (95% CI) [p] 
Age 

0.05 (0.04, 0.05) 

[p <0.001] 

0·.5 (0.04, 0.05) [p<0.001] 0.04 (0.03, 0.05) 

[p<0.001] 

0.04 (0.03, 0.06) 

[p<0.001] 

0·05 (0·04, 0·05) [p<0.001] 

Female - - - 
-0.37 (-0.72, -0.02) 

[p=0.040] 

- 

Caucasian 
-0.01 (-0.33, 0.30) 

[p=0.935] 

- 
-0.004 (-0.29, 0.28) 

[p=0.980] 

- - 

Atrial Fibrillation 
0.02(-0.40, 0.45) 

[p=0.018] 

- 
0.23 (-0.43, 0.90) 

[p=0.487] 
-0.25 (-1.09, 0.58) 

[p=0.522] 

0·03 (-0·26, 0·33) [p=0.826] 

CAD 
-0.009 (-0.25, 0.24) 

[p=0.940] 

- 0.30 (-0.04, 0.64) 

[p=0.088] 

0·34 (-0·32, 1·00) 

[p=0.314] 

-0·26 (-0·45, -0·05) [p=0.011] 

Diabetes Mellitus 
- - -0.02 (-0.27, 0.24) 

[p=0.897] 

0.05 (-0.46, 0.56) 

[p=0.849] 

0·12 (-0·06, 0·30) 

[p=0.192] 

Hypertension 
-0.12 (-0.10, 0.33) 

[p=0.289] 

0.15 (-0.07, 0.39) 

[p=0.181] 

0.43 (0.16, 0.70) 

[p=0.002] 

0.05 (-0.33, 0.42) 

[p=0.808] 

0·58 (0·42, 0·74) [p<0.001] 

Prior Stroke 
0.68 (0.34, 1.01) 

[p=0.001] 

- 
0.52 (0.11, 0.93) 

[p=0.012] 

0.90 (0.13, 1.66) 

[p=0.021] 

0·38 (0·15, 0·61) [p=0.001] 

Smoking (ever) - 
- - - 0·23 (0·09, 0·37) 

[p=0.001] 
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*linear mixed effects model adjusted for site as a random variable 

Abbreviations: CAD – coronary artery disease,  CE major – major cardioembolic stroke, LAA – large artery atherosclerosis, WMHv 
– white matter hyperintensity volume, 95% CI – 95% confidence interval 
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FIGURES 

Figure 1: Flowchart of case selection for analysis 

Figure 2: Automated WMH outline in ischemic stroke patients with mild (a), moderate (b) and 

severe (c) WMH burden. Results were extracted by the automated MRI-GENIE pipeline. 

Figure 3: WMH by CCS subtype. Residuals of WMH volume adjusted for age, vascular risk factors and 

site. Cases with SAO have the highest WMH burden compared to other CCS subtypes (*p<0.05, 

**p<0.005). 
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