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Aggregation Under Bias: Rényi Divergence
Aggregation and its Implementation via

Machine Learning Markets

Amos J. Storkey, Zhanxing Zhu, and Jinli Hu

Institute of Adaptive Neural Computation, School of Informatics,
The University of Edinburgh, Edinburgh, EH8 9AB, UK

Abstract. Trading in information markets, such as machine learning
markets, has been shown to be an effective approach for aggregating the
beliefs of different agents. In a machine learning context, aggregation
commonly uses forms of linear opinion pools, or logarithmic (log) opinion
pools. It is interesting to relate information market aggregation to the
machine learning setting.
In this paper we introduce a spectrum of compositional methods, Rényi
divergence aggregators, that interpolate between log opinion pools and
linear opinion pools. We show that these compositional methods are
maximum entropy distributions for aggregating information from agents
subject to individual biases, with the Rényi divergence parameter de-
pendent on the bias. In the limit of no bias this reduces to the optimal
limit of log opinion pools. We demonstrate this relationship practically
on both simulated and real datasets.
We then return to information markets and show that Rényi divergence
aggregators are directly implemented by machine learning markets with
isoelastic utilities, and so can result from autonomous self interested
decision making by individuals contributing different predictors. The risk
averseness of the isoelastic utility directly relates to the Rényi divergence
parameter, and hence encodes how much an agent believes (s)he may be
subject to an individual bias that could affect the trading outcome: if an
agent believes (s)he might be acting on significantly biased information,
a more risk averse isoelastic utility is warranted.

Keywords: Probabilistic model aggregation, Rényi divergence, machine
learning markets

1 Introduction

Aggregation of predictions from different agents or algorithms is becoming in-
creasingly necessary in distributed, large scale or crowdsourced systems. Much
previous focus is on aggregation of classifiers or point predictions. However, ag-
gregation of probabilistic predictions is also of particular importance, especially
where quantification of risk matters, generative models are required or where
probabilistic information is critical for downstream analyses. In this paper we
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focus on aggregation of probability distributions (including conditional distribu-
tions).

The problem of probabilistic aggregation in machine learning can be cast as
choosing a single aggregate distribution given no (or little) direct data, but given
instead the beliefs of a number of independent agents. We have no control over
what these agents do, other than that we know they do have direct access to
data and we expect them to have obtained their beliefs using that data. The data
the agents observe is generated from a scenario that is the same as or similar to
the target scenario we care about. We wish to choose an aggregate distribution
that has high log probability under data drawn from that target scenario.

One recent approach for aggregating probabilistic machine learning predic-
tions uses information markets [27, 28, 18] as an aggregation mechanism via the
market price. In a machine learning market, agents make utility maximizing de-
cisions regarding trades in securities. These securities are tied to the random
variables of the machine learning problem. For example they could be Arrow-
Debreu securities defined on each possible predicted outcome. Given the trading
desires of each agent, the equilibrium price in the market then defines a distri-
bution that is an aggregation of the beliefs of different agents. Machine learning
markets combine an incentivization mechanism (to ensure agents’ actions reflect
their beliefs Pi) and a aggregation mechanism (via the trading process).

Understanding the relationship between individual actions and the aggregate
market price is an interesting open question for information markets. In addition,
finding efficient methods of arriving at market equilibria is key to their practical
success.

The main novel contributions of this paper are

– Introducing the class of Rényi divergence based aggregators which interpo-
late between linear opinion pools and log opinion pools, and showing that
they are the maximum entropy estimators for aggregation of beliefs poten-
tially subject to bias. We also demonstrate this relationship practically via
simulated and real problems.

– Directly relating Rényi divergence aggregators to machine learning markets
with different isoelastic utilities, and showing that the risk averseness of the
isoelastic utility relates to the Rényi divergence parameter that is used to
control the assumed bias.

2 Background

Aggregation methods have been studied for some time, and have been discussed
in a number of contexts. Aggregation methods differ from ensemble approaches
(see e.g. [9]), as the latter also involves some control over the form of the in-
dividuals within the ensemble: with aggregation, the focus is entirely on the
method of combination - there is no control over the individual agent beliefs.
In addition, most aggregation methods focus on aggregating hard predictions
(classifications, mean predictive values etc.) [4, 10]. Some, but not all of those
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are suitable for aggregation of probabilistic predictions [7, 20], where full pre-
dictive distributions are given. This issue has received significant attention in
the context of aggregating Bayesian or probabilistic beliefs [29, 8, 19, 21, 27]. Full
predictive distributions are generally useful for a Bayesian analysis (where the
expected loss function is computed from the posterior predictive distribution), in
situations where full risk computations must be done, or simply to get the most
information from the individual algorithms. Wolpert [30] describes a general
framework for aggregation, where an aggregator is trained using the individual
predictions on a held out validation set as inputs, and the true validation targets
as outputs. This requires specification of the aggregation function. The work in
this paper fits within this framework, with Rényi mixtures as the aggregator. In
crowdsourcing settings, issues of reliability in different contexts come into play.
Log opinion pools have been generalized to weighted log opinion pools using
Bayesian approaches with an event-specific prior [17]. This emphasises that ex-
pert models can work with aggregators at many different levels, from individual
data points to whole datasets within a corpus.

Recently, prediction markets, and methods derived from securities market
settings [27, 28, 18, 3, 21, 7, 5], have provided a particular foundation for belief
aggregation. That securities markets can perform belief aggregation was first
discussed by Rubinstein [23–25]. Belief aggregation of this form is of importance
in crowdsourcing settings, or settings combining information from different au-
tonomous agents. In such settings, the beliefs of different agents can be subject
to various biases.

One other area that aggregation has shown importance is in machine learning
competitions, including the Netflix Challenge [14], the PASCAL Visual Object
Classes challenge [11]), and many challenges set in the Kaggle challenge environ-
ment [13]. Many workshops (e.g. KDD) also run a variety of machine learning
challenges. One of the most consistent take-home messages from all the chal-
lenges is that aggregation of individual entries provides a performance benefit.
The final winning Netflix submission was itself a large scale aggregation of 107
different methods [22].

3 Problem Statement

We will postpone the discussion of information markets and start by introducing
Rényi divergence aggregators and their properties, as Rényi divergence aggrega-
tors are new to this paper. We will show that Rényi divergence aggregators are
intimately related to the issue of bias in individual agent beliefs.

The problem setting is as follows. We have a prediction problem to solve, in
common with a number of agents. These agents have learnt probabilistic pre-
dictors on each of their own training datasets, using their own machine learning
algorithms, and provide the predictions for the test scenario. We wish to combine
the agents’ predictions to make the best prediction we can for our setting. We
don’t have access to the training data the agents see, but are potentially given
the held out performance of each agent on their training data, and we may have
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access to their predictions for a small validation set of our own data which we
know relates to our domain of interest (the distribution of which we denote by
PG). We consider the case where it may be possible that the data individual
agents see are different in distribution (i.e. biased) with respect to our domain
of interest.

Our objective is to minimize the negative log likelihood for a model P for
future data generated from an unknown data generating distribution PG. This
can be written as desiring arg minP KL(PG||P ), where KL denotes the KL-
Divergence. However in an aggregation scenario, we do not have direct access
to data that can be used to choose a model P by a machine learning method.
Instead we have access to beliefs Pi from i = 1, 2, . . . , NA other agents, which do
have direct access to some data, and we must use those agent beliefs Pi to form
our own belief P .

We have no control over the agents’ beliefs Pi, but we can expect that the
agents have learnt Pi using some learning algorithm with respect to data drawn
from individual data distributions PGi . Hence agents will choose Pi with low
KL(Pi||PGi ) with respect to their individual data, drawn from PGi . For example
agents can choose their own posterior distributions Pi with respect to the data
they observe.

We also assume that each PGi is ‘close’ to the distribution PG we care about.
Where we need to be specific, we use the measure KL(PGi ||PG) as the measure
of closeness, which is appropriate if PGi is obtained by sample selection bias [26]
from PG. In this case KL(PGi ||PG) gives a standardized expected log acceptance
ratio, which is a measure of how the acceptance rate varies across the data
distribution. Lower KL divergence means lower variation in acceptance ratio
and Pi is closer to P . The simplest case is to assume KL(PGi ||PG) = 0 ∀i, which
implies an unbiased data sample.

4 Weighted Divergence Aggregation

Weighted divergence-based aggregation was proposed in [12]. The idea was, given
individual distributions Pi, to choose an aggregate distribution P given by

P = arg min
Q

∑
i

wiD(Pi, Q), (1)

where wi is a weight and D(Pi, Q) represents a choice of divergence between Pi
and Q, where D(A,B) ≥ 0, with equality iff A = B. This framework general-
izes several popular opinion pooling methods, e.g., linear opinion pooling when
D(Pi, Q) = KL(Pi||Q), and log opinion pooling when D(Pi, Q) = KL(Q||Pi).
Concretely, a linear opinion pool is given by P (y|·) =

∑NA
j=1 wjPj(y|·), where

wj ≥ 0 ∀j and
∑NA
j=1 wj = 1. The weight vector w can be chosen using max-

imum entropy arguments if we know the test performance of the individual
models. Alternatively, wi can be optimized by maximizing the log likelihood of a
validation set with simplex constraints, or via an expectation maximization pro-
cedure. By convexity, the solution of both optimization approaches is equivalent.
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By contrast, a logarithmic opinion pool is given by P (y|·) = 1
Z(w)

∏NA
j=1 P (y|·)wj

where wj ≥ 0 ∀j, where we use the P (y|·) notation to reflect that this applies to
both conditional and unconditional distributions. The logarithmic opinion pool
is more problematic to work with due to the required computation of the nor-
malization constant, which is linear in the number of states. Again the value
of w can be obtained using a maximum-entropy or a gradient-based optimizer.
Others (see e.g. [16]) have used various approximate schemes for log opinion
pools when the state space is a product space.

Weighted Divergence aggregation is very general but we need to choose a
particular form of divergence. In this paper we analyse the family of Rényi
divergences for weighted divergence aggregation. This choice is motivated by
two facts:

– Rényi divergence aggregators satisfy maximum entropy arguments for the
aggregator class under highly relevant assumptions about the biases of indi-
vidual agents.

– Rényi divergence aggregators are implemented by machine learning markets,
and hence can result from autonomous self interested decision making by the
individuals contributing different predictors without centralized imposition.
Hence this approach can incentivize agents to provide their best information
for aggregation.

In much of the analysis that follows we will drop the conditioning (i.e. write
P (y) rather than P (y|x)) for the sake of clarity, but without loss of generality
as all results follow through in the conditional setting.

4.1 Weighted Rényi Divergence Aggregation

Here we introduce the family of weighted Rényi divergence methods.

Definition 1 (Rényi Divergence). Let y be a random variable taking values
y = 1, 2, . . . ,K. The Rényi divergence of order γ (γ > 0) from a distribution P
to a distribution Q is defined as

DR
γ [P ||Q] =

1

γ − 1
log

(
K∑
y=1

P (y)γQ(y)1−γ

)
. (2)

The Rényi divergence has two relevant special cases: limγ→1(1/γ)DR
γ (P ||Q) =

KL(P ||Q), and limγ→0(1/γ)DR
γ (P ||Q) = KL(Q||P ) (which can be seen via

L’hôpital’s rule). We assume the value for the Rényi divergence for γ = 1 is
defined by KL(P ||Q) via analytical continuation.

Definition 2 (Weighted Rényi Divergence Aggregation). The weighted
Rényi divergence aggregation is a weighted divergence aggregation given by (1),
where each divergence D(Pi, Q) = γ−1i DR

γi [Pi||Q].

Note that each component i in (1) can have a Rényi divergence with an indi-
vidualized parameter γi. Sometimes we will assume that all divergences are the
same, and refer to a single γ = γi ∀i used by all the components.



6 A.J. Storkey, Z. Zhu and J. Hu

Properties The following propositions outline some properties of weighted
Rényi divergence aggregation.

Proposition 1. Weighted Rényi divergence aggregation satisfies the implicit
equation for P (y) of

P (y) =
1

Z

∑
i

wiγ
−1
i

Pi(y)γiP (y)1−γi∑
y′ Pi(y

′)γiP (y′)1−γi
(3)

where wi are given non-negative weights, and Z = Z({γi}) =
∑
i wiγ

−1
i is a

normalisation constant, and {γi} is the set of Rényi divergence parameters.

Proof. Outline: Use D(Pi, Q) = γ−1i DR
γi [Pi||Q] from (2) in Equation (1), and

build the Lagrangian incorporating the constraint
∑
y Q(y) = 1 with Lagrange

multiplier Z. Use calculus of variations w.r.t. Q(y) to get K equations∑
i

wiγ
−1
i

Pi(y)γiP (y)−γi∑K
y′=1 Pi(y

′)γiP (y′)1−γi
− Z = 0 (4)

for the optimum values of P (y). Multiply each equation with P (y) and find
Z =

∑
j wjγ

−1
j by summing over all equations. Rearrange to obtain the result.

Proposition 2. Weighted Rényi divergence aggregation interpolates between lin-
ear opinion pooling (γ → 1) and log opinion pooling (γ → 0).

Proof. Outline: Set γi = 1 in (3) to obtain a standard linear opinion pool.
For log opinion pool, set γi = γ, and take γ → 0. Note (3) can be written
Z =

∑
i wiγ

−1
i

∂
∂QD

R
γi [Pi||Q]. Using L’Hôpital’s rule on each element in the sum

and switching the order of differentiation (∂/∂γi)(∂/∂Q) = (∂/∂Q)(∂/∂γi) gives
the result.

In the next section we show that Rényi divergence aggregation provides the
maximum entropy distribution for combining together agent distributions where
the belief of each agent is subject to a particular form of bias. Two consequences
that are worth alerting the reader to ahead of that analysis are:

1. If all agents form beliefs on data drawn from the same (unbiased) distribution
then the maximum entropy distribution is of the form of a log opinion pool.

2. If all agents form beliefs on unrelated data then the maximum entropy dis-
tribution is of the form of a linear opinion pool.

5 Maximum Entropy Arguments

Consider the problem of choosing an aggregator distribution P to model an
unknown target distribution PG given a number of individual distributions Pi.
These individual distributions are assumed to be learnt from data by a number
of individual agents. We will assume the individual agents did not (necessarily)
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have access to data drawn from PG, but instead the data seen by the individual
agents was biased, and instead sampled from distribution PGi . In aggregating
the agent beliefs, we neither know the target distribution PG, nor any of the
individual bias distributions PGi , but model them with P and Qi respectively.

As far as the individual agents are concerned they train and evaluate their
methods on their individual data, unconcerned that their domains were biased
with respect to the domain we care about. We can think of this scenario as
convergent dataset shift [26], where there is a shift from the individual train-
ing to a common test scenario. The result is that we are given information
regarding the test log likelihood performance for each Pi in their own domains:∑
y P

G(y) logPi(y) = ai.
The individual agent data is biased, not unrelated, and so we make the

assumption that the individual distributions PGi are related to P in some way. We
assume that KL(PGi ||PG) is subject to some bound (and call this the nearness
constraint). As mentioned in the Problem Statement this is a constraint on the
standardized expected log acceptance ratio, under an assumption that PGi is
derived from PG via a sample selection bias.

Given this scenario, a reasonable ambition is to find maximum entropy dis-
tributions Qi to model PGi that capture the performance of the individual dis-
tributions Pi, while at the same time being related via an unknown distribution
P . As we know the test performance, we write this as the constraints:∑

y

Qi(y) logPi(y) = ai, (5)

The nearness constraints1 for Qi are written as

KL(Qi||P ) ≤ Ai (6)

⇒
∑
y

Qi(y) log
Qi(y)

P (y)
≤ Ai for some P . (7)

encoding that our model Qi for PGi must be near to the model P for PG. That
is the KL divergence between the two distributions must be bounded by some
value Ai.

Given these constraints, the maximum entropy (minimum negative entropy)
Lagrangian optimisation can be written as arg min{Qi},P L({Qi}, P ), where

L({Qi}, P ) =
∑
i

∑
y

Qi(y) logQi(y) +
∑
i

bi(1−
∑
y

Qi(y))

−
∑
i

λi

([∑
y

Qi(y) logPi(y)

]
− ai

)
+ c(1−

∑
y

P (y))

+
∑
i

ρi

([∑
y

Qi(y) log
Qi(y)

P (y)

]
−Ai + si

)
(8)

1 We could work with a nearness penalty of the same form rather than a nearness
constraint. The resulting maximum entropy solution would be of the same form.
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where si are slack variables si ≥ 0, and ρi, λi, bi and c are Lagrange multipliers.
This minimisation chooses maximum entropy Qi, while ensuring there is a dis-
tribution P for which the nearness constraints are met. The final two terms of
(8) are normalisation constraints for Qi and P .

Taking derivatives with respect to Qi(y) and setting to zero gives

Qi(y) =
1

Zi
P (y)

ρi
1+ρi Pi(y)

λi
1+ρi (9)

where Zi is a normalisation constant.
Given these Qi, we can find also find an optimal, best fitting P . Taking

derivatives of the Lagrangian with respect to P (y) and setting to zero gives

P (y) =
∑
i

ρi∑
i′ ρi′

Qi(y) =
∑
i

wi
(Pi(y)λi)γiP (y)1−γi

Zi
(10)

where wi = ρi/
∑′
i ρi′ , and γi = 1/(1 + ρi), and Zi =

∑
y′(Pi(y

′)λi)γiP (y′)1−γi .
Comparing this with (3) we see that this form of maximum entropy distribution
is equivalent to the Rényi divergence aggregator of annealed forms of Pi. The
maximum entropy parameters of the aggregator could be obtained by solving
for the constraints or estimated using test data from P (y). Empirically we find
that, if all the Pi are trained on the same data, or on data subject to sample-
selection bias (rather than say an annealed form of the required distribution),
then λi ≈ 1.

Note that the parameter ρi controls the level of penalty there is for a mis-
match between the biased distributions Qi and the distribution P . If all the ρi
are zero for all i then this penalty is removed and the Qi can bear little re-
semblance to the P and hence to one another. In this setting (10) becomes a
standard mixture and the aggregator is a linear opinion pool. If however ρi tends
to a large value for all i, then the distributions Qi are required to be much more
similar. In this setting (10) becomes like a log opinion pool.

Interim Summary We have shown that the Rényi divergence aggregator is not
an arbitary choice of aggregating distribution. Rather it is the maximum entropy
aggregating distribution when the individual agent distributions are expected to
be biased using a sample selection mechanism.

6 Implementation

Renyi divergence aggregators can be implemented with direct optimization,
stochastic gradient methods, or using a variational optimization for the sum of
weighted divergences, which is described here. The weighted Rényi Divergence
objective given by Definition 2 can be lower bounded using∑

i

wiD(Pi, Q) ≥
∑
i,y

wiγi
γi − 1

Qi(y) log
[Pi(y)γiQ(y)1−γi ]

Qi(y)
(11)
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where we have introduced variational distributions Qi, and used Jensen’s in-
equality. Note equality is obtained in (11) for Qi(y) ∝ Pi(y)γiQ(y)1−γi . Opti-
mizing for Q gives P (y) = Qopt(y) =

∑
i w
∗
iQi(y) with w∗i = wiγ

−1
i /

∑
i wiγ

−1
i .

This leads to an iterative variational algorithm that is guaranteed (using the
same arguments as EM, and using the convexity of to optimize (11): iteratively
set Qi(y) ∝ Pi(y)γiQ(y)1−γi , and then set Q(y) ∝

∑
i w
∗
iQi(y). The optimiza-

tion of the parameters w∗i also naturally fits within this framework. Q(y) is a
simple mixture of Qi(y). Hence given Qi(y), the optimal w∗i are given by the
optimal mixture model parameters. These can be determined using a standard
inner Expectation Maximization loop. In practice, we get faster convergence
if we use a single loop. First set Qi(y) ∝ Pi(y)γiQ(y)1−γi . Second compute
qin = w∗iQi(yn)/

∑
i w
∗
iQi(yn). Third set w∗i =

∑
n qin/

∑
in qin. Finally set

Q(y) ∝
∑
i w
∗
i γiQi(y). This is repeated until convergence. All constants of pro-

portionality are given by normalisation constraints. Note that where computing
the optimal Q may be computationally prohibitive, this process also gives rise
to an approximate divergence minimization approach, where Qi is constrained
to a tractable family while the optimizations for Qi are performed.

7 Experiments

To test the practical validity of the maximum entropy arguments, the following
three tasks were implemented.

Task 1: Aggregation on simulated data We aim to test the variation of the
aggregator performance as the bias of the agent datasets is gradually changed.
This requires that the data does not dramatically change across tests of different
biases. We tested this process using a number of bias generation procedures, all
with the same implication in terms of results.

The details of the data generation and testing is given in Algorithm 1.
We used NA = 10, K = 64, NV a = 100, P ∗ was a discretized N(32, 64/7),
fi(y) U([0, 1]) to generate the artificial data that gave the results displayed here.
Equivalent results were found for all (non-trivial) parameter choices we tried, as
well as using completely different data generation procedures generating biased
agent data.

Task 2: Aggregation on chords from Bach chorales This task aims to
accurately predict distributions of chords from Bach chorales [2]. The Bach
chorales data was split equally and randomly into training and test distribu-
tions. Then training data from half of the chorales was chosen to be shared
across all the agents. After that each agent received additional training data
from a random half of the remaining chorales. Each agent was trained using a
mixture of Bernoulli’s with a randomized number of mixture components be-
tween 5 and 100, and a random regularisation parameter between 0 and 1. 10
agents were used and after all 10 agents were fully trained, the Rényi mixture
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Algorithm 1 Generate test data for agents with different biases, and test ag-
gregation methods.

Select a target discrete distribution P ∗(.) over K values. Choose NA, the number of
agents.
Sample IID a small number NV a of values from the target distribution to get a
validation set DV a
Sample IID a large number N of values {yn;n = 1, 2, 3, . . . , N} from the target
distribution to get the base set D from which agent data is generated.
Sample bias probabilities fi(y) for each agent to be used as a rejection sampler.
for annealing parameter β = 0 TO 4 do

for each agent i do
Anneal fi to get f∗

k (y) = fk(y)β ./maxy fi(y)β .
For each data point yi, reject it with probability (1− f∗

k (yi)).
Collect the first 10000 unrejected points, and set Pi to be the resulting empirical
distribution.
This defines the distribution Pi for agent i given the value of β.

end for
Find aggregate P (.) for different aggregators given agent distributions Pi and an
additional P0 corresponding to just the uniform distribution, using the validation
dataset DV a for any parameter estimation.
Evaluate the performance of each aggregator using the KL Divergence between
the target distribution P ∗(.) and the aggregate distribution P (.): KL(P ∗||P ).

end for

Algorithm 2 Competition Data Preparation

Load image data. Discretize to 64 gray scales. Put in INT8 format. Define stopping
criterion ε
for j=1 to 140000 do

Pick random image and random pixel at least 40 pixels away from edge of image
and find 35× 30 patch including that pixel at the bottom-middle of the patch.
Record x(j) =vectorisation of all pixels in patch ‘before’ that pixel in patch in
raster-scan terms, y(j) =grayscale value at chosen pixel,i(j) =image number

end for
Produce three Matlab datasets. Set 1: x and y and i values in one .mat for 100000
training records. Set 2: x and i values in one .mat file for 40000 test records. Set 3:
y values for the corresponding test cases, not publicly available.
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weights were optimized using the whole training dataset. Performance results
were computed on the held out test data.

Task 3: Aggregation on Kaggle competition To analyze the use of combi-
nation methods in a realistic competition setting, we need data from an appropri-
ate competitive setup. For this purpose we designed and ran the Kaggle-in-Class
competition. The competition consisted of a critical problem in low-level image
analysis: the image coding problem, which is fundamental in image compression,
infilling, super-resolution and denoising. We used data consisting of images from
van Hateren’s Natural Image Dataset2 [15]. The data was preprocessed using
Algorithm 2 to put it in a form suitable for a Kaggle competition, and ensure
the data sizes were sufficient for use on student machines, and that submis-
sion files were suitable for uploading (this is the reason for the 6 bit grayscale
representation).

The problem was to provide a probabilistic prediction on the next pixel y
given information from previous pixels in a raster scan. The competitor’s per-
formance was measured by the perplexity on a public set at submission time,
but the final ranked ordering was on a private test set. We chose as agent dis-
tributions the 269 submissions that had perplexity greater than that given by
a uniform distribution and analysed the performance of a number of aggrega-
tion methods for the competition: weighted Rényi divergence aggregators, sim-
ple averaging of the top submissions (with an optimized choice of number),
and a form of heuristic Bayesian model averaging, via an annealed likelihoood:
P (y|·) ∝

∑
j Pj(y|·) (P (j|Dtr))

α
, where α is an aggregation parameter choice.

The weighted Rényi divergence aggregators were optimized using stochastic gra-
dient methods, until the change between epochs became negligible. The valida-
tion set (20, 000 pixels) is used for learning the aggregation parameters. The test
set (also 20, 000 pixels) is only used for the test results.

Results For Task 1, Figure 1(a) shows the test performance on different biases
for different values of log(γi) in (10), where all γi are taken to be identical
and equal to γ. Figure 1(b) shows how the optimal value of γ changes, as the
bias parameter β changes. Parameter optimization was done using a conjugate
gradient method. The cost of optimization for Rényi mixtures is comparable
to that of log opinion pools. For Task 2, Figure 2(a) shows the performance
on the Bach chorales with 10 agents, with the implementation described in the
Implementation section. Again in this real data setting, the Rényi mixtures show
improved performance.

The two demonstrations show that when agents received a biased subsample
of the overall data then Rényi-mixtures perform best as an aggregation method,
in that they give the lowest KL divergence. As the bias increases, so the optimal
value of γ increases. In the limit that the agents see almost the same data from
the target distribution, Rényi-mixtures with small γ perform the best, and are

2 http://bethgelab.org/datasets/vanhateren/



12 A.J. Storkey, Z. Zhu and J. Hu

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(γ)

K
L

 D
iv

e
rg

e
n

c
e

0 1 2 3 4
0

0.5

1

1.5

2

β

O
p
ti
m

a
l 
γ

(a) (b)

Fig. 1. (a) Task 1: Plot of the KL divergence against log γ for one dataset with β = 0
(lower lines, blue) through to β = 4 (upper lines, red) in steps of 0.5. Note that,
unsurprisingly, more bias reduces performance. However the optimal value of γ (lowest
KL), changes as β changes. for low values of β the performance of γ = 0 (log opinion
pools) is barely distinguishable from other low γ values. Note that using a log opinion
pool (low γ) when there is bias produces a significant hit on performance. (b) Task
1: Plot of the optimal γ (defining the form of Rényi mixture) for different values of β
(determining the bias in the generated datasets for each agent). The red (upper) line is
the mean, the blue line the median and the upper and lower bars indicate the 75th and
25th percentiles, all over 100 different datasets. For β = 0 (no bias) we have optimal
aggregation with lower γ values, approximately corresponding to a log opinion pool.
As β increases, the optimal γ gets larger, covering the full range of Rényi Mixtures.
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Fig. 2. (a) Task 2: test log probability results (relative to the log probability for a
mixture) for the Bach chorales data for different values of γ, indicating the benefit
of Rényi mixtures over linear (γ = 1) and log (γ = 0) opinion pools. Error bars are
standard errors over 10 different allocations of chorales to agents prior to training. (b)
Task 3: perplexity on the test set of all the compared aggregation methods against
η = 1/γ. For each method, the best performance is plotted. Log opinion pools perform
best as suggested by the maximum entropy arguments, and is statistically significantly
better than the linear opinion pool(p = 8.0× 10−7). All methods perform better than
the best individual competition entry (2.963).



Rényi Divergence Aggregation 13

indistinguishable from the γ = 0 limit. Rényi mixtures are equivalent to log
opinion pools for γ → 0.

For Task 3, all agents see unbiased data and so we would expect log opin-
ion pools to be optimal. The perplexity values as a function of η = 1/γ for all
the methods tested on the test set can be seen in Figure 2(b). The parameter-
based pooling methods perform better than simple averages and all forms of
heuristic model averaging as these are inflexible methods. There is a significant
performance benefit of using logarithmic opinion pooling over linear pooling,
and weighted Rényi divergence aggregators interpolate between the two opin-
ion pooling methods. This figure empirically supports the maximum entropy
arguments.

8 Machine Learning Markets and Rényi Divergence
Aggregation

Machine learning markets with isoelastic utilities [28] are an information market
based aggregation method. Independent agents with different beliefs trade in a
securities market. The equilibrium prices of the goods in that securities mar-
ket can then be taken as an aggregate probability distribution, aggregating the
individual agent beliefs. Following the notation and formalism in Storkey [28],
agents indexed by i with belief Pi(y), wealthWi and utility function Ui(.) trade in
Arrow-Debreu securities derived from each possible outcome of an event. Given
the agents maximize expected utility, the market equilibrium price of the secu-
rities c(y) is used as an aggregate model P (y) = c(y) of the agent beliefs. When
each agent’s utility is an isoelastic utility of the form Ui(W ) = W 1−ηi/(1 − ηi)
with a risk-averseness parameter ηi, the market equilibrium P (y) is implicitly
given by

P (y) =
∑
i

Wi∑
lWl

Pi(y)γiP (y)1−γi∑
y′ Pi(y

′)γiP (y′)1−γi
(12)

with γi = η−1i (generalising (10) in [28]). This shows the isoelastic market aggre-
gator linearly mixes together components that are implicitly a weighted product
of the agent belief and the final solution. Simple comparison of this market equi-
librium with the Rényi Divergence aggregator (3) shows that the market solution
and the Rényi divergence aggregator are of exactly the same form.

We conclude that a machine learning market implicitly computes a Rényi
divergence aggregation via the actions of individual agents. The process of ob-
taining the market equilibrium is a process for building the Rényi Divergence
aggregator, and hence machine learning markets provide a method of implemen-
tation of weighted Rényi divergence aggregators. The benefit of market mecha-
nisms for machine learning is that they are incentivized. There is no assumption
that the individual agents behave cooperatively, or that there is an overall con-
troller who determines agents’ actions. Simply, if agents choose to maximize their
utility (under myopic assumptions) then the result is weighted Rényi Divergence
aggregation.
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In general, equilibrium prices are not necessarily straightforward to compute,
but the algorithm in the implementation section provides one such method. As
this iterates computing an interim P (corresponding to a market price) and an
interim Qi corresponding to agent positions given that price, the mechanism
in this paper can lead to a form of tâtonnement algorithm with a guaranteed
market equilibrium – see e.g. [6].

The direct relationship between the risk averseness parameter for the isoelas-
tic utilities and the bias controlling parameter of the Rényi mixtures (γi = η−1i )
provides an interpretation of the isoelastic utility parameter: if agents know
they are reasoning with respect to a biased belief, then an isoelastic utility is
warranted, with a choice of risk averseness that is dependent on the bias.

In [28] the authors show, on a basket of UCI datasets, that market aggre-
gation with agents having isoelastic utilities performs better than simple linear
opinion pools (markets with log utilities) and products (markets with exponen-
tial utilities) when the data agents see is biased. As such markets implement
Rényi mixtures, this provides additional evidence that Rényi mixtures are ap-
propriate when combining biased predictors.

9 Discussion

When agents are training and optimising on different datasets than one another,
log opinion pooling is no longer a maximum entropy aggregator. Instead, under
certain assumptions, the weighted Rényi divergence aggregator is the maximum
entropy solution, and tests confirm this practically. The weighted Rényi diver-
gence aggregator can be implemented using isoelastic machine learning markets.

Though there is some power in providing aggregated prediction mechanisms
as part of competition environments, there is the additional question of the
competition mechanism itself. With the possibility of using the market-based
aggregation mechanisms, it would be possible to run competitions as prediction
market or collaborative scenarios [1], instead of as winner takes all competitions.
This alternative changes the social dynamics of the system and the player incen-
tives, and so it is an open problem as to the benefits of this. We recognize the
importance of such an analysis as an interesting direction for future work.
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