

Edinburgh Research Explorer

Improving the Reliability of Skewed Caches through ECC
based Hashes

Citation for published version:
Yegin, S, Karsli, B, Ergin, O, Ottavi, M, Pontarelli, S & Reviriego, P 2014, Improving the Reliability of
Skewed Caches through ECC
based Hashes. in 3rd Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale
(MEDIAN'14). pp. 28-31.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
3rd Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN'14)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/improving-the-reliability-of-skewed-caches-through-ecc-based-hashes(44a9854b-0a95-4e56-bc31-e95cc6caf420).html

Noname manuscript No.
(will be inserted by the editor)

Improving the Reliability of Skewed Caches through ECC
based Hashes

S. Yegin, B. Karsli, O. Ergin, M. Ottavi, S. Pontarelli, P. Reviriego

Received: date / Accepted: date

Abstract Skewed caches have been proposed to reduce

the miss ratio on a cache by indexing the cache lines of

a two way set associative cache not with the index but

with a hash function of the index and the tag. This

paper proposes to use ECC codes as the hashing func-

tions that allow also correcting the stored data. It is

shown that ECC behave very well as hash functions

and that ECC protection provides gains in terms of

error coverage with respect to state of the art skewed

cache approaches.

Keywords Error correction codes · skewed cache

1 Introduction

Soft errors have been an increasingly important design

issue in contemporary microprocessors. As the technol-

ogy scales, circuits become more vulnerable to soft er-

rors due to smaller intermediate capacitance nodes and

denser chip layouts. On-chip caches constitute an im-

portant portion of the die area and are a major compo-

nent for which mitigation techniques have to be imple-

This paper is part of a collaboration in the framework of
COST ICT Action 1103 “Manufacturable and Dependable
Multicore Architectures at Nanoscale.”

This work was partially supported by the Scientific and Tech-
nological Research Council of Turkey (TUBITAK) under the
research grant 112E004.

S. Yegin B. Karsli and O. Ergin are with Depart-
ment of Computer Engineering, TOBB University of Eco-
nomics and Technology, Ankara, Turkey {sercan.yegin, bu-
rak.ibrahim.karsli}@gmail.com, oergin@etu.edu.tr
M. Ottavi and S. Pontarelli are with Department of Elec-
tronic Engineering, University of Rome Tor Vergata, Rome,
Italy {ottavi,pontarelli}@ing.uniroma2.it
P. Reviriego is with Universidad Antonio de Nebrija, Calle
Pirineos 55, 28040 Madrid, Spain previrie@nebrija.es

mented. Because of the criticality of the reliability of

data stored inside the caches, all of the stored informa-

tion is commonly protected against soft errors through

Error Correcting Codes (ECC) [1]. Skewed caches are

proposed as an alternative to set-associate cache design

in order to improve the hit rate [2]. This is accomplished

by separating the index values of different cache ways

and using different hashing functions to calculate them.

A hash function is any algorithm that takes an input of

arbitrary length (called a key) and maps it to a value

of fixed length (called a hash value or hash). Although

a skewed cache structure offers better performance, it

increases the size of the cache as it mandates the use of

wider tag values and hence increases the vulnerability

of the cache structure to soft errors. In this paper, we

propose using an ECC as a hash function in a skewed

cache design in order to achieve fault tolerance using

less silicon area. We show that it is possible to have the

performance of skewed cache design by using the same

bit area as a regular set-associative cache.

2 Set Associative Cache versus Skewed Cache

Design

Regular set associative cache design is shown in Fig. 1.

The index bits are used to locate the entry where the

corresponding data may be residing and the tag values

are compared against each other to determine if there

is a cache hit. Note that in both ways of the cache, the

corresponding address locations reside on the same line

and are indexed by the same bits inside the address.

Also the tag values, as well as the data, stored in the

cache ways are protected by ECC. Upon each access to

the cache ways, ECC bits are checked to determine if

there is a soft error on the stored bits. Skewed cache

28

MEDIAN 2014

March 28th, 2014 − Dresden, Germany

2 S. Yegin, B. Karsli, O. Ergin, M. Ottavi, S. Pontarelli, P. Reviriego

Fig. 1 Set Associative Cache Architecture

design is proposed as an alternative to set-associative

cache (shown in Fig. 2). In the set-associative archi-

tecture, a location in the main memory can only be

mapped to a single line inside the cache.

This may result in cache conflicts as in a 2-way ar-

chitecture one location in main memory can only be

mapped to two locations that reside on the same set,

indexed by the same bits inside the address. In order to

reduce the chances of conflicts inside the cache, cache

ways are indexed separately in the skewed cache design

using different hashing functions. As the results of the

two hashing functions are different, the same address

is mapped to two different physical entries inside each

way. Skewed cache design effectively reduces the miss

rate [2].

Skewed cache design does not use any part of the

memory address for indexing; instead it uses the out-

come of the hashing functions as index values to the

cache ways. Because of this lack of indexing bits inside

the memory address, the size of the stored cache tags

are larger than the tags used in set-associative caches.

Also the ECC bits are still stored inside the entries

making it mandatory to use more bits inside each en-

try, when compared to the set-associative caches.

3 Proposed Scheme: Using ECC as the Hashing

Function

Many different hashing functions can be used to map

address to different locations in the cache ways. It has

been previously shown that XOR mapping schemes achieve

less miss rates when compared to the set-associative

cache design [3]. Therefore we use this design choice as

baseline in this paper. Since the ECC information is

stored with each information area stored in the cache,

values are encoded before they are written inside the

storage space in order to generate the ECC bits. The

Error Correcting Codes used for this purpose are them-

selves hashing functions that generate a bit vector from

another input vector. As this hashing is done for fault

detection purposes, we propose to use the ECC encod-

ing circuit as the hashing function of the skewed cache

and remove the stored ECC bits from the cache struc-

ture all together and use the ECC bits for indexing.

This is similar to the scheme proposed to protect hash

tables in [4]. Fig. 3 shows the proposed architecture

where the computed ECC bits for the tags are no longer

stored inside the cache ways but instead the ECC is

used as the hashing function and the computed ECC

bits are used as the indexes to the cache ways. Upon

reading of the tag, the read value is checked for any

possible soft errors before the stored tag is compared

against the tag part of the memory address for a pos-

sible cache hit outcome. This new method, reduces the

effective area of the cache and makes it less prone to

soft errors as its silicon footprint is now smaller (it is

less likely that a particle strike will occur as the area

is now smaller). In the baseline cache (both in set asso-

ciative and skewed) ECC bits are calculated before the

tag value is first inserted inside the cache structure. In

our implementation, since ECC values are not stored

anymore, such a computation will not be performed.

Instead the proposed architecture will both encode and

decode tag bits in each access to the cache structure.

The fact that the ECC encoding is now overlapped with

the hashing stage means that the delay will be similar

to the baseline skewed cache architecture. By using the

proposed method we are effectively reducing the size of

the cache to the level of a set associative cache while

29

Improving the Reliability of Skewed Caches through ECC based Hashes 3

Fig. 2 Skewed Cache Architecture

Fig. 3 Proposed Fault Tolerant Cache Architecture

keeping the performance benefits of the skewed cache

design.

4 Evaluation Methodology

The proposed scheme reduces the area of the cache and

therefore its vulnerability when compared to the base-

line skewed cache architecture. In order to get an ac-

curate idea about the performance, BCH ECC codes

have been used as hashing functions [5] as opposed to

the regular XOR hash functions. For the evaluation,

we used MSIM [6], a cycle accurate microarchitectural

simulator. In order to see the performance impact and

avoid any shadowing effects of the level 1 cache on other

levels of the cache. We applied the proposed technique

on a 32 KB, 2 way cache with 64 bytes of data blocks

and 2 cycles hit time. Spec 2006 benchmarks were run

by fast forwarding 100 million and simulating 10 million

instructions.

5 Results and Discussions

Table 1 shows the miss rates observed in the skewed

cache with XOR hashing and the proposed BCH ECC

hashing. Results show that with the exception of dealII,

which shows poor miss rates, almost all benchmarks

show cache miss rates close to skewed cache with XOR

hashing, with omnetpp showing slightly better results.

The savings in terms of cache area for this case study

would be 8 bits per Tag as those are the bits needed to

implement a SEC-DED code on a 58 bit block [1]. The

overall savings will be approximately 1.4% of the cache

area.

30

4 S. Yegin, B. Karsli, O. Ergin, M. Ottavi, S. Pontarelli, P. Reviriego

Table 1 L1 Cache miss rates for the baseline and the proposed scheme

Benchmark Skewed Cache Skewed Cache
Name with XOR Hashing with ECC Hashing

400.perlbench 1.36% 1.36%
401.bzip2 0.08% 0.08%
416.gamess 0.00% 0.00%
429.mcf 0.20% 0.20%
433.milc 4.35% 4.35%
435.gromacs 0.07% 0.07%
436.cactusADM 20.19% 20.2%
444.namd 0.01% 0.01%
447.dealII 2.05% 3.27%
454.calculix 0.17% 0.15%
458.sjeng 12.50% 12.5%
462.libquantum 1.92% 1.92%
464.h264ref 0.00% 0.00%
470.lbm 0.00% 0.00%
471.omnetpp 0.18% 0.17%
473.astar 2.26% 2.26%
482.sphinx3 0.04% 0.04%
998.specrand 0.00% 0.00%

Average 2.52% 2.59%

6 Conclusions and Future Work

In this paper, we proposed an enhancement to the hash-

ing functions of the skewed caches in order to improve

soft error reliability. We show that by using the ECC as

the hash function, it is possible to remove the need to

store the ECC bits thus reducing significantly the area

of the cache. Results from the spec 2006 benchmarks

show that the proposed scheme achieves a similar per-

formance to the skewed cache architecture. As future

work, we want to find out how applicable is the pro-

posed technique in the presence of multiple bit upsets.

Furthermore, we expect to have similar results when we

apply the proposed method on the higher cache levels.

References

1. C. L. Chen and M. Y. Hsiao, “Error-correcting codes for
semiconductor memory applications: a state-of-the-art re-
view”, IBM Journal of Research and Development, vol. 28,
no. 2, pp. 124-134, 1984.

2. Seznec, Andr. “A case for two-way skewed-associative
caches.” ACM SIGARCH Computer Architecture News.
Vol. 21. No. 2. ACM, 1993.

3. Gonzlez, Antonio, et al. “Eliminating cache conflict misses
through XOR-based placement functions.” Proceedings
of the 11th international conference on Supercomputing.
ACM, 1997.

4. P. Reviriego, S. Pontarelli, J.A. Maestro, M. Ottavi, “Ef-
ficient Implementation of Error Correction Codes in Hash
Tables”, Microelectronics Reliability, 2013.

5. J.P. Grossman and L. Jakab “Using the BCH construction
to generate robust linear hash functions”, IEEE Informa-
tion Theory Workshop, 2004.

6. Sharkey, J., “M-Sim: A Flexible, Multithreaded Architec-
tural Simulation Environment”, Technical Report CS-TR-
05-DP01, Dept. of CS, SUNY - Binghamton, October 2005.

31

