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Abstract—Hardware errors, i.e. Soft and Permanent Errors,
became a tremendously important problem in the microarchi-
tecture design as technology scales deeply and the number of
transistors placed in computer systems increases exponentially.
Moreover, single particle strikes may flip the values of several
adjacent bits which causes multi-bit upsets. The register file is
one of the most vulnerable structure in microprocessors since it is
the major data holding component and referenced by most of the
other components. Nevertheless, any access latency of register file
will affect the rest of the pipeline which makes register file a time-
critical component. Thus, it is essential to provide effective and
fast reliability solutions to protect register files against hardware
errors.

In this study we present a fast error detection scheme in order
to reduce the vulnerability of register file. We build our scheme
on the observation that stack pointer is renamed repeatedly
which causes keeping several copies of the same data in different
registers. Thus, we leveraged these existing replicas for error
detection. We show that our scheme can provide 59% reliability
for the calculation of the Stack Pointer on average with a
modest hardware overhead and with a negligible performance
degradation.

I. INTRODUCTION

Technology trends are leading to more soft errors due to
various phenomenons. For instance, scaling size of transistors
increases the probability of multi-bit upsets due to high en-
ergy particle strikes. Also, utilizing lower voltages for energy
savings increases the error rate. Although soft errors do not
result in a permanent fault on the chip (and hence they are
termed as soft errors), they may cause incorrect results or
even a system crash if the error cannot be detected. The
outcome of the fault generally depends on how reliability-
critical the faulty component is. Register file is one of the
most vulnerable structure in microprocessors since it is the
major data holding component and referenced by most of the
other components. Also within the register file, some registers
are more vulnerable than the others. For instance, if the register
is used for the address calculation, a fault in that register may
lead to accessing incorrect address and may lead to system
crash easily. Similarly, when the stack pointer is renamed in
the physical register file, the register holding the value of the
stack pointer becomes highly vulnerable since any fault in
that register may cause accessing incorrect place in the stack
and damaging all the stack related operations such as function
returns etc.

It becomes increasingly essential to provide reliability solu-
tions for computer systems. Error detection and error recovery
are two major topics of the reliable computer architecture
design. Redundancy is the key concept of error detection.
Minimum two copies of the data or the execution is compared
to see if there is any divergence due to a fault (Note that
error is the manifestation of a fault.). Several redundancy-based
error detection schemes execute instruction traces redundantly
in different threads [11], [12], [14], or in different cores [2],
[8], [13], [15] and compare the results of these redundant exe-
cutions. However, these schemes present high energy overhead
(i.e. around 100%) and double the resource utilization.

Another well-known error detection scheme for data struc-
tures is Error Correcting Codes (ECCs) in which each data
value is extended with additional information (i.e. parity bits)
for error detection. However, ECCs require additional encod-
ing/decoding time which presents execution time overhead
when ECC is utilized in the pipeline structures such as register
file. In order to avoid delay overhead caused by ECC, the
single-bit parity scheme can be used. However, it can only
detect odd number of faults.

Reliability techniques introduce penalties in performance,
power, die size, or design time. Therefore, it is essential
to design simple and efficient reliability schemes. It is a
technical challenge for researchers to develop simple (in terms
of complexity) and cost-effective (in terms of less performance
degradation and power consumption) error detection schemes.
For instance, replication of the data and comparison to check
the consistency of the replicated fields require additional hard-
ware design and additional time during the execution. It has
been shown that leveraging already existing structures in the
processor together with the existing replication of data values
provides efficient error detection [16]. The main challenge of
this idea is to identify existing replication in a processor.

In this study, our goal is to reduce the vulnerability of
register file by providing a low-cost error detection scheme by
utilizing already existing replicas of the stack pointer. We build
our scheme on our main observation that many stack operations
are generally complementary (i.e. when the stack pointer is
decremented by some amount, it is incremented by the same
amount after a number of operations). Thus, stack pointer takes
similar values during the execution of an application. Also,
stack pointer is renamed to the physical register file. Therefore,
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Fig. 1. Instruction trace from astar benchmark shown on the left and the
physical register file status at the end of the trace on the right. Each instruction
related to stack pointer (rsp) shows the allocated physical register number in
parenthesis. In the end there are seven pairs of same values in the register file
related to the stack pointer.

some significant portion of the physical register file is utilized
for the stack pointer (We show it in Section. II).

In our scheme, we propose placing a small-sized Stack of
Stack Pointer (SoSP) in the commit stage of the pipeline to
keep the previous values of the stack pointer. So that, we utilize
these previous values for a fast and low-cost error detection.
(In Section. III, we present the details of our design.)

In our scheme, we detect errors before the faulty instruction
commits. In this way, after detecting the error, for error-
recovery we utilize already existing pipeline-flush mechanism
of the pipeline. Thus, we provide a fast error detection without
requiring the design of an additional error recovery scheme.

Our evaluations show that our scheme can reduce the
vulnerability of the stack pointer calculation operations by 59%
while reducing the vulnerability of the register file by 9% (Our
experimental results are in Section. IV).

II. MOTIVATION

Our design was motivated by the observation that many
stack operations are complementary, i.e. when the stack pointer
is decremented (or incremented) by some amount, it is incre-
mented (or decremented) by the same amount after a number
of operations. These operations cause the stack pointer to have
the same values at different cycles. Due to renaming, which
is common in modern microprocessors, the same values are
held in the register file simultaneously, which creates some
redundancy. To illustrate this point, Figure 1 shows a code
portion taken from the SPEC benchmark astar on a 64 bit
x86 processor. In this trace, the stack pointer is decremented

Fig. 2. Number of registers used by Stack Pointer on average during the
execution time.

six times by 8 and once by 40. After some operations it is
incremented once by 40 and six times by 8, restoring the
context of several processor registers. In the end, multiple
physical registers hold same values related to the stack pointer.
Similar traces as Figure 1 can be seen in many programs.

We executed SPEC CPU2006 [3] applications in the
MARSSx86 [9], full-system microarchitectural simulator and
we found that the portion of the stack pointer related register
file values constitutes up to 70% of the register file for some
benchmarks and 15.6% of register file on average, as shown
in Fig. 2. Here, the reason that the povray benchmark causes
more stack pointer operations in close proximity, and thus
constitutes a large portion in the register file is the way that
POV-Ray algorithm works. Since POV-Ray algorithm performs
a backward tracing, it needs to hold the traced data in memory.
The processor uses stack memory heavily for this purpose. In
contrast, the reason that leslie benchmark (based on LESlie3d
computational fluid dynamics code) causes only a very small
fraction of register file being related to the stack pointer is
this benchmark mostly executes vector processing operations,
which usually do not allocate the stack memory.

These statistics indicate that the reliability of the register
file is significantly related to that of the stack pointer and
protecting the stack pointer may reduce the vulnerability of
the register file significantly.

The stack pointer operations that can be beneficial for soft
error detection are usually due to calls to small subroutines,
interrupt service routines that returns execution back to the
same subroutine after the interrupt, and the code that explicitly
pushes and pops entries in close proximity. However, some SP
operations such as context switching may not be useful for this
aim, where stack pointer is moved to a totally different memory
address and works around that address for a very long interval.

III. ERROR DETECTION WITH REPLICATED COPIES OF SP

In this section, we first explain our design which imple-
ments a simple stack of SP (SoSP) for leveraging redundant
values of stack pointer for reliability. We also present the
extended version of SoSP which does not clear the popped
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Fig. 3. The figure presents the organization of SoSP (Stack of Stack Pointer).

values of the SP from the stack, instead it continues keeping
the value in the phantom area. Second, we present how the
SoSP is managed. Third, we show the absract design of the
required hardware.

A. Design

Based on the observation that generally stack operations
are complementary, (if the stack pointer is decremented by
some amount, it is incremented by the same amount after a
number of operations.), we can detect a possible fault in the
calculation of SP by using the previously calculated value of
it. In order to do that, we introduce a Stack of Stack Pointer
(SoSP) to the hardware. In the commit stage of the processor
pipeline, when there is an operation performed on SP, we send
the result, the immediate value and the operation to the SoSP.
Note that, more than 90% of the operations performed on SP
are either ADD or SUB operations.

If the operation is LOAD, it means the SP is initiating, thus,
we flush the SoSP and push the result of the operation to it.
If the operation is ADD (or SUB) there are two possibilities
here. In the first possibility, it is the first time the value is
calculated, thus, we push it to the top of the SoSP. In the
second possibility, the value have already been calculated and
is located at the top of SoSP. In this case, we use the saved
value for error detection.

The key question here is how to determine if the calculated
value is in the SoSP. For this reason, we check if the last
operation performed on SP, which is also located at the top of
the SoSP, is complementary to the operation committing now.
For instance, the committing instruction can be increasing SP
by 8 while the last operation performed on SP reduced its value
by 8. In order to check if two operations are complementary,
we compare the immediate values and operation types (i.e -
or + operation). If the immediate values are equal while the
operations are opposite it shows that the value is in the SoSP.
In another word, committing instruction calculates the same
value as the value of the SP before the last instruction in SoSP
was executed.

When the calculated value is found in SoSP, in a naive
approach, SoSP is managed as a normal stack, so that, the
operation placed on the top of the SoSP is popped and deleted
from SoSP. However, in order to increase the probability of

Fig. 4. The figure presents examples for the management of SoSP.

finding the calculated value in SoSP, we continue keeping the
operation in SoSP in the phantom area and we only update the
pointer of SoSP to make it pointing to the top of the genuine
area of SoSP. In order to detect if the calculated value is in the
phantom area, after seeing that the value is not at the top of
the genuine area, we also check the first entry in the phantom
area. If both immediate values and operations are equal, it
shows that the value is in the the phantom area of SoSP

In Figure 3, we show the main components of SoSP
including the pointer, phantom area and genuine area of SoSP.
Also, each entry of SoSP holds three required information
of the executed instruction: the result of the operation, the
immediate value (for ADD/SUB operations) and the operation
type (is it ADD or SUB or other).

B. Management of SoSP

In Figure 4, we present an example for the management of
SoSP. In the example, the initial value of SP is 0X008 and it
is added to SoSP when the value is first loaded to SP. After
the initial value, the first committed stack pointer instruction
is SUB 8 (i.e. SP = SP-8) and we add it to the top of SoSP
(case I). When ADD 16 arrives to commit stage as in case
II, we first check if the operation is the opposite of the top
of the stack and if the immediate values are the same. Since
the condition does not hold (and also there is no other entry
above), we push this instruction to the top of SoSP. In Case III,
SUB 16 arrives. It has the same immediate value with the top
of the stack and it has the opposite operation. In this case, we
reduce the pointer of SoSP and compare the stored data with
the result of the operation for error detection. Similarly, in Case
IV, since the executed operation has the same immediate value
with the top of SoSP while having opposite operations, again
we reduce the pointer of SP and compare the stored data with
the result. When SUB 8 arrives at case V, we see that it does
not match with the top of the SoSP. We increase the pointer
and see that there is a value stored in the pointed entry (in the
phantom area). The pointed value has the same operation with
the same immediate value, thus, we compare the data to detect
errors. For case VI, the operation again matches with the top
of the SoSP, thus, we reduce the pointer. Finally, in Case VII,
the operation does not match the top of the SoSP or the first
entry in the phantom area, thus, we write the new value to
the top of the queue and then we flush the other entries in the
phantom area above the written one.

2015 MEDIAN Finale Workshop

56



C. Hardware Design

In Figure 5, we present the gate logic for our scheme. In
the figure, the pointer of SoSP points to the top of the genuine
region which is presented as SoSP[i]. Also, the instruction
in the phantom region is shown as SoSP[i+1] while one
instruction below the top of the SoSP is shown as SoSP[i-1].
The committing instruction is shown as WB output.

In the figure, we first compare the immediate values and
operation signs of SoSP[i] and WB output (Note that in the
figure, the operation signs are compared with a single AND
gate while immediate values are compared with 64 AND
gates in parallel.) If the immediate values are equal while the
operations are opposite, it means that the new value of SP
should be the same as the result in SoSP[i]. In this case, for
error detection, we compare the result saved in SoSP[i-1] and
the result of WB output. In case of mismatch, we raise an
error signal.

If the immediate value or the inverted operation of SoSP[i]
do not match with the ones in the WB output, we then
check the phantom region. For this purpose, we first check if
immediate value and operation sign of SoSP[i+1] are the same
as in WB output. If so, for error detection, we compare the
results of SoSP[i+1] and WB output. In case of a mismatch,
we raise an error signal. In case, immediate values or the
operation signs do not match, it means that the result of the
committing instruction is not in the SoSP. In that case, we
update SoSP[i+1] (the first instruction in the phantom region)
with the WB output and also we flush the other instructions
above the updated one if there is any.

At the end of the error detection, we update the SoSP
pointer either with SoSP[i-1] or SoSP[i+1].

IV. EVALUATION

In this section we evaluate the reliability performance of
our scheme and its overhead.

A. Simulation Environment

We evaluate our scheme by using MARSSx86 [9], full-
system microarchitectural simulator. MARSSx86 uses X86
ISA, creates RISC-like microops and execute those microops
in out-of-order pipeline. We used 18 benchmarks from the
SPEC CPU2006 [3] using the reference input sets compiled
for the x86-64 architecture with the optimization level O3. The
simulated register file has 160 64-bit registers similar to the
Intel Itanium Poulson, which is designed for mission critical
servers. We simulated each benchmark for 100 million instruc-
tion commits after fast-forwarding for 1 billion instructions.
We also set the size of SoSP as 16 entries in total for both
phantom and genuine regions unless it is indicated otherwise.

B. Experimental Results

In order to evaluate the reliability performance of our
scheme, first we measure how many times the calculated value
of SP is also found in the Stack of SP (SoSP). For this
experiment, we limit the size of SoSP with 16 entries to keep
the hardware overhead minimum. The result of the experiment
is presented in Figure 6. The observations from the figure
are following. First, on average, the calculated value of the

Fig. 6. The figure presents Hit Ratio: the ratio that the calculated SP value
can be found in SoSP.

SP can be found in the genuine region for 40% of the time.
Second, when we extend our design with the phantom area, the
efficiency of our scheme increases to 59% on average. Thus,
the vulnerability of the calculation of the stack pointer can be
reduced from 100% (in the base case with no protection) to
41% when the SoSP is used with the phantom region extension.

In the Section II, we showed that 15% of the register file
is occupied by some value of the stack pointer. Since we
reduce the vulnerability of the SP by 59%, we also reduce
the vulnerability of the register file by 9%.

In the next experiment, we evaluate the sensitivity of our
scheme for the size of the SoSP. For this purpose, we increase
the size of SoSP from 16 to 32, 64 and 256 entries and pre-
sented the results in Figure 7. Note that in the experiment we
also utilized phantom region extension. The main observations
from the figure are following. First, the hit ratio increases in
most of the cases when the size of the SoSP is increased.
Second, the increase of the hit ratio is not high enough to
convince to use larger sized SoSP. Finally, in some cases
increasing the size of the SoSP may reduce the rate of the hit.
This is because, in some cases, complementary instructions
may not come in the proper order. When the size of SoSP is
small, at some point we had to flush it and make a fresh start.
However, for a bigger sized SoSP, we flush it later and the
disorganized SP calculations stay in SoSP longer.

The main overhead of our scheme is basically the 16-entry
buffer with the size of only 260 bytes (16 entry×(2 sign bits
+ 64 immediate bits + 64 SP value bits). According to our
experiments, most of the immediate values can fit into 14 bits,
thus 160 bytes is also enough for the buffer. Although this
overhead seems high (i.e. equal size of having a register file
with 20 entries), our scheme does not only detect the errors in
the register file, it also detects errors in the pipeline stages
from rename to commit during the calculation of SP. The
error detection can be accomplished by 4 AND and 2 NOT
gate passes which is less than a cycle and it can be done
before the instruction commits. Thus, our scheme does not
present a performance overhead. Compared to ECC or parity,
our scheme can detect any number of multi-bit errors in one
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Fig. 5. The figure shows the hardware design of the proposed scheme for error detection and SoSP management.

Fig. 7. The figure presents the Hit Ratio (the ratio that the calculated SP
value can be found in SoSP) for different sizes of SoSP.

register or more than one registers renamed for stack pointer
(i.e. similar to duplication). As we said before, compared
to duplication, it can also detect errors occurred during the
calculation of stack pointer without duplicating the pipeline
stages.

V. RELATED WORK

There have been several studies that try to increase the
reliability of the register file. Pflanz et al. proposed using cross-
parity check to detect multi-bit upsets in register files [10].
Cross-parity method relies on calculating three vectors for
parities: row-parity vector, column-parity vector and diagonal-
parity vector. Although this method can detect and correct up
to 5-bit errors, it is costly to produce and check parity bits.

Kishani et al. presented Horizontal-Vertical-Diagonal
(HVD) error detecting and correcting code which uses 4 parity
vectors to protect data against soft errors [5]. While HVD can

correct up to 3-bit faults in any position and combination, it
requires more than 70% bit overhead.

Montesinos et al. proposed predicting the register lifetime
to selectively protect registers by generating, storing and
checking ECCs of the selected registers [7]. The proposed
scheme is based on the idea that long-lived registers contribute
AVF (architectural vulnerability factor) more.

Amrouch et al. observed that many number of bits are not
used in the register file and they are set to 0 [1]. They proposed
locating ECCs of the registers into their unused bits, so that,
area and power overhead will be smaller while vulnerability is
decreasing Karsli et al. also proposed [4] utilizing those unused
upper part of the registers (i.e. narrow values) for duplicating
the modified versions lower bits.

A similar scheme is also proposed by Memik et al. in
which actively used registers are duplicated in unused physical
registers [6]. Obviously, since the registers are highly used
in the current applications, the scheme either presents a high
performance overhead or it does not reduce the vulnerability
enough.

Different than the previous approaches, our scheme can
detect any number of faults occurred in the subset of the
registers file (i.e. the subset which is used for stack pointer)
while it can also detect errors in the execution path without
duplicating the execution.

VI. CONCLUSION

In this study, we observed that Stack Pointer (SP) is
calculated for the same values and the calculation operations
are executed generally in the complementary order. Based on
this observation, we saved the past values of SP in a stack,
called Stack of Stack Pointer (SoSP) in order to leverage
them for the error detection. Our results show that, we reduce
the vulnerability of SP calculation by 59% which leads the
reduction of the vulnerability of the register file by 9%.
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