

Edinburgh Research Explorer

Collective Pointing: Protecting Pointer ValuesAgainst Soft Errors

Citation for published version:
Islek, E, Can, SZ & Ergin, O 2015, Collective Pointing: Protecting Pointer ValuesAgainst Soft Errors. in 5th
Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN'Finale).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
5th Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN'Finale)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/collective-pointing-protecting-pointer-valuesagainst-soft-errors(41b04c91-f627-4235-8410-7ec415c05686).html

Collective Pointing: Protecting Pointer Values
Against Soft Errors

Emrah Islek, Serdar Zafer Can and Oguz Ergin
Department of Computer Engineering

TOBB University of Economics and Technology
Ankara, Turkey

{eislek, szcan, oergin}@etu.edu.tr

Abstract—Soft errors are becoming a significant design
concern for microprocessor designers to make reliable systems
with today’s manufacturing technology. Its occurrence rate (Soft
Error Rate – SER) increases with lower supply voltage, higher
frequency and larger integration. Reliable systems demand
protection mechanisms against soft errors at their critical
structures (e.g., reorder buffer, issue queue, register file etc.). In
this paper, a new low-latency method is proposed to implement
Error Correcting Codes to pointer value holding fields of the
processor components to protect them from soft errors. Using the
proposed method, pointer fields are immune to single bit errors.

Keywords—Error correction; fault tolerance; soft errors

I. INTRODUCTION
Soft errors are emerging as an important issue in modern

digital systems [1]. They are generally caused by energetic
neutrons from radiation or alpha particles from packaging
material. Those particles can affect sensitive regions in
semiconductor devices when they hit on it [1] [2] [3] and can
change a bit’s state temporarily which is called Single Event
Upset (SEU). When SEU occurs during a program’s execution,
it may cause wrong result at the end of the program, failure of
the program or even a system crash.

Currently developed high tech featured reduced size
technologies for manufacturing process such as 14 nm are
getting more vulnerable to these transient errors. Low energy in
these low scale cells to save bits cannot resist for particle
strikes. Therefore, transient faults are paramount importance
for new advancing microprocessor designs and it is increasing
day by day with the new generation technologies [4] [5].

In the Single Event Upset (SEU) model, the single bit flip
results in a new value that has a Hamming distance of one from
the original value. This fact was analyzed by Biswas et al.
previously for address based structures which are in fact
pointer storing fields [6]. In order to protect the source and
destination pointer fields, the most straight forward idea would
be to replicate the actual data into all possible locations that are
Hamming distance one away from the original location. This
way, even if the source or destination pointer is hit by a particle
the pointer still points to a location where there is the same
valid data. However, the overhead of such a scheme is high
since it is tough to write multiple values at once through a
limited number of ports. Also these locations that are supposed

to be holding the replicated values may be already occupied by
other instructions which further complicate the idea. Therefore,
instead of investigating an idea that requires the replication of
data all around the structures we propose having all the
Hamming distance one pointers point to the same location.

The rest of the paper is organized as follows: section 2
explains the proposed method – Collective Pointing – that
target error avoidance in the pointer based data in the
processors. Section 3 presents experimental results of the
method in terms area, energy and time overhead to the system.
Related work is discussed in section 4. Finally, we offer our
concluding remarks in section 5.

II. COLLECTIVE POINTING
In order to correct all single bit errors, which are the most

common type of soft errors, we propose a mechanism that we
call “Collective Pointing”. In this new scheme, the processor
never assigns the pointer values that are Hamming distance one
away from a main pointer. Fig 1 shows the demonstration of
the proposed scheme for seven bit register tags. In the baseline,
all register tags point to a different register whereas in
Collective Pointing, the register tags that are Hamming
distance one away from a main pointer are not assigned to any
instructions and point to the same location if they are
encountered as a result of a fault. When selecting the main
pointers there are two rules:

1) Two main pointers have to apart from each other with a
hamming distance of three.

2) None of the Hamming distance one values of a main
pointer should be overlapping with another main pointer’s
Hamming distance one value.

Collective Pointing has three issues to be solved:

1) Having multiple pointers to the same location causes
inefficiency in the use of storage space and mandates the use
of wider pointers.

2) The decoder block of the storage component, which the
pointers are pointing, needs to be modified to allow multiple
tag values to activate the same entry.

3) Pointer value allocation logic now needs to be modified
to assign only main pointers.

This work was supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant 112E004. The work is in the
framework of COST ICT Action 1103 Manufacturable and Dependable
Multicore Architectures at Nanoscale.

2015 MEDIAN Finale Workshop

60

A. The Need for Wider Tags
Collective Pointing does need wider tags to effectively

correct single bit error on each and every pointer value. This
requirement is similar to the area overhead of the application of
ECC where XOR trees are used to calculate the parity bits both
when the value is read from and written to the storage space. In
fact, the bit overhead of Collective Pointing is the same as the
overhead of Hamming Code that corrects a single bit error. In
order to verify this observation, we implemented a brute force
main pointer generator program and obtained the numbers
shown in Table I.

TABLE I. NUMBER OF LOCATIONS THAT CAN BE ADDRESSED

Bits # Locations at Baseline # Locations at Collective Pointing
1 2 1
2 4 1
3 8 2
4 16 2

5 32 4
6 64 8
7 128 16
8 256 16
9 512 32

10 1024 64

11 2048 128
12 4096 256
13 8192 512
14 16384 1024
15 32768 2048
16 65536 2048

As the numbers in Table I reveal, the number of locations
that can be expressed with n bits in Collective Pointing is:

 Addressable number of entries = 2 ^ (n – log2n – 1) (1)

This is in line with the Hamming Code’s rule that states
“The code word length is 2s – 1 of which s bits are the
parity ones” [7]. We are in fact implementing the Hamming
Code in a different fashion where instead of correcting the
single bit error by using a bunch of parity bits, we make the
whole value point to the same location. As it is the case with
the Hamming Code, the overhead of Collective Pointing
decreases with the increasing number of bits.

B. Decoder Block
Decoder block of a single entry in a regular SRAM bit cell

array can be logically implemented with a single AND gate
assuming that the inverted versions of the address bits are
available. In reality, an AND gate with a high fan-in is
impractical. Fig 2 shows the circuit diagram of the baseline
decoder block; the output of the decoder block enables the
word select driver of the entire row.

The proposed Collective Pointing scheme mandates the use
of n+1 of the decoder blocks of Fig 2 in parallel for each entry
and ORing their outputs, where n is the number of bits inside
the tag.

In order to decrease this delay overhead we propose a
different circuitry shown in Fig. 3. This circuit allows the
decoding of the main pointer value faster than the faulty ones.
If the outcome of the main pointer decoder is 1, the output of
the multiplexer is set to VDD to determine the output of the
overall decoder block as 1. In this case the delay of the decoder
block to be used with the proposed scheme drops just the
multiplexer delay for the main pointer. The fault can be
understood by monitoring the second input of the multiplexer
and can be used as an error detection mechanism by the
system.

C. Pointer Assignment Logic
Pointer value assignment logic needs to be modified in

Collective Pointing. For example, the register allocation logic
can be adapted to Collective Pointing by simply extending bits
of physical register numbers and physical register tag fields of
the related components in the processor (i.e. issue queue,
reorder buffer etc.). The simplest way to achieve this is to
extend pointer bits and decide which numbers will be assigned
to main registers at design time. For instance, “00000000000”
will take place of “0000000” and “00000000111” will take
place of “0000001” and so on. This way, nothing is changed in
the logic except the number of the bits.

Fig 1. Demonstration of Collective Pointing

Fig 2. Baseline decoder logic of an SRAM bit cell array

2015 MEDIAN Finale Workshop

61

III. EXPERIMENTS
The most important advantage of Collective Pointing is its

low delay overhead when compared to ECC. Fig. 4 shows the
hardware implementation of the ECC for 7-bit pointer values.
Parity bits (P1 P2 P3 P4) are calculated before a write operation
and are stored in a place together with the actual data. When
reading the bits of a pointer, parity bits are recalculated (PC1
PC2 PC3 PC4) and compared with their older values to check if
any fault occurs between the time interval starts from writing
the address and reading it. The result of the comparison
operations (C1 C2 C3 C4) should be 0 if there is no error. Single
error can be corrected with ECC as can be seen from Fig. 4.
ECC needs a number of XOR operations performed both
during the reading and writing of the pointer value. Collective
Pointing makes it possible to correct single bit errors when the
delay budgets do not allow the use of ECC on the pointer tags.

The proposed scheme also distributes the delay of error
correcting circuitry across different processor pipeline stages.
For example, for the register tags, the delay is distributed to the
frontend, issue queue and the register file.

In order to analyze overhead levels of Collective Pointing
and ECC, both of them are implemented at circuit level.
Cadence design tools were used together with the 90nm CMOS
(UMC) technology (VDD = 1V) to compare results. ECC and
Collective Pointing schemes have nearly the same area
overhead as seen in Table II. However, Collective Pointing’s
latency and energy dissipation are much less than the latency
and energy dissipation of the ECC scheme which is constructed
with cascaded XOR gates. The main reason is Collective
Pointing scheme is built with NAND and NOR gates which
have less delay, transistor count and lower energy consumption
than XOR gate. Using ECC in cycle critical structures such as
register file and issue queue is impractical because of the long
latency of the ECC operation. Collective Pointing enables the
implementation of a SECDEC (Single Error Correction,
Double Error Detection) mechanism to time critical structures
due to its low-latency overhead.

TABLE II. COLLECTIVE POINTING AND ECC COMPARISON

Scheme Area
(µm2)

Energy
(fJ)

Latency Overhead (ps)
Fault No Fault

Collective
Pointing

444.4 109.2 176.3 104.5

ECC 469.2 387.9 358.8

IV. RELATED WORK
Parity checking and ECC are used to detect and correct soft

errors in the data arrays of the processor [8]. These techniques
rely on encoding some information from the stored data and
checking this in-formation upon reading the value. Parity and
ECC are widely used for cache memories but usually not on
data path components due to their high encoding and decoding
delay. For example, the parity protected register files of Intel’s
90-nm Itanium processor needed an extra cycle to calculate
parity [9]. Although reducing the latency of the ECC and parity
circuits for narrow-width inputs is proposed in [10], paying the
latency penalty for calculating the ECC information is
unavoidable when the whole input set is considered.

Several researchers have tried to identify the effects of soft
errors on the processor pipeline both at architectural level [11]
[12] [13] and at gate level [14]. Effects of power saving
techniques on SERs are also studied in [15]. Using time and
space redundancy is a widely explored technique for detecting
soft errors. In this case, either a value is replicated into more
storage space and later checked with simple voting [16] [17]
[18] or a value is generated multiple times with a single
resource [19]. An example of time and space redundancy is the
redundant multithreading proposed for error detection and
correction where the same thread is replicated with some time
slack and the results of both threads are later checked against
each other [20] [10] [21] [22] [23] [24]. There are also some
techniques to perform replication selectively when processor
has idle resources in order to reduce the performance
degradation caused by the concurrently running redundant
threads [25] [10] [26]. It is also offered to use idle processor
storage space as a repository for holding the replica values
[27].

Fig 3. Proposed decoder logic for Collective Pointing

Fig 4. ECC hardware implementation

2015 MEDIAN Finale Workshop

62

As the instructions spend more time in processor structures,
their probability of getting hit by a particle increases. There
were some previous efforts to reduce this vulnerable period by
flushing the pipeline when instructions are stalled for a long
period [2]. However, as it is the case in redundant
multithreading, it is possible to observe some performance
degradation. There are some other techniques in the literature
that were proposed to detect soft errors, such as symptom
based error detection at the hardware level [28], pure software
level error detection [29] and detecting soft errors through
hardware/software hybrid schemes [30].

Recently virtualizing the ECC information was proposed
[31]. This way it is possible to use different coding schemes
without modifying the hardware. Virtualized ECC also allows
checking the information only when there is an error. Also
address remapping was implemented to improve the reliability
of the non-volatile memories was proposed [32]. Our proposal
in this work is similar to these works in the sense that it also
transfers the detection and correction mechanisms to software
level and targets the memory components. However, as we
have previously pointed out, regular ECC mechanisms target
the errors on the actual data whereas our proposal targets the
pointer values pointing to the actual data. Therefore, Collective
Pointing can be used in conjunction with ECC for improved
reliability.

V. CONCLUSION
In this work we proposed a new method that implements

SECDEC mechanism to the pointer fields of the processor.
With this method, pointer fields are protected from single bit
upsets with lower time overhead compared with ECC. System
can be aware of any fault occurrence by monitoring the second
input of the multiplexer and activate any other protection
mechanisms.

REFERENCES
	

[1] R. Baumann, "Soft errors in advanced computer systems," IEEE Design

& Test of Computers, vol. 22, no. 3, pp. 258 - 266, 2005.
[2] C. Weaver, J. Emer, S. Mukherjee and S. Reinhardt, "Techniques to

reduce the soft error rate of a high-performance microprocessor," ISCA,
vol. 32, no. 2, p. 264, 2004.

[3] J. Ziegler et al., "IBM experiments in soft fails in computer electronics
(1978–1994)," IBM Journal of Research and Development, vol. 40, no.
1, pp. 3 - 18, 1996.

[4] S. Borkar, "Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation," Micro, IEEE, vol.
25, no. 6, pp. 10 - 16, 2005.

[5] "International Technology Roadmap for Semiconductors,"
Semiconductors Industry Association (SIA), 2005. [Offline]. Available:
http://www.itrs.net/Links/2005ITRS/Home2005.htm.

[6] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee and R.
Rangan, "Computing architectural vulnerability factors for address-based
structures," Computer Architecture, pp. 532 - 543, 2005.

[7] R. Micheloni, A. Marelli and R. R., “Error Correction Codes for Non-
Volatile Memories”, Springer, 2008.

[8] R. Phelan, "Addressing soft errors in ARM core-based designs," White
Paper, ARM, 2003.

[9] E. Fetzer, D. Dahle, C. Little and K. Safford, "The parity protected,
multithreaded register files on the 90-nm itanium microprocessor," Solid-
State Circuits, IEEE Journal of, vol. 41, no. 1, pp. 246 - 255, 2006.

[10] Y. O. Koçberber, Y. Osmanlioglu and O. Ergin, "Exploiting narrow
values for faster parity generation," Microelectronics International, vol.
26, no. 3, pp. 22 - 29, 2009.

[11] V. Sridharan, H. Asadi, M. Tahoori and D. Kaeli, "Reducing cache
susceptibility to soft Errors," Dependable and Secure Computing, IEEE
Transactions on, vol. 3, no. 4, pp. 353 - 364, 2006.

[12] X. Li, S. Adve, P. Bose and J. Rivers, "SoftArch: an architecture-level
tool for modeling and analyzing soft errors," Dependable Systems and
Networks, pp. 496 - 505, 2005.

[13] N. Wang, J. Quek, T. Rafacz and S. Patel, "Characterizing the effects of
transient faults on a high-performance processor pipeline," Dependable
Systems and Networks, pp. 61 - 70, 2004.

[14] K. Constantinides et al., "Assessing SEU Vulnerability," Workshop on
Architectural Reliability, 2005.

[15] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir and M. Irwin, "Soft
error and energy consumption interactions: a data cache perspective,"
Low Power Electronics and Design, pp. 132 - 137, 2004.

[16] O. Ergin, O. Unsal, X. Vera and A. Gonzalez, "Reducing soft errors
through operand width aware policies," Dependable and Secure
Computing, IEEE Transactions on, vol. 6, no. 3, pp. 217 - 230, 2009.

[17] J. Hu, S. Wang and S. Ziavras, "In-register duplication: exploiting
narrow-width value for improving register file reliability," Dependable
Systems and Networks, pp. 281 - 290, 2006.

[18] G. Memik, M. Kandemir and O. Ozturk, "Increasing register file
immunity to transient errors," Design, Automation and Test in Europe,
vol. 1, pp. 586 - 591, 2005.

[19] M. Qureshi, O. Mutlu and Y. Patt, "Microarchitecture-based
introspection: a technique for transient-fault tolerance in
microprocessors," Dependable Systems and Networks, pp. 434 - 443,
2005.

[20] M. Gomaa, C. Scarbrough, T. Vijaykumar and I. Pomeranz, "Transient-
fault recovery for chip multiprocessors," Computer Architecture, pp. 98 -
109, 2003.

[21] S. Mukherjee, M. Kontz and S. Reinhardt, "Detailed design and
evaluation of redundant multi-threading alternatives," Computer
Architecture, pp. 99 - 110, 2002.

[22] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading”, ISCA, vol.28, no. 2, pp. 26 – 36, 2000.

[23] E. Rotenberg, "AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors," Fault-Tolerant Computing, pp. 84 - 91,
1999.

[24] T. Vijaykumar, I. Pomerans and K. Cheng, "Transient-fault recovery
using simultaneous multithreading," ISCA, 2002.

[25] M. Gomaa and T. Vijaykumar, "Opportunistic transient-fault detection,"
Computer Architecture, pp. 172 - 183, 2005.

[26] J. C. Smolens, J. Kim, J. C. Hoe and B. Falsafi, "Efficient resource
sharing in concurrent error detecting superscalar microarchitectures,"
MICRO, 2004.

[27] W. Zhang, S. Gurumurthi, M. Kandemir and A. Sivasubramaniam, "ICR:
In-Cache Replication for enhancing data cache reliability," DSN, 2003.

[28] N. Wang and N. Wang, "ReStore: symptom-based soft error detection in
microprocessors," Dependable and Secure Computing, IEEE
Transactions, vol. 3, no. 3, pp. 188 - 201, 2006.

[29] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I. August,
"SWIFT: Software Implemented Fault Tolerance", CGO, 2005.

[30] G. Reis, J. Chang, N. Vachharajani, S. Mukherjee, R. Rangan and D.
August, "Design and evaluation of hybrid fault-detection systems,"
Computer Architecture, pp. 148 - 159, 2005.

[31] D. Yoon and M. Erez, "Virtualized and flexible ECC for main memory,"
ACM SIGARCH Computer Architecture News - ASPLOS, vol. 38, no. 1,
pp. 397-408, 2010.

[32] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. Jouppi
and M. Erez, "FREE-p: Protecting non-volatile memory against both
hard and soft errors," High Performance Computer Architecture
(HPCA), pp. 466 - 477, 2011.

2015 MEDIAN Finale Workshop

63

