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Abstract—Soft errors are becoming a significant design 
concern for microprocessor designers to make reliable systems 
with today’s manufacturing technology. Its occurrence rate (Soft 
Error Rate – SER) increases with lower supply voltage, higher 
frequency and larger integration. Reliable systems demand 
protection mechanisms against soft errors at their critical 
structures (e.g., reorder buffer, issue queue, register file etc.). In 
this paper, a new low-latency method is proposed to implement 
Error Correcting Codes to pointer value holding fields of the 
processor components to protect them from soft errors. Using the 
proposed method, pointer fields are immune to single bit errors. 
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I.    INTRODUCTION 
Soft errors are emerging as an important issue in modern 

digital systems [1]. They are generally caused by energetic 
neutrons from radiation or alpha particles from packaging 
material. Those particles can affect sensitive regions in 
semiconductor devices when they hit on it [1] [2] [3] and can 
change a bit’s state temporarily which is called Single Event 
Upset (SEU). When SEU occurs during a program’s execution, 
it may cause wrong result at the end of the program, failure of 
the program or even a system crash. 

Currently developed high tech featured reduced size 
technologies for manufacturing process such as 14 nm are 
getting more vulnerable to these transient errors. Low energy in 
these low scale cells to save bits cannot resist for particle 
strikes. Therefore, transient faults are paramount importance 
for new advancing microprocessor designs and it is increasing 
day by day with the new generation technologies [4] [5]. 

In the Single Event Upset (SEU) model, the single bit flip 
results in a new value that has a Hamming distance of one from 
the original value.  This fact was analyzed by Biswas et al. 
previously for address based structures which are in fact 
pointer storing fields [6]. In order to protect the source and 
destination pointer fields, the most straight forward idea would 
be to replicate the actual data into all possible locations that are 
Hamming distance one away from the original location. This 
way, even if the source or destination pointer is hit by a particle 
the pointer still points to a location where there is the same 
valid data. However, the overhead of such a scheme is high 
since it is tough to write multiple values at once through a 
limited number of ports. Also these locations that are supposed 

to be holding the replicated values may be already occupied by 
other instructions which further complicate the idea. Therefore, 
instead of investigating an idea that requires the replication of 
data all around the structures we propose having all the 
Hamming distance one pointers point to the same location. 

The rest of the paper is organized as follows: section 2 
explains the proposed method – Collective Pointing – that 
target error avoidance in the pointer based data in the 
processors. Section 3 presents experimental results of the 
method in terms area, energy and time overhead to the system. 
Related work is discussed in section 4. Finally, we offer our 
concluding remarks in section 5. 

II.   COLLECTIVE POINTING 
In order to correct all single bit errors, which are the most 

common type of soft errors, we propose a mechanism that we 
call “Collective Pointing”. In this new scheme, the processor 
never assigns the pointer values that are Hamming distance one 
away from a main pointer. Fig 1 shows the demonstration of 
the proposed scheme for seven bit register tags. In the baseline, 
all register tags point to a different register whereas in 
Collective Pointing, the register tags that are Hamming 
distance one away from a main pointer are not assigned to any 
instructions and point to the same location if they are 
encountered as a result of a fault. When selecting the main 
pointers there are two rules: 

1)  Two main pointers have to apart from each other with a 
hamming distance of three. 

2)  None of the Hamming distance one values of a main 
pointer should be overlapping with another main pointer’s 
Hamming distance one value.  
 

Collective Pointing has three issues to be solved:  

1)  Having multiple pointers to the same location causes 
inefficiency in the use of storage space and mandates the use 
of wider pointers. 

2)  The decoder block of the storage component, which the 
pointers are pointing, needs to be modified to allow multiple 
tag values to activate the same entry. 

3)  Pointer value allocation logic now needs to be modified 
to assign only main pointers. 

This work was supported by the Scientific and Technological Research 
Council of Turkey (TUBITAK) under Grant 112E004. The work is in the 
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A.   The Need for Wider Tags 
Collective Pointing does need wider tags to effectively 

correct single bit error on each and every pointer value. This 
requirement is similar to the area overhead of the application of 
ECC where XOR trees are used to calculate the parity bits both 
when the value is read from and written to the storage space. In 
fact, the bit overhead of Collective Pointing is the same as the 
overhead of Hamming Code that corrects a single bit error. In 
order to verify this observation, we implemented a brute force 
main pointer generator program and obtained the numbers 
shown in Table I. 

TABLE I.    NUMBER OF LOCATIONS THAT CAN BE ADDRESSED 

# Bits # Locations at Baseline # Locations at Collective Pointing 
1 2 1 
2 4 1 
3 8 2 
4 16 2 

5 32 4 
6 64 8 
7 128 16 
8 256 16 
9 512 32 

10 1024 64 

11 2048 128 
12 4096 256 
13 8192 512 
14 16384 1024 
15 32768 2048 
16 65536 2048 

 

As the numbers in Table I reveal, the number of locations 
that can be expressed with n bits in Collective Pointing is:  

 Addressable number of entries = 2 ^ (n – log2n – 1) (1) 

This is in line with the Hamming Code’s rule that states 
“The code word length is 2s – 1 of which s bits are the        
parity ones” [7]. We are in fact implementing the Hamming 
Code in a different fashion where instead of correcting the 
single bit error by using a bunch of parity bits, we make the 
whole value point to the same location. As it is the case with 
the Hamming Code, the overhead of Collective Pointing 
decreases with the increasing number of bits. 

B.   Decoder Block 
Decoder block of a single entry in a regular SRAM bit cell 

array can be logically implemented with a single AND gate 
assuming that the inverted versions of the address bits are 
available. In reality, an AND gate with a high fan-in is 
impractical. Fig 2 shows the circuit diagram of the baseline 
decoder block; the output of the decoder block enables the 
word select driver of the entire row. 

The proposed Collective Pointing scheme mandates the use 
of n+1 of the decoder blocks of Fig 2 in parallel for each entry 
and ORing their outputs, where n is the number of bits inside 
the tag. 

In order to decrease this delay overhead we propose a 
different circuitry shown in Fig. 3. This circuit allows the 
decoding of the main pointer value faster than the faulty ones. 
If the outcome of the main pointer decoder is 1, the output of 
the multiplexer is set to VDD to determine the output of the 
overall decoder block as 1. In this case the delay of the decoder 
block to be used with the proposed scheme drops just the 
multiplexer delay for the main pointer. The fault can be 
understood by monitoring the second input of the multiplexer 
and can be used as an error detection mechanism by the 
system. 

C.   Pointer Assignment Logic 
Pointer value assignment logic needs to be modified in 

Collective Pointing. For example, the register allocation logic 
can be adapted to Collective Pointing by simply extending bits 
of physical register numbers and physical register tag fields of 
the related components in the processor (i.e. issue queue, 
reorder buffer etc.). The simplest way to achieve this is to 
extend pointer bits and decide which numbers will be assigned 
to main registers at design time. For instance, “00000000000” 
will take place of “0000000” and “00000000111” will take 
place of “0000001” and so on. This way, nothing is changed in 
the logic except the number of the bits. 

 
Fig 1. Demonstration of Collective Pointing 

 

 
Fig 2. Baseline decoder logic of an SRAM bit cell array 
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III.   EXPERIMENTS 
The most important advantage of Collective Pointing is its 

low delay overhead when compared to ECC. Fig. 4 shows the 
hardware implementation of the ECC for 7-bit pointer values. 
Parity bits (P1 P2 P3 P4) are calculated before a write operation 
and are stored in a place together with the actual data. When 
reading the bits of a pointer, parity bits are recalculated (PC1 
PC2 PC3 PC4) and compared with their older values to check if 
any fault occurs between the time interval starts from writing 
the address and reading it. The result of the comparison 
operations (C1 C2 C3 C4) should be 0 if there is no error.  Single 
error can be corrected with ECC as can be seen from Fig. 4. 
ECC needs a number of XOR operations performed both 
during the reading and writing of the pointer value. Collective 
Pointing makes it possible to correct single bit errors when the 
delay budgets do not allow the use of ECC on the pointer tags.  

The proposed scheme also distributes the delay of error 
correcting circuitry across different processor pipeline stages. 
For example, for the register tags, the delay is distributed to the 
frontend, issue queue and the register file. 

In order to analyze overhead levels of Collective Pointing 
and ECC, both of them are implemented at circuit level. 
Cadence design tools were used together with the 90nm CMOS 
(UMC) technology (VDD = 1V) to compare results. ECC and 
Collective Pointing schemes have nearly the same area 
overhead as seen in Table II. However, Collective Pointing’s 
latency and energy dissipation are much less than the latency 
and energy dissipation of the ECC scheme which is constructed 
with cascaded XOR gates. The main reason is Collective 
Pointing scheme is built with NAND and NOR gates which 
have less delay, transistor count and lower energy consumption 
than XOR gate. Using ECC in cycle critical structures such as 
register file and issue queue is impractical because of the long 
latency of the ECC operation. Collective Pointing enables the 
implementation of a SECDEC (Single Error Correction, 
Double Error Detection) mechanism to time critical structures 
due to its low-latency overhead. 

TABLE II.    COLLECTIVE POINTING AND ECC COMPARISON 

Scheme Area 
(µm2) 

Energy 
(fJ) 

Latency Overhead (ps) 
Fault No Fault 

Collective 
Pointing 

444.4 109.2 176.3 104.5 

ECC 469.2 387.9 358.8 

IV.  RELATED WORK 
Parity checking and ECC are used to detect and correct soft 

errors in the data arrays of the processor [8]. These techniques 
rely on encoding some information from the stored data and 
checking this in-formation upon reading the value. Parity and 
ECC are widely used for cache memories but usually not on 
data path components due to their high encoding and decoding 
delay. For example, the parity protected register files of Intel’s 
90-nm Itanium processor needed an extra cycle to calculate 
parity [9]. Although reducing the latency of the ECC and parity 
circuits for narrow-width inputs is proposed in [10], paying the 
latency penalty for calculating the ECC information is 
unavoidable when the whole input set is considered. 

Several researchers have tried to identify the effects of soft 
errors on the processor pipeline both at architectural level [11] 
[12] [13] and at gate level [14]. Effects of power saving 
techniques on SERs are also studied in [15]. Using time and 
space redundancy is a widely explored technique for detecting 
soft errors. In this case, either a value is replicated into more 
storage space and later checked with simple voting [16] [17] 
[18] or a value is generated multiple times with a single 
resource [19]. An example of time and space redundancy is the 
redundant multithreading proposed for error detection and 
correction where the same thread is replicated with some time 
slack and the results of both threads are later checked against 
each other [20] [10] [21] [22] [23] [24]. There are also some 
techniques to perform replication selectively when processor 
has idle resources in order to reduce the performance 
degradation caused by the concurrently running redundant  
threads [25] [10] [26]. It is also offered to use idle processor 
storage space as a repository for holding the replica values 
[27]. 

 
Fig 3. Proposed decoder logic for Collective Pointing 

 
 
 

 
Fig 4. ECC hardware implementation 
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As the instructions spend more time in processor structures, 
their probability of getting hit by a particle increases. There 
were some previous efforts to reduce this vulnerable period by 
flushing the pipeline when instructions are stalled for a long 
period [2]. However, as it is the case in redundant 
multithreading, it is possible to observe some performance 
degradation. There are some other techniques in the literature 
that were proposed to detect soft errors, such as symptom 
based error detection at the hardware level [28], pure software 
level error detection [29] and detecting soft errors through 
hardware/software hybrid schemes [30]. 

Recently virtualizing the ECC information was proposed 
[31]. This way it is possible to use different coding schemes 
without modifying the hardware. Virtualized ECC also allows 
checking the information only when there is an error. Also 
address remapping was implemented to improve the reliability 
of the non-volatile memories was proposed [32]. Our proposal 
in this work is similar to these works in the sense that it also 
transfers the detection and correction mechanisms to software 
level and targets the memory components. However, as we 
have previously pointed out, regular ECC mechanisms target 
the errors on the actual data whereas our proposal targets the 
pointer values pointing to the actual data. Therefore, Collective 
Pointing can be used in conjunction with ECC for improved 
reliability. 

V.   CONCLUSION 
In this work we proposed a new method that implements 

SECDEC mechanism to the pointer fields of the processor. 
With this method, pointer fields are protected from single bit 
upsets with lower time overhead compared with ECC. System 
can be aware of any fault occurrence by monitoring the second 
input of the multiplexer and activate any other protection 
mechanisms. 
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