

Edinburgh Research Explorer

Exploiting Existing Copies in Register File for Soft Error
Correction

Citation for published version:
Eker, A & Ergin, O 2016, 'Exploiting Existing Copies in Register File for Soft Error Correction' Computer
Architecture Letters, vol. 15, no. 1, pp. 17 - 20. DOI: 10.1109/LCA.2015.2435705

Digital Object Identifier (DOI):
10.1109/LCA.2015.2435705

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Architecture Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/LCA.2015.2435705
https://www.research.ed.ac.uk/portal/en/publications/exploiting-existing-copies-in-register-file-for-soft-error-correction(6e12a3f1-aece-478c-879b-56cd5140ade9).html

IEEE COMPUTER ARCHITECTURE LETTERS, VOL.

Exploiting Existing Copies in Register File for
Soft Error Correction

Abdulaziz Eker, Oguz Ergin

Dept. of Computer Engineering, TOBB University of Economics and Technology, Ankara, Turkey
{aeker,oergin}@etu.edu.tr

Abstract—Soft errors are an increasingly important problem in contemporary digital systems. Being the major data holding

component in contemporary microprocessors, the register file has been an important part of the processor on which researchers

offered many different schemes to protect against soft errors. In this paper we build on the previously proposed schemes and

start with the observation that many register values already have a replica inside the storage space. We use this already

available redundancy inside the register file in combination with a previously proposed value replication scheme for soft error

detection and correction. We show that, by employing schemes that make use of the already available copies of the values

inside the register file, it is possible to detect and correct 39.0% of the errors with an additional power consumption of 18.9%.

Index Terms—microprocessor architecture, register file, soft error

—————————— ——————————

1 INTRODUCTION

RANSIENT errors caused by particle strikes pose a sig-

nificant challenge to designers because they result in

single event upsets and silent data corruption, leading to

application crash and wrong output. Soft errors will continue

to be an important issue due to shrinking feature sizes, re-

duced voltages, and increasing clock frequencies.

The register file is an important unit where errors need to

be avoided since it is accessed very frequently and an error

in registers can quickly propagate to the other parts of the

processor. It is also shown in the previous research that the

register file is especially vulnerable to soft errors since they

lead to application failure [14]. Since the register file access

time is on the critical path and it consumes 16% of the pro-

cessor power [5], designers need fault tolerance methods that

have low delay and power overheads.

Many researchers and microprocessor designers studied

soft errors that occur in the microprocessor register file and

processor logic. IBM G5 uses ECC to protect the register file

[12] but it is reported that ECC consumes 10 times the energy

than a non-ECC register access [11]. ECC requires roughly 4

times more power than the single-bit parity calculation in the

common, error free case for 64-bit data. Similarly, the encod-

er/decoder of ECC is also 4 times bigger than that of the

parity. The Itanium processor uses a parity bit to detect reg-

ister file errors, and terminates the application if a register

parity error occurs [6][4]. Triple-modular redundancy (TMR)

is a traditional redundancy mechanism in which the hard-

ware is replicated three times and the majority voting is used

to avoid an invalid value generation [10]. As TMR is a very

expensive method of the soft error protection in terms of area

and power, it cannot be used for register files. Compiler

directed methods that duplicate and re-schedule instructions

for higher register reliability, like proposed in [6], increases

the code size extensively. Using partially unused registers to

duplicate the information is also researched as a way to

avoid the soft-errors on the register file [3]. A better ap-

proach to protect the register file form soft-errors is replicat-

ing register values into unused registers [8]. Still, this method

needs to create additional writes to create copies.

In this paper, we propose a simple and low-overhead

scheme called “Recovery through Existing Copy” or REC, to

design a soft-error resilient register file. While other fault

tolerance solutions increase the area, delay, or power over-

head to create redundancy, our solution exploits the already

available redundancy inside the register file and relies on the

fact that many of the register values have a replica inside the

register file. To correct soft errors, we propose to use the

existing redundant copies in the physical register file by

keeping track of physical registers that have the same value.

We observed that many of these copies can be detected at the

ALU stage by only comparing input registers and the result

value. REC provides error correction capability with the

encoding overhead comparable to that of a single-bit parity

scheme and area overhead comparable to that of the ECC.

Note that REC reduces –does not eradicate- soft errors by

detection and recovery. However, REC scheme can be a

viable alternative for designers who try to achieve acceptable

MTTF targets with minimal power and delay overhead.

The REC solution can be used in conjunction with the

schemes that try to create the redundancy inside the register

file by creating copies of the values that were not previously

present. In order to further improve the effectiveness of REC,

we propose replicating allocated registers over unused regis-

ters to increase the number of copies as explained in [8]. By

using this improvement we increased the ratio of registers

that have a redundant copy inside the physical register file.

The rest of the paper is organized as follows. Section 2

presents the motivation of the study. Section 3 explains the

proposed design. Section 4 presents the evaluation setup.

Section 5 presents the results and finally Section 6 concludes.

2 MOTIVATION

Our design was motivated by the key observation that on the

Published by the IEEE Computer Society

Manuscript submitted: 13-Feb-2015. Manuscript accepted: 16-May-2015
Final manuscript received: 17-May-2015

T

 IEEE COMPUTER ARCHITECTURE LETTERS, VOL.

average 66.1% of valid registers already have redundant

copies in the physical register file on each cycle. Fig. 1 shows

the average ratio of registers whose value already exists in

another register. We found that 31.4% of these duplicates are

due to the result of the instruction being the same as one of

the source registers, i.e. instruction reads a value from a

register, and writes the same value back to another register.

This high ratio of redundant copies is caused by instructions

such as register move operations and addition or subtraction

with zero. Remaining duplicates are due to push-pop opera-

tions (where after increment and decrement operations stack

pointer is renamed to different registers and clone values are

created) and array processing instructions that load the same

memory location to different physical registers.

Some micro code examples from astar, specrand, and pov-

ray benchmark traces are shown in Table 1. After renaming is

completed, architectural registers are mapped to physical

registers (marked in gray with “pr” prefix). The final state of

the physical register file after register writeback is shown

next to each code block. First block shows how redundant

copies are created by mov instructions. Second code portion

shows two load microops (in close proximity) loading a

value from the same memory location to R6 register, which is

renamed to different physical registers, creating the replica

of the same value. The last code portion of Table 1 shows

stack operations from specrand benchmark. As the RSP gets

updated, it is renamed to different physical registers, creat-

ing replicas of stack pointer inside the register file.

3 PROPOSED DESIGN

Detecting the identical values inside the register file cannot

be easily achieved as the identical values can be present in

any register, and any instruction that updates a register has

to check the contents of all registers to find an exact replica.

In order to make this replica detection operation feasible, we

propose to exploit the instructions that have their result

value equal to at least one of the source operands. Since

many of the replicas are created by instructions that do not

make a modification to their source operands, replica values

can be detected at the execution stage. When there is no

difference between a source operand and the result, the loca-

tion of the replicas is stored along with the generated value.

In order to detect the replica values, we propose to add a

comparison logic to check the equivalency of both sources

(assuming instructions with 2 source operands) with the

destination value. When the compared values are found to

be the same and the registers’ names are not equal (which is

usually the case in out of order pipelines due to the register

renaming), each copy logs the other register’s name in an

added field named “Copy Register Name” (CRN) as shown

in Fig. 2. Only one register is allowed to assign another regis-

ter as a replica and if an equal-valued source operand is

already used as a replica of another register, it is not as-

signed as a replica of a destination register.

We propose to add a bit vector that contains one bit for

each register, called “Copy Register Presence Bit Vector”

(CRPBV) which is accessed when a fault occurs to see if the

replica is still valid, before the replica is accessed. When two

registers are found to be copies of each other, CRPBV is up-

dated. If a register that is previously identified to be holding

a replica value is overwritten, the bits corresponding to this

register and its replica are cleared in CRPBV. This way, it is

possible to identify the void replicas that are nullified by a

subsequent overwrite operation and can no longer be used to

recover a soft error on the previous replica. Destination reg-

ister’s CRN has to be read before it is overwritten in order to

index CRPBV and clear the corresponding bit of its replica.

The added fields of CRN and CRPBV are kept in a sepa-

rate storage since accesses to these fields are independent of

the register file access and occur only when a copy or a fault

is detected. Therefore, we do not add more ports to the actu-

al data storage space, but the number of write ports of the

added field is twice the number of write ports of the data

storage. The number of read ports of the added field is the

same as that of the data storage. Thus, the total number of

ports in the data storage is unchanged and the number of

ports in the added field is slightly higher than the data stor-

age. Accesses to this field do not increase the delay overhead

since it is much smaller than the register file and updates to

it is done in parallel to the register writeback.

As stated by the previous studies, single-bit errors are the

most common [8] and a parity check would detect most of

TABLE 1
Sample Code Fragments Creating Redundant Copies

MOVING (from Astar)
 mov rsp(pr151),rbp(pr70)
 ...

 mov rsi(pr92),0xce60

 ...

 mov rsi(pr43),0xce60

LOADING FROM SAME MEMORY LOCATION (from Specrand)

ld r6(pr107),[r14,24]

...

ld r6(pr41),[r14,24]

PUSH-POP STACK OPERATIONS (from Povray)

sub rsp(pr154),rsp(pr39),8

...

sub rsp(pr91),rsp(pr154),8

...

sub rsp(pr67),rsp(pr91),32

...

...

add rsp(pr30),rsp(pr67),32

...

add rsp(pr147),rsp(pr30),8

...

add rsp(pr57),rsp(pr147),8

Fig. 1. Average ratio of valid registers having a redundant copy

 ALU

If equal, set Source1 as
Destination’s Replica,

and vice versa

If equal, set Source2 as
Destination’s Replica,

and vice versa

Par ity

Calculator

Register File

CRNRegister Value

Parity
Check

Parity
Check

Register Value + Parity

Source1 +
Parity

Source2 +
Parity Source2

Source1

Compare

Compare

.

.

.

.

.

.

.

.

.

0

n-1

.

.

.

Fig. 2. Register file architecture for soft error protection

IEEE COMPUTER ARCHITECTURE LETTERS, VOL.

the faults. We add a parity bit field to each physical register.

During register read, a parity check is performed, and during

register write, parity is calculated at the ALU stage. Using

REC, it is possible to extend the coverage of error detection

to error correction by using the parity bits, as we now have a

replica of the value and we know if the replica is valid or not.

Error detection through the use of a parity bit is beneficial

even when a replica does not exist since a solution can be

found at the application level by creating an exception.

The parity check and recovery flow is shown in Fig. 3. The

parity check is done when a source register is read. In REC,

the parity of the source register is read along with its value.

If the parity check shows that there is an error in the register

value, then the presence of a copy register is checked by

performing a lookup on the corresponding bit of the register

in the CRPBV. If the source register does not have a copy

register in the register file, then an exception occurs and the

running application must be informed. Otherwise, the copy

register, its parity, and CRN field are read to recover from

the soft error. The copy register’s parity is also checked again

to determine the copy register’s soft error. The reason we

also read the CRN field of the copy register is to make sure

that if a soft error occurs at the added fields (namely, CRN

and Copy Register Presence Bit - CRPB), we can detect the

error by comparing the CRN field of the replica with the

source register itself. If they are different, due to an error at

the added fields of the source register, the error is detected.

In order to extend the coverage of REC, we suggest an

improvement to the design by exploiting the idle registers

and creating a redundant copy of the register values as it was

proposed by the study of Memik et al. [8]. We exploit the

unused (free) registers to write the result of a register writing

operation along with the destination register. To accomplish

this we added a mechanism to the processor to allocate two

of the free physical registers at the rename stage; one of them

is used as the destination register, as usual, and the other is

used as the copy register in a new state called “duplicate”.

Registers in the “duplicate” state are treated as “free” regis-

ters at the rename stage to allocate the destination register

for avoiding any performance degradation in the common

case of no error. But for the allocation of another duplicate

register, the “duplicate” state is treated as used (valid). When

a duplicate register is allocated along with the destination

register, the result of the instruction is written to both of the

registers, each register writes the other register’s name to

their CRN field, and corresponding bits of the CRPBV are

set. After this point, the design works just the same in terms

of the parity check and recovery. We call this extension as

“register duplication mechanism” or RDM.

4 SIMULATION ENVIRONMENT

The architectural simulations are performed using a modi-

fied version of MARSSx86 [9], a full-system microarchitec-

tural simulator which uses the x86 ISA and creates RISC-like

microops to execute in the pipeline. We used 18 benchmarks

from the SPEC CPU2006 [15] using the reference input sets

compiled for the x86-64 architecture with the optimization

level O3. We run the compiled benchmarks on a 64-bit out of

order processor with the integer register file size of 160. The

register file size is selected similar to the Intel Itanium Poul-

son, which is designed for mission critical servers [13]. We

simulated each benchmark for 100 million user instruction

commits after fast-forwarding for 1 billion instructions. The

power simulations are performed using the Cadence design

tools employing UMC 90nm technology node. A VDD of 1V is

used under 27°C ambient temperature.

5 RESULTS AND DISCUSSIONS

We can use two metrics that can demonstrate how successful

our schemes are in terms of error recovery; coverage and

reliable read rate (as it was defined in [8]). Coverage is de-

fined as the ratio of registers that have replicas over all regis-

ters, while reliable read rate is defined as the ratio of regis-

ters that are read and have replicas over all registers that are

read. The reliable read rates of the detected copies in REC are

shown in Fig. 4 on the left bars. We also show the potential

reliable read rate if all replicas could be detected, on the right

columns of the figure. The reliable read rate of detected cop-

ies is 20.4% on the average, reaching up to 36% for individual

benchmarks, while the potential reliable read rate is 55.6% on

the average, reaching more than 70% for some benchmarks.

The results of the combination of REC and RDM are

shown in Fig. 5, where the potential coverage increased to

69.4% as shown in the rightmost columns. The potential

reliable read rate also reaches 69.1% (middle column in Fig.

5) showing a significant improvement. Since our proposed

scheme also detects the duplicated values created by RDM,

the leftmost bars for each benchmark in Fig. 5 shows both the

percentage of the detected copies that already exist in the

register file and the percentage of the duplicated registers

created by RDM. The stacked column on the left shows these

constituents of the detected copies, upper portion being the

reliable read rate due to RDM. Reliable read rate due to all

detected copies are 44.1% of all registers.

We injected faults to the register file to see the success rate

of the proposed schemes. After fast-forwarding 1 billion

instructions, we injected one fault to a random location in the

register file at a random time and we trace the fault for 10

million instructions to see if the fault is recovered. In total,

we inject 200 faults per benchmark and we make one fault

Parity
CheckSource+Parity

P
a
ri
ty

 E
rr

o
r

Does Copy
Register Exists?C

R
N

Exception

Y
e
s

Read copy register

value & pari ty of source

... ..
.

..
.

Register File

CRNRegister Value

..
. CRPB

No

Compare copy regIster’s

CRN to Source Register

C
o
p
y

re
g
is

te
r’
s

C
R

N

Same

D
iff

e
re

n
t

Fig. 3. Parity check and recovery flow diagram on register file architecture.

Fig. 4. Reliable read rate using REC.

 IEEE COMPUTER ARCHITECTURE LETTERS, VOL.

injection in one execution. This fault injection methodology is

similar to prior analyses [16][7]. The left column in Fig. 6

shows the error recovery rates with the proposed architec-

ture while the right column shows the percentage if all of the

copies in the processor would be detected. The proposed

design has 39.0% error recovery on the average, while the

potential recovery rate is 70.1%. It was reported that SEU

rate per microprocessor for 40nm technology is 0.94 FITs/Kb

[2]. Therefore, the 160x64 register file we evaluated has 12.3

years of MTTF, while using our proposed method the regis-

ter file’s MTTF would increase to 20.2 years.

Finally we simulated the power consumption of a conven-

tional unprotected architecture to compare it to our schemes.

The extra power consumption of the proposed architecture

consists of the power of reading destination register’s

CRPBV and CRN, writing to the bit vector field of its replica,

parity calculation and checking, and the comparison logic.

On the average the extra power dissipation of REC was only

2.8% without RDM. When we include RDM as explained in

[8], the extra power consumption becomes 18.9%. This power

dissipation overhead is very small when compared to the

overhead introduced by the use of ECC which is reported to

be as high as an order of magnitude by the industry [11].

Some contemporary processors use a technique called

“Move Elimination” to avoid creating replicas in the register

file for reducing power dissipation or improving perfor-

mance [1]. This technique, when used with our scheme, will

reduce the soft error correction coverage and has a tradeoff

between power dissipation and reliability. We leave the

dynamic switching between the Move Elimination and the

proposed scheme for better performance/power/reliability

tradeoffs for future work.

6 CONCLUSION AND FUTURE WORK

In this paper we present Recovery through Existing Copy

(REC) design to exploit already available replicas in the reg-

ister file to make the register file less vulnerable to soft er-

rors. For every result-producing instruction, source values

and the result are compared to detect if the instruction is

creating a replica value in the register file. We use parity

protection on the main value and hold a pointer to its replica

for error correction. We also showed that register duplication

mechanism (RDM) as explained in [8] can be used in con-

junction with the proposed scheme for achieving better error

coverage. When used in conjunction with [8], our scheme

corrects 39.0% of errors, with the reliable read rate of 44.1%.

The power dissipation overhead of REC is 2.8% but it goes

up to 18.9% if we extend the coverage by using RDM.

Our proposed solution provides error correction capabil-

ity with the encoding complexity comparable to that of a

single-bit parity scheme while the area overhead comparable

to that of the ECC. Note that we provide multi-bit error cor-

rection coverage when compared to ECC with less hardware

overhead although we provide this coverage for only the

values that have a redundant copy in the register file. REC is

orthogonal to and can be used in conjunction with the lower

level approaches to reduce soft error rate (SER) such as gate

sizing [17]. The methods proposed in this paper can only

exploit 31.4% of the replicas existing in the register file. If full

replica potential existing in the register file is used, it is pos-

sible to achieve 70.1% error recovery rate with a power con-

sumption of 21.0%. Improving the coverage by exploiting the

existing replicas more efficiently is left for future work.

Acknowledgment

This work was supported in part by TUBITAK under Grant

112E004. The work is in the framework of COST Action 1103

REFERENCES

[1] S. Battle, A. D. Hilton, M. Hempstead, and A. Roth, "Flexible register
management using reference counting," in HPCA, 2012.

[2] A. Dixit and A. Wood, "The impact of new technology on soft error
rates," in IEEE IRPS, 2011.

[3] O. Ergin, O. S. Unsal, X. Vera, and A. Gonzales, "Exploiting narrow
balues for soft error tolerance," IEEE CAL, vol. 5, no. 2, 2006.

[4] E.S. Fetzer, D. Dahle, Little C., and K. Safford, "The parity protected,
multithreaded register files on the 90-nm itanium microprocessor,"
IEEE JSSC, vol. 41, no. 1, pp. 246-255, 2006.

[5] D. R. Gonzales, "Micro-RISC architecture for the wireless market,"
IEEE Micro, vol. 19, no. 4, pp. 30 - 37, 1999.

[6] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, M. Irwin,
"Compiler-directed instruction duplication for soft error detection," in
DATE, 2005.

[7] M. L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari, and S. V.

Adve, "Accurate microarchitecture-level fault modeling for studying
hardware faults," in HPCA, 2009.

[8] G. Memik, M. Kandemir, and O. Ozturk, "Increasing register file
immunity to transient errors," in DATE, 2005.

[9] A. Patel, F. Afram, S. Chen, and K. Ghose, "MARSS: A Full System
Simulator for Multicore x86 CPUs," in DAC'11, 2011.

[10] W. Peterson, "Error-correcting codes". Cambridge: The MIT Press,
1980.

[11] R. Phelan, "Addressing soft errors in ARM core-based SoC," ARM
White Paper, 2003.

[12] S. K. Reinhardt and S. S. Mukherjee, "Transient fault detection via
simultaneous multithreading," in ISCA-2000, pp. 25-36.

[13] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, T.
Grutkowski, "A 32 nm, 3.1 billion transistor, 12 wide issue Itanium
Processor for Mission-Critical Servers," IEEE JSSC, vol. 47, pp. 177-
193, 2012.

[14] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,
"An experimental study of soft errors in microprocessors," IEEE
Micro, vol. 25, no. 6, pp. 30-39, 2005.

[15] Standard Performance Evaluation Corporation, SPEC Benchmarks.,
2006. [Online]. http://www.spec.org

[16] G. Yalcin, O. S. Unsal, A. Cristal, and M. Valero, "FIMSIM: A fault
injection infrastructure for microarchitectural simulators," in ICCD,
2011.

[17] Q. Zhou and K. Mohanram, "Gate sizing to radiation harden combina-
tional logic," IEEE TCAD, vol. 25, no. 1, pp. 155-166, 2006.

Fig. 6. Error recovery results for randomized error injection.

Fig. 5. Results for the REC with RDM.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL.

	1 Introduction
	2 Motivation
	3 Proposed Design
	4 Simulation Environment
	5 Results and Discussions
	6 Conclusion and Future Work
	Acknowledgment

