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Abstract—Soft errors are an increasingly important problem in contemporary digital systems. Being the major data holding 

component in contemporary microprocessors, the register file has been an important part of the processor on which researchers 

offered many different schemes to protect against soft errors. In this paper we build on the previously proposed schemes and 

start with the observation that many register values already have a replica inside the storage space. We use this already 

available redundancy inside the register file in combination with a previously proposed value replication scheme for soft error 

detection and correction. We show that, by employing schemes that make use of the already available copies of the values 

inside the register file, it is possible to detect and correct 39.0% of the errors with an additional power consumption of 18.9%. 

Index Terms—microprocessor architecture, register file, soft error 

——————————      —————————— 

1 INTRODUCTION

RANSIENT errors caused by particle strikes pose a sig-

nificant challenge to designers because they result in 

single event upsets and silent data corruption, leading to 

application crash and wrong output. Soft errors will continue 

to be an important issue due to shrinking feature sizes, re-

duced voltages, and increasing clock frequencies.  

The register file is an important unit where errors need to 

be avoided since it is accessed very frequently and an error 

in registers can quickly propagate to the other parts of the 

processor. It is also shown in the previous research that the 

register file is especially vulnerable to soft errors since they 

lead to application failure [14]. Since the register file access 

time is on the critical path and it consumes 16% of the pro-

cessor power [5], designers need fault tolerance methods that 

have low delay and power overheads. 

Many researchers and microprocessor designers studied 

soft errors that occur in the microprocessor register file and 

processor logic. IBM G5 uses ECC to protect the register file 

[12] but it is reported that ECC consumes 10 times the energy 

than a non-ECC register access [11]. ECC requires roughly 4 

times more power than the single-bit parity calculation in the 

common, error free case for 64-bit data. Similarly, the encod-

er/decoder of ECC is also 4 times bigger than that of the 

parity. The Itanium processor uses a parity bit to detect reg-

ister file errors, and terminates the application if a register 

parity error occurs [6][4]. Triple-modular redundancy (TMR) 

is a traditional redundancy mechanism in which the hard-

ware is replicated three times and the majority voting is used 

to avoid an invalid value generation [10]. As TMR is a very 

expensive method of the soft error protection in terms of area 

and power, it cannot be used for register files. Compiler 

directed methods that duplicate and re-schedule instructions 

for higher register reliability, like proposed in [6], increases 

the code size extensively. Using partially unused registers to 

duplicate the information is also researched as a way to 

avoid the soft-errors on the register file [3]. A better ap-

proach to protect the register file form soft-errors is replicat-

ing register values into unused registers [8]. Still, this method 

needs to create additional writes to create copies.  

In this paper, we propose a simple and low-overhead 

scheme called “Recovery through Existing Copy” or REC, to 

design a soft-error resilient register file. While other fault 

tolerance solutions increase the area, delay, or power over-

head to create redundancy, our solution exploits the already 

available redundancy inside the register file and relies on the 

fact that many of the register values have a replica inside the 

register file. To correct soft errors, we propose to use the 

existing redundant copies in the physical register file by 

keeping track of physical registers that have the same value. 

We observed that many of these copies can be detected at the 

ALU stage by only comparing input registers and the result 

value. REC provides error correction capability with the 

encoding overhead comparable to that of a single-bit parity 

scheme and area overhead comparable to that of the ECC. 

Note that REC reduces –does not eradicate- soft errors by 

detection and recovery. However, REC scheme can be a 

viable alternative for designers who try to achieve acceptable 

MTTF targets with minimal power and delay overhead.   

The REC solution can be used in conjunction with the 

schemes that try to create the redundancy inside the register 

file by creating copies of the values that were not previously 

present. In order to further improve the effectiveness of REC, 

we propose replicating allocated registers over unused regis-

ters to increase the number of copies as explained in [8]. By 

using this improvement we increased the ratio of registers 

that have a redundant copy inside the physical register file.  

The rest of the paper is organized as follows. Section 2 

presents the motivation of the study. Section 3 explains the 

proposed design. Section 4 presents the evaluation setup. 

Section 5 presents the results and finally Section 6 concludes.  

2 MOTIVATION 

Our design was motivated by the key observation that on the 
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average 66.1% of valid registers already have redundant 

copies in the physical register file on each cycle. Fig. 1 shows 

the average ratio of registers whose value already exists in 

another register. We found that 31.4% of these duplicates are 

due to the result of the instruction being the same as one of 

the source registers, i.e. instruction reads a value from a 

register, and writes the same value back to another register. 

This high ratio of redundant copies is caused by instructions 

such as register move operations and addition or subtraction 

with zero.  Remaining duplicates are due to push-pop opera-

tions (where after increment and decrement operations stack 

pointer is renamed to different registers and clone values are 

created) and array processing instructions that load the same 

memory location to different physical registers.  

Some micro code examples from astar, specrand, and pov-

ray benchmark traces are shown in Table 1. After renaming is 

completed, architectural registers are mapped to physical 

registers (marked in gray with “pr” prefix). The final state of 

the physical register file after register writeback is shown 

next to each code block. First block shows how redundant 

copies are created by mov instructions. Second code portion 

shows two load microops (in close proximity) loading a 

value from the same memory location to R6 register, which is 

renamed to different physical registers, creating the replica 

of the same value. The last code portion of Table 1 shows 

stack operations from specrand benchmark. As the RSP gets 

updated, it is renamed to different physical registers, creat-

ing replicas of stack pointer inside the register file.  

3 PROPOSED DESIGN 

Detecting the identical values inside the register file cannot 

be easily achieved as the identical values can be present in 

any register, and any instruction that updates a register has 

to check the contents of all registers to find an exact replica. 

In order to make this replica detection operation feasible, we 

propose to exploit the instructions that have their result 

value equal to at least one of the source operands. Since 

many of the replicas are created by instructions that do not 

make a modification to their source operands, replica values 

can be detected at the execution stage. When there is no 

difference between a source operand and the result, the loca-

tion of the replicas is stored along with the generated value.  

In order to detect the replica values, we propose to add a 

comparison logic to check the equivalency of both sources 

(assuming instructions with 2 source operands) with the 

destination value. When the compared values are found to 

be the same and the registers’ names are not equal (which is 

usually the case in out of order pipelines due to the register 

renaming), each copy logs the other register’s name in an 

added field named “Copy Register Name” (CRN) as shown 

in Fig. 2. Only one register is allowed to assign another regis-

ter as a replica and if an equal-valued source operand is 

already used as a replica of another register, it is not as-

signed as a replica of a destination register. 

We propose to add a bit vector that contains one bit for 

each register, called “Copy Register Presence Bit Vector” 

(CRPBV) which is accessed when a fault occurs to see if the 

replica is still valid, before the replica is accessed. When two 

registers are found to be copies of each other, CRPBV is up-

dated. If a register that is previously identified to be holding 

a replica value is overwritten, the bits corresponding to this 

register and its replica are cleared in CRPBV. This way, it is 

possible to identify the void replicas that are nullified by a 

subsequent overwrite operation and can no longer be used to 

recover a soft error on the previous replica. Destination reg-

ister’s CRN has to be read before it is overwritten in order to 

index CRPBV and clear the corresponding bit of its replica. 

The added fields of CRN and CRPBV are kept in a sepa-

rate storage since accesses to these fields are independent of 

the register file access and occur only when a copy or a fault 

is detected. Therefore, we do not add more ports to the actu-

al data storage space, but the number of write ports of the 

added field is twice the number of write ports of the data 

storage. The number of read ports of the added field is the 

same as that of the data storage. Thus, the total number of 

ports in the data storage is unchanged and the number of 

ports in the added field is slightly higher than the data stor-

age. Accesses to this field do not increase the delay overhead 

since it is much smaller than the register file and updates to 

it is done in parallel to the register writeback.  

As stated by the previous studies, single-bit errors are the 

most common [8] and a parity check would detect most of 

TABLE 1  
Sample Code Fragments Creating Redundant Copies 

MOVING (from Astar)  
 mov rsp(pr151),rbp(pr70)         
 ... 

 mov rsi(pr92),0xce60  

 ... 

 mov rsi(pr43),0xce60  

LOADING FROM SAME MEMORY LOCATION (from Specrand) 

ld  r6(pr107),[r14,24]     

... 

ld  r6(pr41),[r14,24]   

 

 

PUSH-POP STACK OPERATIONS (from Povray) 

sub rsp(pr154),rsp(pr39),8 

... 

sub rsp(pr91),rsp(pr154),8 

... 

sub rsp(pr67),rsp(pr91),32 

... 

... 

add rsp(pr30),rsp(pr67),32 

... 

add rsp(pr147),rsp(pr30),8 

... 

add rsp(pr57),rsp(pr147),8 

 

 

 

 

 

 
Fig. 1. Average ratio of valid registers having a redundant copy  
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the faults. We add a parity bit field to each physical register. 

During register read, a parity check is performed, and during 

register write, parity is calculated at the ALU stage. Using 

REC, it is possible to extend the coverage of error detection 

to error correction by using the parity bits, as we now have a 

replica of the value and we know if the replica is valid or not. 

Error detection through the use of a parity bit is beneficial 

even when a replica does not exist since a solution can be 

found at the application level by creating an exception.  

The parity check and recovery flow is shown in Fig. 3. The 

parity check is done when a source register is read. In REC, 

the parity of the source register is read along with its value. 

If the parity check shows that there is an error in the register 

value, then the presence of a copy register is checked by 

performing a lookup on the corresponding bit of the register 

in the CRPBV. If the source register does not have a copy 

register in the register file, then an exception occurs and the 

running application must be informed. Otherwise, the copy 

register, its parity, and CRN field are read to recover from 

the soft error. The copy register’s parity is also checked again 

to determine the copy register’s soft error. The reason we 

also read the CRN field of the copy register is to make sure 

that if a soft error occurs at the added fields (namely, CRN 

and Copy Register Presence Bit - CRPB), we can detect the 

error by comparing the CRN field of the replica with the 

source register itself. If they are different, due to an error at 

the added fields of the source register, the error is detected.  

In order to extend the coverage of REC, we suggest an 

improvement to the design by exploiting the idle registers 

and creating a redundant copy of the register values as it was 

proposed by the study of Memik et al. [8]. We exploit the 

unused (free) registers to write the result of a register writing 

operation along with the destination register. To accomplish 

this we added a mechanism to the processor to allocate two 

of the free physical registers at the rename stage; one of them 

is used as the destination register, as usual, and the other is 

used as the copy register in a new state called “duplicate”. 

Registers in the “duplicate” state are treated as “free” regis-

ters at the rename stage to allocate the destination register 

for avoiding any performance degradation in the common 

case of no error. But for the allocation of another duplicate 

register, the “duplicate” state is treated as used (valid). When 

a duplicate register is allocated along with the destination 

register, the result of the instruction is written to both of the 

registers, each register writes the other register’s name to 

their CRN field, and corresponding bits of the CRPBV are 

set. After this point, the design works just the same in terms 

of the parity check and recovery. We call this extension as 

“register duplication mechanism” or RDM. 

4 SIMULATION ENVIRONMENT 

The architectural simulations are performed using a modi-

fied version of MARSSx86 [9], a full-system microarchitec-

tural simulator which uses the x86 ISA and creates RISC-like 

microops to execute in the pipeline. We used 18 benchmarks 

from the SPEC CPU2006 [15] using the reference input sets 

compiled for the x86-64 architecture with the optimization 

level O3. We run the compiled benchmarks on a 64-bit out of 

order processor with the integer register file size of 160. The 

register file size is selected similar to the Intel Itanium Poul-

son, which is designed for mission critical servers [13]. We 

simulated each benchmark for 100 million user instruction 

commits after fast-forwarding for 1 billion instructions. The 

power simulations are performed using the Cadence design 

tools employing UMC 90nm technology node. A VDD of 1V is 

used under 27°C ambient temperature.  

5 RESULTS AND DISCUSSIONS 

We can use two metrics that can demonstrate how successful 

our schemes are in terms of error recovery; coverage and 

reliable read rate (as it was defined in [8]). Coverage is de-

fined as the ratio of registers that have replicas over all regis-

ters, while reliable read rate is defined as the ratio of regis-

ters that are read and have replicas over all registers that are 

read. The reliable read rates of the detected copies in REC are 

shown in Fig. 4 on the left bars. We also show the potential 

reliable read rate if all replicas could be detected, on the right 

columns of the figure. The reliable read rate of detected cop-

ies is 20.4% on the average, reaching up to 36% for individual 

benchmarks, while the potential reliable read rate is 55.6% on 

the average, reaching more than 70% for some benchmarks. 

The results of the combination of REC and RDM are 

shown in Fig. 5, where the potential coverage increased to 

69.4% as shown in the rightmost columns. The potential 

reliable read rate also reaches 69.1% (middle column in Fig. 

5) showing a significant improvement. Since our proposed 

scheme also detects the duplicated values created by RDM, 

the leftmost bars for each benchmark in Fig. 5 shows both the 

percentage of the detected copies that already exist in the 

register file and the percentage of the duplicated registers 

created by RDM. The stacked column on the left shows these 

constituents of the detected copies, upper portion being the 

reliable read rate due to RDM. Reliable read rate due to all 

detected copies are 44.1% of all registers. 

We injected faults to the register file to see the success rate 

of the proposed schemes. After fast-forwarding 1 billion 

instructions, we injected one fault to a random location in the 

register file at a random time and we trace the fault for 10 

million instructions to see if the fault is recovered. In total, 

we inject 200 faults per benchmark and we make one fault 
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Fig. 3. Parity check and recovery flow diagram on register file architecture.   
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injection in one execution. This fault injection methodology is 

similar to prior analyses [16][7]. The left column in Fig. 6 

shows the error recovery rates with the proposed architec-

ture while the right column shows the percentage if all of the 

copies in the processor would be detected. The proposed 

design has 39.0% error recovery on the average, while the 

potential recovery rate is 70.1%. It was reported that SEU 

rate per microprocessor for 40nm technology is 0.94 FITs/Kb 

[2]. Therefore, the 160x64 register file we evaluated has 12.3 

years of MTTF, while using our proposed method the regis-

ter file’s MTTF would increase to 20.2 years.  

Finally we simulated the power consumption of a conven-

tional unprotected architecture to compare it to our schemes. 

The extra power consumption of the proposed architecture 

consists of the power of reading destination register’s 

CRPBV and CRN, writing to the bit vector field of its replica, 

parity calculation and checking, and the comparison logic. 

On the average the extra power dissipation of REC was only 

2.8% without RDM. When we include RDM as explained in 

[8], the extra power consumption becomes 18.9%. This power 

dissipation overhead is very small when compared to the 

overhead introduced by the use of ECC which is reported to 

be as high as an order of magnitude by the industry [11].  

Some contemporary processors use a technique called 

“Move Elimination” to avoid creating replicas in the register 

file for reducing power dissipation or improving perfor-

mance [1]. This technique, when used with our scheme, will 

reduce the soft error correction coverage and has a tradeoff 

between power dissipation and reliability. We leave the 

dynamic switching between the Move Elimination and the 

proposed scheme for better performance/power/reliability 

tradeoffs for future work. 

6 CONCLUSION AND FUTURE WORK  

In this paper we present Recovery through Existing Copy 

(REC) design to exploit already available replicas in the reg-

ister file to make the register file less vulnerable to soft er-

rors. For every result-producing instruction, source values 

and the result are compared to detect if the instruction is 

creating a replica value in the register file. We use parity 

protection on the main value and hold a pointer to its replica 

for error correction. We also showed that register duplication 

mechanism (RDM) as explained in [8] can be used in con-

junction with the proposed scheme for achieving better error 

coverage. When used in conjunction with [8], our scheme 

corrects 39.0% of errors, with the reliable read rate of 44.1%. 

The power dissipation overhead of REC is 2.8% but it goes 

up to 18.9% if we extend the coverage by using RDM.  

Our proposed solution provides error correction capabil-

ity with the encoding complexity comparable to that of a 

single-bit parity scheme while the area overhead comparable 

to that of the ECC. Note that we provide multi-bit error cor-

rection coverage when compared to ECC with less hardware 

overhead although we provide this coverage for only the 

values that have a redundant copy in the register file. REC is 

orthogonal to and can be used in conjunction with the lower 

level approaches to reduce soft error rate (SER) such as gate 

sizing [17]. The methods proposed in this paper can only 

exploit 31.4% of the replicas existing in the register file. If full 

replica potential existing in the register file is used, it is pos-

sible to achieve 70.1% error recovery rate with a power con-

sumption of 21.0%. Improving the coverage by exploiting the 

existing replicas more efficiently is left for future work.  
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