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Abstract. Machine-learning-based Android malware classifiers perform
badly on the detection of new malware, in particular, when they take API
calls and permissions as input features, which are the best performing
features known so far. This is mainly because signature-based features are
very sensitive to the training data and cannot capture general behaviours
of identified malware. To improve the robustness of classifiers, we study
the problem of learning and verifying unwanted behaviours abstracted
as automata. They are common patterns shared by malware instances
but rarely seen in benign applications, e.g., intercepting and forwarding
incoming SMS messages. We show that by taking the verification results
against unwanted behaviours as input features, the classification perfor-
mance of detecting new malware is improved dramatically. In particular,
the precision and recall are respectively 8 and 51 points better than those
using API calls and permissions, measured against industrial datasets
collected across several years. Our approach integrates several methods:
formal methods, machine learning and text mining techniques. It is the
first to automatically generate unwanted behaviours for Android mal-
ware detection. We also demonstrate unwanted behaviours constructed
for well-known malware families. They compare well to those described
in human-authored descriptions of these families.

Keywords: mobile security, static analysis, software verification, ma-
chine learning, malware detection

1 Introduction

Android malware, including trojans, spyware and other kinds of unwanted soft-
ware, has been increasingly seen in the wild and even on official app stores [17,
37]. To automatically detect Android malware, machine learning methods have
been applied to train malware classifiers [5, 8, 21, 22, 36]. Among them, the tool
Drebin [8] extracts a broad range of features, such as permissions, components,
API calls and intents, then trains an SVM classifier. DroidAPIMiner [5] uses
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refined API calls and relies on the KNN (k-nearest neighbours) algorithm. An-
other interesting tool is CHABADA [22] which detects outliers (abnormal API
usage) within clusters of applications by exploiting OC-SVM (one-class SVM).
All of these classifiers were trying to obtain good fits to the training data by
using different methods and variant kinds of features. However, the robustness
of malware classifiers has received much less consideration. As we will show in
Table 2, the classification performance of detecting new malware is poor, in par-
ticular, when API calls and permissions are used as input features, which are
the most popular and the best performing features known so far.

On the other hand, researchers and malware analysts have organised malware
instances into hundreds of families [30, 37], e.g., Basebridge, Geinimi, Ginmaster,
Spitmo, Zitmo, etc. These malware instances share certain unwanted behaviours,
for example, sending premium messages constantly, collecting personal informa-
tion, loading classes from hidden payloads then executing commands from re-
mote servers, and so on. Except for some inaccurate online analysis reports [1–4,
24] of identified malware families, however, people have no idea of what exactly
happens in these malware instances.

We want to learn unwanted behaviours exhibited in hundreds and thousands
of malware instances and verify the application in question, e.g., an application
submitted to an app store, to deny them. We will show that verifying these
unwanted behaviours can improve the robustness of Android malware classifiers.
Our approach integrates formal methods, machine learning, and text mining
techniques, and proceeds as follows.

− Formalisation. We approximate an Android application’s behaviours by a
finite-state automaton, that is, a set of finite control-sequences of events,
actions, and annotated API calls. Since different API calls might indicate
the same behaviour, we abstract the automaton by aggregating API calls
into permission-like phrases. We call it a behaviour automaton.

− Learning. An unwanted behaviour is a common behaviour which is shared
by malware instances and has been rarely seen in benign applications. We
develop a machine-learning-centred method to infer unwanted behaviours, by
efficiently constructing and selecting sub-automata from behaviour automata
of malware instances. This process is guided by the behavioural difference
between malware and benign applications.

− Refinement. To purify unwanted behaviours, we exploit the family names
of malware instances to help figure out the most informative unwanted be-
haviours. We compare unwanted behaviours with the human-authored de-
scriptions for malware families, to confirm that they match well with patterns
described in these descriptions.

− Verification. We check whether the application in question has any security
fault by verifying whether the intersection between its behaviour automaton
and an unwanted behaviour is not empty.

We take malware instances released in different years respectively as training,
validation and testing sets. They were collected from several industrial datasets.
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− Training & Validation. We collected 3, 000 malware instances, which have
been discovered between 2011 and 2013, and 3, 000 benign applications. They
include some famous benign applications, such as Google Talk, Amazon
Kindle, and Youtube, and so on; and all malware instances from Malware
Genome Project [37] and most malware instances from Mobile-Sandbox [30].
These malware instances have been manually investigated and organised into
around 200 families by third-party researchers and malware analysts. By
reading their online malware analysis reports [1–4, 24], we learned what bad
things would happen in these malware instances. We divided them into a
training set and a validation set. Each of them consists of 1, 500 malware
instances across all families and 1, 500 benign applications.

− Testing. We test using a collection of 1, 500 malware instances, which were
released in 2014, and 1, 500 benign applications. These malware instances
were from Intel Security and have been investigated by malware analysts.
But, there is no family information or online analysis report for them. We
have no idea of their unwanted behaviours. The collection of benign appli-
cations, which was collected in 2014, is disjoint from the collection of benign
applications used for training and validation, which was collected between
2011 and 2013. These two collections were all supplied by Intel Security.

We use API calls, permissions, and the verification results against unwanted
behaviours as input features; then apply L1-Regularized Linear Regression [32]
to train classifiers. The evaluation on the testing set shows that the precision and
recall of using unwanted behaviours are respectively 8 and 51 points better than
those of using API calls and permissions. As shown in Table 2, using API calls
and permissions as input features, can achieve very good precision and recall
on the validation set, however, its classification performance on the testing set
is poor. That is, unwanted behaviours are more general than API calls and
permissions. This is needed in practice: to mitigate over-fitting and improve the
robustness of malware classifiers.

Our approach is the first to learn unwanted behaviours from Android malware
instances. The main contributions of this paper are to:

− demonstrate that it is hard to detect new malware for classifiers trained on
identified Android malware instances, by using signature-based features;

− show that using semantics-based features like unwanted behaviours dramat-
ically improves the classification performance of new malware detection;

− supply a static analysis tool to construct behaviour automata from the byte-
code, considering a broad range of features of the Android framework;

− apply a novel machine-learning-centred algorithm to efficiently choose salient
sub-automata to characterise unwanted behaviours;

− apply a refinement approach to look up the most informative unwanted be-
haviours, by making use of the family names of malware instances.

Related Work. The idea to abstract applications’ behaviours as automata is
similar with the behaviour abstraction in [11, 34]. The behaviour automata are
close to permission-event graphs [16], and more compact than embedded call
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graphs [21] and behaviour graphs [35]. None of them has been exploited to
automatically generate verifiable properties.

The idea to learn unwanted behaviours is close to the methodology proposed
by Fredrikson et al. to synthesize malware specification [19]. In their work, a
data dependence graph with logic constraints on nodes and edges was used to
characterise an application’s behaviours. From the graphs of malware instances
and benign applications they constructed so-called significant subgraphs that
maximise the information gain. Then, the optimal collections of subgraphs were
selected using the formal concept analysis. The main drawback of this method is
its scalability. Also, the training and testing sets were very unbalanced, i.e., the
number of benign applications is much less than that of malware instances. We
overcome these limitations by using behaviour automata as the abstract model,
training and testing on large and balanced datasets.

The unwanted behaviours can be considered as instances of security au-
tomata [28]. Our verification approach is the same as the automata-theoretic
model checking [33]. In total, 19 malicious properties for Android applications
were manually constructed and specified as first-order LTL formulae in [23]. Some
benign and malicious properties specified in LTL were verified against hundreds
of Android applications in [16]. But, none of these properties was automatically
constructed.

Among others, Angluin’s [7] and Biermann’s [12] algorithms were developed
to learn regular expressions from sample finite strings. To apply similar ideas in
unwanted behaviour construction, we have to extract enough finite strings from
applications to approximate their behaviours. Compared with our construction
of behaviour automata, this would be more complex and expensive.

2 An Example Unwanted Behaviour

Let us consider a malware family called Ggtracker. A brief human-authored
description of this family which was produced by Symantec [4] is as follows.

It sends SMS messages to a premium-rate number. It monitors received
SMS messages and intercepts SMS messages. It may also steal informa-
tion from the device.

One of the unwanted behaviours we have learned from malware instances in this
family can be expressed as the regular expression: SMS RECEIVED.SEND SMS.
The approach to learn these unwanted behaviours will be elaborated in Section 4.
It denotes the behaviour of sending an SMS message out immediately after an
incoming SMS message is received without the interaction from the user. Some
behaviours of the application in question are not the same as the unwanted be-
haviours, but, they often have the unwanted behaviours as sub-sequences. For
example, the behaviour SMS RECEIVED.READ PHONE STATE.SEND SMS
contains SMS RECEIVED.SEND SMS as a subsequence. To capture behaviours
sharing the same patterns with the unwanted behaviours, if a behaviour con-
tains an unwanted behaviour as a sub-sequence, we consider this behaviour as
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unwanted as well. We call them extended unwanted behaviours. So, we generalise
from the above unwanted behaviour and construct the following automaton ψ:

// q0
SMS RECEIVED //

Σ−{click}

		
q1

SEND SMS //

Σ−{click}

		
q2

Σ−{click}

		

Here, we use the symbol Σ to denote the collection of events, actions, and
permission-like phrases and the word “click” to denote that there is no inter-
action from the user. In Section 4.2 we will show a method to refine unwanted
behaviours by making use of the family names of malware instances. To distin-
guish and compare these unwanted behaviours, we use respectively unwanted,
ext. unwanted, and ext. unwanted for families to denote them.

We now want to verify whether a target application has the above unwanted
behaviour. Let us consider the following behaviour automaton A:

// q0
MAIN //

SMS RECEIVED

��

q1
SEND SMS //

click

		
q2

SEND SMS

		

q3
READ PHONE STATE

// q4

READ PHONE STATE

OO

It is constructed from the bytecode of an Android application using static analy-
sis. Its source code and the method to construct behaviour automata will be given
in Section 3. It tells us: this application has two entries which are respectively
specified by actions MAIN and SMS RECEIVED; it will collect information like
the phone state, then send SMS messages out; the behaviour of sending SMS
messages can also be triggered by an interaction from the user, e.g., click a but-
ton, touch the screen, long-press a picture, etc., which is denoted by the word
“click”. A string accepted by this automaton characterises a behaviour of this
application. All states in this automaton are accepting states since any prefix of
an application’s behaviours is one of its behaviours as well.

Because the intersection between A and ψ is not empty, we consider this
application is unsafe with respect to the unwanted behaviour ψ. In Section 5,
we will show that this verification against unwanted behaviours can improve the
classification performance of new malware detecting.

3 Behaviour Automata

We use a simplified synthetic application to illustrate the construction of be-
haviour automata.

3.1 An Example Android Application

This application will constantly send out the device ID and the phone number
by SMS messages in the background when an incoming SMS message is received.
Its source code and part of its manifest file follow.
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public class Main extends /* Main.java */
Activity implements View.OnClickListener {
private static String info = "";
protected void onCreate(Bundle savedInstanceState) {
Intent intent = getIntent();
info = intent.getStringExtra("DEVICE_ID");
info += intent.getStringExtra("TEL_NUM");
SendSMSTask task = new SendSMSTask();
task.execute(); }

public void onClick (View v) {
SendSMSTask task = new SendSMSTask();
task.execute(); }

private class SendSMSTask extends AsyncTask<Void, Void, Void> {
protected Void doInBackground(Void... params) {

while (true) {
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("1234", null, info, null, null); }

return null; }}}

public class Receiver extends BroadcastReceiver { /* Receiver.java */
public void onReceive(Context context, Intent intent) {

Intent intent = new Intent();
intent.setAction("com.main.intent");
TelephonyManager tm = (TelephonyManager)
getBaseContext().getSystemService(Context.TELEPHONY_SERVICE);
intent.putExtra("DEVICE_ID", tm.getDeviceId());
intent.putExtra("TEL_NUM", tm.getLine1Number());
sendBroadcast(intent); }}

/* AndroidManifest.xml */
<activity android:name="com.example.Main" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<action android:name="com.main.intent" />

</intent-filter>
</activity>
<receiver android:name="com.example.Receiver" >
<intent-filter>

<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>

</receiver>

As specified in AndroidManifest.xml, the Main activity can handle a specific
Intent called “com.main.intent” and the Receiver will be triggered by an incom-
ing SMS message (SMS RECEIVED). After the Receiver collects the device ID
and the phone number, it will send them out by a broadcast with the intent
“com.main.intent”. This broadcast is then handled by the Main activity in the
method onCreate. Afterwards, SMS messages containing the device ID and the
phone number are sent out in the background in an AsyncTask.

3.2 An Example Behaviour Automaton

From the bytecode of this application, we construct the following automaton.

// q0
MAIN //

SMS RECEIVED

��

q1
AsyncTask: sendTextMessage //

click

		
q2

AsyncTask: sendTextMessage

		

q3
Receiver: getDeviceId

// q4

Receiver: getLine1Number

OO
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This automaton is constructed from finite traces of actions, events, and anno-
tated API calls using static analysis. Actions reflect what happens in the envi-
ronment and what kind of service an application requests for, e.g., an incoming
message is received, the device finishes booting, the application wants to send
an email by using the service supplied by an email-client, etc. Events denote the
interaction from the user, e.g., clicking a picture, pressing a button, scrolling
down the screen, etc. Annotated API calls tell us whether the application does
anything we are interested in. For instance, getDeviceID, getLine1Number, and
sendTextMessage are annotated API calls in the above example.

For a single behaviour there are often several related API methods. For ex-
ample, getDeviceId, getLine1Number, and getSimSerialNumber are all related
to the behaviour of reading phone state. We categorise API methods into a
set of permission-like phrases, which describe behaviours of applications, so as
to remove redundancy caused by API calls which indicate the same behaviour.
This results in an abstract automaton, so-called a behaviour automaton. It has
several advantages, including: more resilient to variants of behaviours, such as
swapping two API calls related to the same behaviour; more compact automata,
which are good for human-understanding and further analysis, by reducing the
number of labels on the edges. For instance, the behaviour automaton for the
above example is the automaton A depicted in Section 2.

3.3 The Implementaion

In our implementation, we use an extension of permission-governed API meth-
ods generated by PScout [9] as annotations. The Android platform tools aapt
and dexdump are respectively used to extract the manifest information and to
decompile the bytecode into the assembly code, from which we construct the au-
tomaton. It took around two weeks to generate automata for 10, 000 applications
using a multi-core desktop computer. More technical details are as follows.

− Multiple Entries. A class becomes an entry if a system action, e.g., MAIN
and SMS RECEIVED, has been declared as one of its intent-filters in the
manifest file. For developer-defined actions, e.g., “com.main.intent” in the
earlier example, their corresponding classes become entries only when an
instance of a class is explicitly created at some control-reachable point from
a system entry.

− Class Exploration. Starting from an entry class, from the callbacks of each
visited class, we collect new classes by exploring the new-instance and start-
component relations.

− Component life-cycle. We organise the callbacks in each Android component
according to its life-cycle, e.g., the life-cycle of AsyncTask is modelled as:

•
preExecute // •

doInBackground // •
onProgressUpdate // •

postExecute // •

− Inter-Procedural Calls. We build an inter-procedural call graph for each call-
back in each reachable class.
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− New-Instances and Start-Components. For each new-instance and each start-
component relation, we add an ε-transition from the entry-point of new-
instance or start-component statement to the entry-point of the call graph for
the target class. The original transitions for these statements in the caller’s
call graphs are replaced by ε-transitions. Intuitively, this models the asyn-
chronisation by non-deterministic choices. For example, for the statement
sendBroadcast in onReceive method, we have:

• icc:sendBroadcast:Main // • =⇒ •
ε

33ε // •
Activity:Main // •

− Callbacks. We collect the following functions as callbacks: overridden meth-
ods of Android component classes, implementations of abstract functions
declared in listener interfaces, and callbacks defined in layout files.

− Inter-Component Communications. We search through all methods for start-
component API calls, e.g., startService, startActivity, sendBroadcast, etc.
We decide whether there is a data-flow from a register containing a con-
stant to the entry-point of a start-component statement, and if so, we decide
whether this constant is a system action, a developer-defined action, or a
developer-defined class name. For the first two, we search the manifest file
for possible matched components. The last one has been dealt as a start-
component relation in the class exploration.

We don’t model registers, fields, assignments, operators, pointer-aliases, arrays
or exceptions. The choice of which features to model is a trade-off between
efficiency and precision.

4 Learning and Refining Unwanted Behaviours

Once a behaviour automaton has been constructed for each malware instance,
we want to capture the common behaviour shared by malware, which is rarely
seen in benign applications, so-called an unwanted behaviour.

4.1 Salient Sub-Automata

The space of candidate behaviours, which consists of the intersection and dif-
ference between behaviour automata, in theory, is exponential in the number of
sample applications. To combat this, we approximate this space by searching for
a “salient” subspace. The searching process is guided by the behavioural differ-
ence between malware and benign applications. We formalise this process as the
algorithm in Fig. 1.

The main process construct features takes a collection G of behaviour au-
tomata as input and outputs a set F of salient sub-automata with their weights
W . Here, a sub-automaton is salient if it is actually used in a linear classifier,
i.e., its weight is not zero.
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We divide G into N groups: G0, . . . , Gi, . . . , GN−1. For each group, we con-
struct sub-automata by computing the intersection and difference between au-
tomata within this group, i.e., merge features (Gi, ∅). This results in N feature
sets F0, . . . , Fi, . . . , FN−1. The sub-automata in each set are disjoint. Then, we
merge sub-automata from different groups, i.e., merge features (Gi, Gj). This
process stops when all groups have been merged into a single group.

Function: construct features (G,α)

Input: G – a group of behaviour automata
α – the lower bound on the classification accuracy

Output: salient sub-automata and their weights
1: Gi∈[0..N−1] ← divide the set G into N groups
2: for i ∈ [0..N − 1]

3: Fi ← merge features (Gi, ∅)
4: for (s← 2; s ≤ N ; s← s× 2)

5: for i ∈ [s− 1..N − 1]

6: j ← i− (s/2)

7: (Fi, ), (Fj , )← diff features (Fi, α), diff features (Fj , α)

8: if (i+ 1)%s = 0 then
9: Fi ← merge features (Fi, Fj)

10: elif (i+ 1) > (N/s)× s and (i+ 1)%(s/2) = 0 then
11: Fj ← merge features (Fi, Fj)

12: return diff features (Fs/2−1, α)

Function: merge features (E,F )

1: for e ∈ E
2: for f ∈ F
3: if f − e 6= ∅ then F ← F ∪ {f − e}
4: if f ∩ e 6= ∅ then F ← F ∪ {f ∩ e}
5: if f − e 6= f and f ∩ e 6= f then F ← F − {f}
6: e← e− f
7: if e 6= ∅ then F ← F ∪ {e}
8: return F

Function: diff features(F, α)

1: D ← add an equal number of randomly-chosen benign applications
2: into the set of malware instances from which F was collected
3: W,acc← train (D,F )

4: if acc > α then F ← {f ∈ F |Wf 6= 0}
5: return F,W

Fig. 1. The algorithm for the construction of salient sub-automata.

Before merging sub-automata from two different groups, for each group, we
train a linear classifier, i.e., train (D,F ), using a training set D and a feature set
F . This training set consists of behaviour automata of malware instances in the
group and an equal number of behaviour automata of randomly-chosen benign
applications. The input feature set F consists of disjoint sub-automata, which are
constructed from behaviour automata of malware instances in the group. Then,
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if the classification accuracy acc on the training set is above a lower bound α, we
return sub-automata with non-zero weights. Otherwise, we return all features in
F . This process differentiates salient features by adding benign applications. It
is formalised as the function diff features.

In our implementation, we adopt L1-Regularized Logistic Regression [32] as
the training method. This is because this method is specially designed to use
fewer features. The lower bound α on the classification accuracy is set to 90%.
We put malware instances from the same malware family into one group so
that the searching process is more directed. We have also designed and imple-
mented a multi-process program to accelerate the construction, i.e., construct
sub-automata for each group simultaneously. It took around one week to process
4, 000 malware instances using a multi-core desktop computer. At the end of the
computation, we produced around 1, 000 salient sub-automata.

4.2 Refinement

We will use these salient sub-automata to characterise unwanted behaviours. A
straightforward way is to choose automata by their weights, for example, those
with negative weights, i.e., {f ∈ F | Wf < 0}. To purify unwanted behaviours,
we want to exploit the family names of malware instances to figure out the
most informative ones, that is, to choose a small set of salient sub-automata
to characterise unwanted behaviours for each family. Here are several candidate
methods.

− Top-n-negative. For a linear classifier, intuitively, a feature with a negative
weight more likely indicates an unwanted behaviour, and a feature with a
positive weight more likely indicates a normal behaviour. This observation
leads us to refine unwanted behaviours by using sub-automata with negative
weights, i.e., choose the top-n features from the set {f ∈ F | Wf < 0} by
ranking the absolute values of their weights.

− Subset-search. For each malware family, we choose a subset X of salient sub-
automata, such that it largely covers and is strongly associated with malware
instances in this family. Formally, we use Pr(f |X) to denote the probability
that a malware instance belonging to a family f if all automata in X are
sub-automata of the behaviour automaton of this instance, and Pr(X|f)
to denote the probability that all automata in X are sub-automata of the
behaviour automaton of a malware instance if this instance belongs to f .
We use their F1-measure as the evaluation function to look up subsets. i.e.,
2Pr(f |X)Pr(X|f)
Pr(f |X)+Pr(X|f) . Since exhaustively searching a power-set space is expensive,

we adopt Beam Search [25, Chapter 6] to approximate the best K-subsets.

− TF-IDF. Another method is to consider features as terms, features from
malware instances in a family as a document, and the multi-set of features
as the corpus. We rank features by their TF-IDF (term frequency and inverse
document frequency) and choose a maximum of m features to characterise
unwanted behaviours of each family.
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We use the salient sub-automata produced in previous subsection and con-
struct unwanted behaviours for each family by combining all methods discussed
earlier. We list human-authored descriptions and learned unwanted behaviours
of 10 prevalent families in Table 1. These descriptions for families were collected
from their online analysis reports [1–4, 24].

human-authored description
learned unwanted behaviours
in regular expressions

Arspam. Sends spam SMS messages to contacts on
the compromised device [4].

1. BOOT COMPLETED . SEND SMS

Anserverbot. Downloads, installs, and executes pay-
loads [1].

1. UMS CONNECTED .LOAD CLASS∗ .
(ACCESS NETWORK STATE |READ
PHONE STATE | INTERNET) . (ACCE
SS NETWORK STATE |READ PHONE
STATE | INTERNET |LOAD CLASS)∗

Basebridge. Forwards confidential details (SMS,
IMSI, IMEI) to a remote server [2]. Downloads and
installs payloads [1, 4].

1. UMS CONNECTED . (INTERNET |
LOAD CLASS |READ PHONE STATE |
ACCESS NETWORK STATE)+

Cosha. Monitors and sends certain information to
a remote location [4].

1. MAIN . click . (click |ACCESS FINE
LOCATION |DIAL)∗ . DIAL . (click |
ACCESS FINE LOCATION |DIAL)∗ .
(INTERNET | ε)

2. SMS RECEIVED . (INTERNET |
ACCESS FINE LOCATION)+

Droiddream. Gains root access, gathers information
(device ID, IMEI, IMSI) from an infected mobile
phone and connects to several URLs in order to
upload this data [1, 2].

1. PHONE STATE . (ACCESS NETWORK

STATE |READ PHONE STATE+ .
INTERNET) . (ACCESS NETWORK
STATE | INTERNET)∗

Geinimi. Monitors and sends certain information
to a remote location [4]. Introduces botnet capa-
bilities with clear indications that command and
control (C&C) functionality could be a part of the
Geinimi code base [3].

1. ε |MAIN . click+ . VIBRATE . (click |
VIBRATE)∗ . RESTART PACKAGES .
(MAIN . (click |VIBRATE)∗ . RESTART
PACKAGES)∗

2. BOOT COMPLETED . (ACCESS
NETWORK STATE | click | INTERNET |
RESTART PACKAGES |ACCESS FINE

LOCATION)+

Ggtracker. Monitors received SMS messages and in-
tercepts SMS messages [2]

1. MAIN .READ PHONE STATE
2. SMS RECEIVED . SEND SMS

Ginmaster. Sends received SMS messages to a re-
mote server [24]. Downloads and installs applica-
tions without user concern [24].

1. BOOT COMPLETED .LOAD CLASS
2. MAIN . SEND SMS

Spitmo. Filters SMS messages to steal banking con-
firmation codes [4].

1. NEW OUTGOING CALL .READ PHONE
STATE . INTERNET . (INTERNET | ε)

Zitmo. Opens a backdoor that allows a remote at-
tacker to steal information from SMS messages re-
ceived on the compromised device [4].

1. SMS RECEIVED . SEND SMS
2. MAIN .READ PHONE STATE
3. MAIN . SEND SMS

Table 1. Learned unwanted behaviours versus human-authored descriptions.

A subjective comparison shows that these learned unwanted behaviours com-
pare well to their human-authored descriptions. Also, they reveal trigger condi-
tions of some behaviours, which were often lacking in human-authored descrip-
tions. For example, the expression BOOT COMPLETED.SEND SMS denotes
that after the device finishes booting, this application will send a message out; the
expression UMS CONNECTED.LOAD CLASS means that when a USB mass
storage is connected to the device, this application will load some code from a
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library or a hidden payload; and the unwanted behaviour for Droiddream shows
that if the phone state changes (PHONE STATE), this application will collect
information then access the Internet. Within the human-authored descriptions
displayed in Table 1, only two behaviours are not captured by learned unwanted
behaviours: “gain root access” for Droiddream and the behaviour of Spitmo.

5 Evaluation: Detecting New Malware

We are concerned with whether unwanted behaviours can help improve the ro-
bustness of malware classification. As we will show in Table 2, a linear classifier
using API calls and permissions as input features, which are the most popular
and the best performing input features for Android malware detectors [5, 8, 10,
14, 22, 36], performs badly on new malware instances (the testing set), although
it has a very good classification performance on the validation set. In this section,
we will show that unwanted behaviours improve the classification performance
of new malware detection.

The training, validation, and testing sets are the same as those described in
Section 1. Permissions and lists of API calls appearing in the code are extracted
from these applications as input features to train classifiers as baselines. We con-
struct behaviour automata for all applications, then apply methods discussed in
Section 4.1 to learn unwanted behaviours from malware instances in the training
set. We check whether the intersection between the behaviour automaton of the
application in question and an (extended) unwanted behaviour is not empty. We
collect these verification results as input features to train the target classifiers.
For both baselines and target classifiers, we use L1-Regularized Logistic Regres-
sion [32] as the training method. The classification performance is reported in
Table 2. The precision and recall are calculated as follows:

precision =
tp

tp+ fp
and recall =

tp

tp+ fn
,

where tp, fp, and fn respectively denote the true positives, false positives, and
false negatives. This table confirms that:

− The unwanted behaviours dramatically improve the classification perfor-
mance on new malware instances. The classification performance using API
calls and permissions as input features is very good on the validation set,
i.e., the precision and recall are respectively 93% and 98%. However, this is
just over-fitting to the training set, since its performance on the testing set is
bad, in particular, the precision is 65% and recall is 15%. This means that a
lot of new behaviours cannot be captured by API calls and permissions. By
using the verification results against unwanted behaviours as input features,
we improve the precision to 73% and the recall to 66%, as shown in the row
of “ext. unwanted for families”.

− The generalisation from the unwanted behaviours to the extended unwanted
behaviours helps improve the classification performance as well. We increase
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the precision from 53% (in the row of “unwanted”) to 69% (in the row of
“ext. unwanted”). Although we lose several percent of recall, we get a better
F1-measure between precision and recall.

− Refining unwanted behaviours using the family names helps improve the clas-
sification performance of detecting new malware. The precision is increased
from 69% (in the row of “ext. unwanted”) to 73% (in the row of “ext. un-
wanted for families”), while maintaining the same recall. This refinement
also helps reduce the number of features which are actually used in a linear
classifier, i.e., totally 131 features were used, rather than 581 features.

− Combining syntax-based and semantics-based features results in over-fitting
to the training dataset. By doing this, although the trained classifier can
achieve the best classification performance on the validation dataset, its clas-
sification performance on the testing dataset is poor, in particular, the recall
is as low as 7.5% (in the row of “all”).

feature validation ( 2011–13) testing (2014)
#salient/#feature

training (2011–13) precision recall precision recall

signature-based features (baselines)

permissions 89% 99% 53% 21% 59/175

apis 91% 98% 61% 15% 1443/52432

apis & permissions 93% 98% 65% 15% 735/52607

semantics-based features (targets)

unwanted 66% 91% 53% 74% 634/886

ext. unwanted 75% 87% 69% 66% 581/886

ext. unwanted for
72% 72% 73% 66% 131/131

families

mixed features

all 95% 99.5% 65% 7.5% 870/61149

Table 2. The classification performance using different features.

6 Conclusion and Further Work

To learn compact and verifiable unwanted behaviours from Android malware in-
stances is challenging and has not yet been considered. Compared with manually-
composed properties, unwanted behaviours, which are automatically constructed
from malware instances, will be much easier to be updated on the changes of
behaviours exhibited in new malware instances. To the best of our knowledge,
our approach is the first to automatically construct temporal properties from
Android malware instances. We show that unwanted behaviours help improve
the robustness of malware classifiers, in particular, they dramatically increase
the precision and recall of detecting new malware. These unwanted behaviours
can not only be used to eliminate potentially new instances of known malware
families, but also help people’s understanding of unwanted behaviours exhibited
in these families.

Some unwanted behaviours cannot be captured by our formalisation, e.g.,
gaining root access, in which specific commands are executed, and some are not
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captured precisely enough, e.g., botnet controls, in which the communication
between the app and the remote server has to be modelled. In further work,
we want to extend the current formalisation to capture more sophisticated be-
haviours precisely. We will also try to combine the output of dynamic analysis,
e.g., traces produced by CopperDroid [27] or MonitorMe [23], with that of static
analysis to approximate applications’ behaviours. It would be interesting to ex-
plore whether properties expressed in LTL are needed in the practice of Android
malware detection and whether it is possible to learn them from malware.

The verification method adopted in this paper is straightforward and simple.
More efficient and complex methods, e.g., the method discussed in [29] and model
checking pushdown systems [18], will be considered in future.

The applications in current datasets were released between 2011 and 2014.
More interesting comparison and study will be done when we get applications
released in 2015 as another testing set.

Except for the unwanted behaviours, it is worth investigating whether other
machine learning methods can help improve the robustness of malware classi-
fiers, e.g., semi-supervised learning [15], the ensemble learning [13], the adaptive
boosting [20], etc. We will also compare the robustness of popular machine meth-
ods, e.g., decision trees [26], SVM [31], naive Bayes, KNN [6], etc.

It is also interesting to study whether unwanted behaviours can convince
people of the automatic malware detection.
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