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ABSTRACT

The kernel least mean squares (KLMS) algorithm is a com-
putationally efficient nonlinear adaptive filtering method that
“kernelizes” the celebrated (linear) least mean squares al-
gorithm. We demonstrate that the least mean squares algo-
rithm is closely related to the Kalman filtering, and thus, the
KLMS can be interpreted as an approximate Bayesian filter-
ing method. This allows us to systematically develop exten-
sions of the KLMS by modifying the underlying state-space
and observation models. The resulting extensions introduce
many desirable properties such as “forgetting”, and the ability
to learn from discrete data, while retaining the computational
simplicity and time complexity of the original algorithm.

Index Terms— kernel adaptive filtering, KLMS, sequen-
tial Bayesian learning, state-space model

1. INTRODUCTION

Adaptive filtering algorithms deal with real-time learning sce-
narios, in which the environment is often nonstationary. In
general, these algorithms need to fulfill three basic require-
ments: 1) to sequentially learn from each observation; 2) to
be adaptive to changing environments; and 3) to be computa-
tionally efficient. Among many existing algorithms that fulfill
these requirements, one that has stood the test of time is the
celebrated least mean squares (LMS) algorithm. This algo-
rithm has several interesting properties, in particular its inher-
ent computational simplicity, and its implicit tracking ability
despite its assumption of stationarity.

Inspired by the success of the LMS algorithm, a “kernel-
ization” has been recently proposed under the name kernel
least mean squares (KLMS) algorithm [1]. The KLMS in-
herits many desirable properties of LMS and extends it to a
large class of nonlinear filtering algorithms. Nevertheless, it
has certain limitations that arise from its formulation as an
adaptive filter in a possibly infinite dimensional feature space.
Specifically, if implemented naively, the representation of the
filter grows linearly with the number of data samples pro-
cessed. Moreover, both the LMS and the KLMS explicitly
minimize the squared error between the desired and the es-
timated observation values, hence, they cannot be naturally

applied to problems with discrete observations, e.g., class la-
bels or neural spike counts.

In this paper, we show that LMS (and KLMS) can in-
deed be derived as an approximation of a state-space based
Bayesian filtering (section 3). In order to achieve a low com-
putational complexity, only the mode of the posterior distribu-
tion can be estimated and retained for each sample. This new
interpretation allows us to derive extensions of the KLMS al-
gorithm by tweaking the underlying state-space and observa-
tion models (section 4.1 and 4.2). Here, we extend the KLMS
algorithm to integer-valued observations, and also introduce
a forgetting factor in order to improve its tracking ability1.

2. LMS DERIVATION REVISITED

Both Widrow & Hoff’s LMS, and KLMS are derived from
mean squared error cost function [2, 1, 3] which is prevalent
in traditional signal processing. The filtering setting assumes
a linear model

f(x;w) = w�φ(x)

in the feature space where φ(x) ∈ H is the feature vector
associated with the input vector x, and w ∈ H is the vector
representation of the filter in a Hilbert space H. The follow-
ing derivation holds for both LMS and KLMS, taking into ac-
count that for LMS the feature space is the (Euclidean) input
space itself, i.e., φ(x) = x ∈ R

d, while KLMS uses a (poten-
tially) infinite dimensional (reproducing kernel) Hilbert space
induced by a positive definite kernel k : Rd×R

d → R where
k(x,y) = φ(x)

�
φ(y) [4]. The mean squared error is,

L(w) =
1

2
E[(f(x;w)− y)2],

where x and y are the random vector and variable for the input
signal and the desired output, respectively. The basic steepest
descent learning rule has the form

Δw← −η ∂L(w)

∂w
= −ηE [

(w�φ(x) − y)φ(x)] . (1)

1Extended version of this paper is available as http://arxiv.org/
abs/1310.5347 [stat.ML]



To make an online learning rule, a stochastic gradient descent
is used in practice. In particular, the learning rule of the LMS
algorithm is obtained by dropping the expectation from (1),
which yields

wi+1 ← wi − ηi(wi
�φ(xi)− yi)φ(xi). (2)

Hence, after processing i samples, the prediction for the next
sample yi+1 is given by,

ŷi+1 = wi
�φ(xi+1) =

i∑
k=1

ηekφ(xk)
�
φ(xi+1)

where ek = yk −wk
�φ(xk) is the error for each sample.

For KLMS, the prediction can be directly computed from the
samples despite f ∈ H, since φ(xi)

�
φ(xk) = k(xi,xk).

The stochastic gradient descent algorithm is guaranteed
to convergence (almost surely) to the global optimal solution
under stationary and ergodic observations if a proper step size
scheduling is used (e.g.,

∑∞
i=1 η

2
i < ∞ and

∑∞
i=1 ηi = ∞).

However, the tracking capability of LMS/KLMS is dependent
on the step size; if the step-size were annealed, it would be
tracking less efficiently as more samples are seen. Therefore,
to have constant tracking, step size is not annealed in practice,
that is, ∀i ηi = η. Then, for the price of non-zero misadjust-
ment, the algorithms can surprisingly learn continuously from
new samples, and overwrite what was learned before. Note
that this “hack” disconnects the algorithm from the graphi-
cal model Fig. 1A which inherently assumes a stationary data
generation process. In the following section, we show how
this tracking ability can be derived from first principles.

3. BAYESIAN INTERPRETATION

A slowly changing system can be explicitly described by a
probabilistic model with latent dynamics on the parameter. In
such a model, each parameter associated with each sample or
time is considered as an interdependent random (latent) vari-
able, as illustrated in Fig. 1B. Our goal is to show that the
KLMS is an approximate sequential inference for wi. We
start with a diffusion process as a reasonable model for non-
stationarity:

P (wk+1|wk) = N (wk+1;wk, σ
2
dI), (3)

whereN denotes a Gaussian distribution in the feature space,
and σ2

d is the variance of diffusion on each direction. The
likelihood model is assumed to be a linear–Gaussian model,
similar to the stationary case,

P (yk|xk,wk) = N (yk;w
�
k φ(xk), σ

2
n) (4)

where σ2
n is the observation noise variance. We remark that

the conditional distributions (3) and (4) for the finite dimen-
sional feature space is a special case of the Kalman filter
model with linear dynamics.

A B

Fig. 1. Graphical models illustrating the contrast between
stationary and nonstationary generative processes. The ar-
rows signify the conditional dependence between variables.
Gray shaded circles denote observed variables, and the box
denotes repetition. (A) Stationary model. Each observation
pair (xi, yi) is assumed to have the same relation w as in
the classic regression setting. Original derivation of LMS is
given in this context. (B) Non-stationary model. The weight
w evolves over time—hence the relation between (xi, yi)—
through diffusion with parameter σd. The Kalman filter is
derived under this model. We show the KLMS can also be
derived from the nonstationary model.

The posterior weight distribution given data p(wk|Dk)
is fully described by its mean and covariance, since we as-
sume Gaussianity in this model [5]. Let P (wk−1|Dk−1) =
N (µk−1,Σk−1), then a single linear Gaussian observation
results in a one step evolution of the posterior as another
Gaussian P (wk|Dk) = N (µk,Σk), with

Σ−1
k = Σ−1

k−1 +
1

σ2
n

φ(xk)φ(xk)
�

µk = Σk

[
1

σ2
n

ykφ(xk) +Σ−1
k−1µk−1

]
.

This recursion can be solved efficiently, and the solution is
known as the extended recursive least squares algorithm [6].
However, it requires a quadratic number of operations in
terms of the dimension of the feature vector for updating the
(inverse) covariancematrix. In case of an infinite-dimensional
feature space, the feature vector dimension grows linearly
with the number of observations, rendering this approach pro-
hibitive. Therefore, in order to obtain a linear time complexity
algorithm, we assume the posterior to be concentrated around
the maximum. In other words, we approximate the posterior
as a delta function at the maximum a posteriori (MAP) es-
timate P (wk|Dk) � δwMAP

k
before inferring P (wk+1|Dk).

Below, we show the steps for online inference rules using this
approximation.

First, note that the approximation is equivalent to assum-
ing an isotropic Gaussian around the MAP estimate for the
previous sample.

P (wk+1|Dk) =

∫
P (wk+1|wk)P (wk|Dk)dwk
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Fig. 2. Tracking example of the Poisson extension of KLMS
algorithm. The observations model a slowly drifting tuning
curve of a simple cell in V1. The tuning curve is modeled
as an exponentiated cosine λ(x) = exp(4 cos(x− μ)− 0.1)
where μ constantly drifted 100 degrees during the 1000 it-
erations. We measure the normalized estimation error be-
tween the true tuning curve and the estimated curve. Insets
show the actual function estimate at 25, 50, 100, 500 time
steps. Gray lines show 11 repeats of the experiment, and
the dark curves correspond to their average. The kernel was
k(x, y) = exp(−(x− y)2/100) and σ2

d = 0.1.

�
∫
P (wk+1|wk)δ(w

MAP
k )dwk

= P (wk+1|wMAP
k ) = N (wMAP

k , σ2
dI). (5)

Using Bayes’ rule, the posterior weight distribution is,

P (wk+1|Dk+1) ∝ P (yk+1|xk+1,wk+1)P (wk+1|Dk)

= N (yk+1;w
�
k+1φ(xk+1), σ

2
n) · N (wk+1;w

MAP
k , σ2

dI)

= N (wk+1;w
MAP
k+1,Σk+1)

where the parameters for the posterior are,

Σ−1
k+1 =

1

σ2
d

I+
1

σ2
n

φ(xk+1)φ(xk+1)
�

wMAP
k+1 = Σk+1

[
wMAP

k

σ2
d

+
yk+1φ(xk+1)

σ2
n

]
.

This can be simplified using the matrix inversion lemma,

wMAP
k+1 = wMAP

k +
η′(yk+1 −wMAP

k
�φ(xk+1))φ(xk+1)

1 + η′φ(xk+1)
�φ(xk+1)

(6)

where the learning rate is determined by the diffusion-to-
noise ratio η′ = σ2

d/σ
2
n. This is very similar to the normal-

ized LMS (NLMS) update rule, although not identical. If the
kernel is normalized, such that k(x,x) = 1, then it can be
simply rewritten as,

wMAP
k+1 = wMAP

k + ηekφ(xk) (7)

where η = η′/(1 + η′). Note that the stochastic gradient
derivation (2) is identical to the approximate Bayesian learn-
ing rule (7); we have rederived KLMS with a state-space
model. Also, note that 0 < η < 1, thus we have a frequentist
convergence guarantee of the weight vector to the optimal
weight vector w∗ in mean in a stationary environment, i.e.,
limk→∞ E[wk]→ w∗ [1].

4. EXTENSTIONS

4.1. Forgetful dynamics for KLMS

Instead of a pure random walk dynamics (3), we add a leakage
towards the origin, thus effectively forgetting the past expo-
nentially. The resulting diffusion is a discrete-time analogue
of the Ornstein-Uhlenbeck process (equivalently, a first order
auto-regressive process).

p(wk+1|wk) = N (λwk, σ
2
d). (8)

The asymptotic marginal distribution of the prior dynamics is
N (0, σ2

d/(1 − λ2)I), hence the weights are isotropically dis-
tributed around the origin in the absence of observation. If
k(x,x) is constant, the norm in the Hilbert space is propor-
tional to the function norm, and the norm of the corresponding
functions follows a Gaussian distribution centered around the
origin. As a result the learning rule (6) becomes

wMAP
k = λwMAP

k−1 +
η(yk − λwMAP�

k−1 φ(xk))

1 + η‖φ(xk)‖2 φ(xk). (9)

This learning rule (9) is very similar to that of NORMA [2].
Note that the learning rule (9) can be rewritten as,

wMAP
k =

k∑
i=1

λk−iβiφ(xi), (10)

where βi is a scalar corresponding to the coefficient at the
learning step. We can see that each effective coefficient
λk−iβi for each φ(xi) shrinks geometrically over time. Thus,
the effect of older observation to the current weight estimate
is small in general. Note, however, that the algorithm forgets
not by making the covariance larger as in the Kalman filter,
but by changing the mean, as discussed in [7, 8].

4.2. Novel observations models for KLMS

Poisson likelihood is widely used when the observations are
natural numbers: 0, 1, 2, · · · . For example, in neuroscience,
neural response is often quantified by the number of spikes,
and tracking how the neural code changes during experiment
is of great importance [9]. We use the canonical inverse
link function (exponential) for the Poisson distribution to
map the linear (or nonlinear) function from the input to the
non-negative rate parameter, i.e.,

P (yk|xk,wk) = Poisson(yk; exp(w
�
k φ(xk))). (11)
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Fig. 3. (Top) Tracking results on a nonlinear Rayleigh fading
channel, using data measured on a test bed with fast time-
varying channels. One-step ahead prediction error and aver-
age over time are compared for 4 algorithms. fKLMS denotes
the forgetting extension of KLMS (9) (Bottom) Time varying
properties of a 4-channel MIMO system. Real part of the lin-
ear stage is measured. When the values are close to 0, the
system operates almost linearly.

To derive the adaptive filtering algorithm, once again, we ap-
proximate the current state given the previous observations as
(5), for which the log prior is,

logP (wk|Dk−1) = − 1

2σ2
d

(λwMAP
k−1−wk)

�(λwMAP
k−1−wk)+c.

Therefore, using Bayes’ rule, the posterior at time k is,

logP (wk|Dk) = logP (yk|xk,wk) + logP (wk|Dk−1)

= ykw
�
k φ(xk)− exp(w�

k φ(xk))

− 1

2σ2
d

(λwMAP
k−1 −wk)

�(λwMAP
k−1 −wk),

where irrelevant constants are omitted. We need to maximize
this log-posterior over wk to estimate wMAP

k . The stationary
condition ∂

∂wk
logP (wk|Dk) = 0, implies,

(yk − exp(wMAP
k

�φ(xk)))φ(xk) =
λwMAP

k−1 −wMAP
k

2σ2
d

(12)

We observe that the solution of (12) can be expressed as,

wMAP
k = λwMAP

k−1 + αkφ(xk),

where αk is a scalar, and, therefore, we can rewrite the log-
posterior as,

J(αk) = yk(log(ψk) + αk)− ψk exp(αk)− α2
k

2σ2
d

where ψk = exp(λwMAP
k−1

�φ(xk)), and we have assumed a
normalized kernel for simplicity.

Thus, we reduce the problem of finding an infinite-
dimensional weight vector to a one-dimensional optimization.
Although there is no analytical solution, the cost function
J(αk) is strictly concave and therefore, its maximum can be
easily found by existing optimization tools. The complexity
of this algorithm is still O(n), with a constant overhead for
solving a concave maximization problem at each step. We
demonstrate its performance on a neurally inspired example
in Fig. 2. A typical nonlinear response function (tuning curve)
is set to shift its center slowly, creating a non-stationary track-
ing problem. The Poisson-KLMS extension correctly tracks,
and maintains a small MSE throughout the experiment.

5. NONLINEAR AND NONSTATIONARY CHANNEL

To test tracking, we acquired data from a wireless commu-
nication test bed that is used to evaluate the performance of
digital communication systems in realistic indoor environ-
ments. The platform is composed of several transmit and
receive nodes, each one including a radio-frequency front-
end and baseband hardware for signal generation and acqui-
sition. The front-end also incorporates a programmable vari-
able attenuator that causes signal saturation (see [10] for de-
tails). Using the hardware platform, we transmitted clipped
orthogonal frequency-division multiplexing (OFDM) signals
centered at 5.4 GHz over real frequency-selective and time-
varying channels, with normalized Doppler frequency around
10−3. The transmit amplifier was operated close to saturation.
In this experiment the transmitted and received signals are
used to track the variations of the nonlinear channel. We com-
pare 4 algorithms with hyperparameters tuned using the first
500 samples [2, 1, 11]. Fig. 3 displays the one-step ahead pre-
diction normalized mean squared error (NMSE) of the track-
ing experiment. Quantized KLMS [11] and KLMS extended
with forgetful dynamics have almost identical performance.

6. CONCLUSION

In this paper, we derived a family of linear time and space
complexity kernel adaptive filtering algorithms from Bayesian
filtering by maintaining only the mode of the posterior at each
iteration and discarding the covariance. One of the basic re-
sulting algorithms is the original KLMS. The tracking ability
of LMS/KLMS is usually understood by its stochastic nature
that allows it to continually adjust itself to the non-stationary
environment. We provide an alternate explanation of this
mechanism by showing the KLMS can also be seen as an
approximation to state-space modeling which possesses ex-
plicit tracking abilities. Our framework allows flexibility in
the state-space models which can be used to induce forgetting
behavior, as well as novel observation noise models, such as
Poisson and Bernoulli.
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