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Abstract Automatic speaker verification (ASV) is to automatically accept or re-
ject a claimed identity based on a speech sample. Recently, individual studies have
confirmed the vulnerability of state-of-the-art text-independent ASV systems un-
der replay, speech synthesis and voice conversion attacks on various databases.
However, the behaviours of text-dependent ASV systems have not been systemat-
ically assessed in the face of various spoofing attacks. In this work, we first conduct
a systematic analysis of text-dependent ASV systems to replay and voice conver-
sion attacks using the same protocol and database, in particular the RSR2015
database which represents mobile device quality speech. We then analyse the in-
terplay of voice conversion and speaker verification by linking the voice conversion
objective evaluation measures with the speaker verification error rates to take a
look at the vulnerabilities from the perspective of voice conversion.

Keywords Speaker verification · Spoofing attack · Replay · Voice conversion ·
Security

1 Introduction

Automatic speaker verification (ASV) [17,28] is a low-cost biometric solution. Unlike
other forms of biometrics, such as fingerprint or iris recognition, a speech sample
can be acquired remotely using existing landline, cellular and voice-over IP com-
munication channels without additional hardware. ASV technology has already
been deployed in applications like real-time caller verification [34,6] and smart-
phone login [27] to validate transactions in e-commerce and to safeguard personal
information.
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ASV systems typically operate in one of the two input modes: text-independent

or text-dependent. Text-independent mode assumes free text, while text-dependent
one enforces or prompts the user to speak a given pass-phrase. Text-independent
systems are often used for off-line screening, indexing or forensic uses, involving
non co-operative users. They can be used to verify customer’s identity from free-
worded conversion for example in call centres. Text-dependent systems requiring
co-operative users [5,13], in turn, are commonly used for authentication applica-
tions in view of their relative high recognition accuracy.

It is understood that there is no absolutely secure biometrics, and a biometric
authentication system can always be intentionally circumvented or spoofed [36].
Since ASV usually takes place without a face-to-face contact with a human opera-
tor, spoofing to ASV becomes a fundamental concern when deploying a system. As
reviewed in [45], there are at least four types of spoofing attacks: impersonation,
replay, speech synthesis and voice conversion. Among them, replay, speech synthe-
sis and voice conversion are three more effective spoofing attacks. However, past
work generally focuses on a specific spoofing attacks, and makes the comparison
to be difficult. In our previous work [47], speech synthesis and voice conversion
attacks have been analysed and compared using the same database in the context
of text-independent ASV. In this work, we focus on replay and voice conversion
attacks in the context of text-dependent ASV.

1.1 Related work

Impersonation by human beings as a natural way to spoof ASV systems has received
attention in [24,10,12]. This attack has occasionally been successful in spoofing
speaker verification systems. However, impersonators tend to mimic prosody, pro-
nunciation and lexicon rather than the spectral cues used by ASV systems. Ap-
parently, there are other more consistent ways of attack as facilitated by recent
advances in speech processing to spoof ASV systems.

Speech synthesis which generates speech with a decent target speaker voice
quality presents an emerging threat to the security of speaker verification systems.
Having enough technical skills, one can easily produce speaker adapted voices us-
ing tools such as Festival1. Indeed, unit selection [14], statistical parametric [54]
and hybrid [35] synthesis methods are able to generate speech adapted to a target
speaker with an acceptable quality. Generally speaking, a modern statistical para-
metric synthesis technique first trains an average voice model from large corpus,
which is subsequently adapted to a specific target speaker using a small amount
of adaptation utterances [53,51]. Although speech synthesis has been shown to
increase the error rates of state-of-the-art systems to unacceptable levels in [31,
32,38,8,47], it is not straightforward to perform spoofing, as it requires text input.

Aside from impersonation and speech synthesis, replay – the rendering of pre-
viously recorded target speaker utterances [30,43] – might be the most common
spoofing technique to ASV, as it does not require the attackers to have any speech
technology knowledge. Although such attack might not be effective in generating
utterances for specific content to maintain a live conversation in call-centre appli-

1 http://festvox.org/index.html
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cations, it is still one of the most effective attacks against authentication systems
which use fixed pass-phrase.

Voice conversion [41] that offers another effective way to generate synthetic
speech with a decent voice quality, attempts to achieve the same effect as human
impersonation and adapted speech synthesis, but operates on a speech signal itself.
Most voice conversion techniques do not require transcriptions, prosody prediction,
or additional off-line corpora. During the execution of spoofing, voice conversion is
hand-free without requiring any additional efforts by human. The past individual
studies [3,33,4,15,2,18,48,20] have shown that voice conversion techniques are
able to increase the error rates of state-of-the-art classifiers to unacceptable levels.

1.2 Motivation and contributions

A recent review [45] highlights that a) lacking of standard databases makes the
comparison across spoofing types difficult; and b) development of protocols and
countermeasures for speaker verification lags behind that for other biometric sys-
tems, even though there is increasingly accumulating work towards developing
countermeasures [44,52,1] and their integrations with speaker verification sys-
tem [48,16]. In this work, we will be a step closer to better understanding how
spoofing attacks and speaker verification performance are interrelated, which can
be useful for designing spoofing protocols or evaluation metrics. Our contributions
are three-fold.

Firstly, we attempt to analyse the spoofing effects of voice conversion and re-
play attacks using the same protocol, and evaluate vulnerability of text-dependent
systems on the RSR2015 corpus [22,23]. This is the first step to make a standard
text-dependent spoofing database that includes multiple spoofing types. With this
protocol, we provide a detailed look into the vulnerability of ASV systems, and
compare the effectiveness of different spoofing attacks to text-dependent speaker
verification.

Secondly, we study the interplay of voice conversion quality and speaker recog-
nition performance. We note that speaker similarity is central to both applications;
measuring it is the sole task of speaker verification systems but it also finds use
in objective evaluations of the performance of voice conversion methods. Even
if speaker verification systems are occasionally used as ‘black-box’ evaluators of
speaker similarity in voice conversion studies, they are massively data-driven com-
plex systems and require keeping some data for universal background modelling
(UBM) [37] or other uses. Consequently, speaker similarity in voice conversion sys-
tems is usually assessed through direct acoustic distortion measurement between
the converted and the target features, enabling a convenient and inexpensive pro-
cedure to optimise parameters of a new voice conversion technique or to compare
different voice conversion methods. But from the perspective of spoofing attacks,
the relevant question is whether acoustic distortion is a useful predictor of the
false acceptance rate under spoofing attacks?

The framework used in this study is presented in Figure 1. We follow the
standard speaker verification architecture which is supposed to take only natural
voice as input, and add a voice conversion system or a replay mechanics at the input
point to create spoofing attacks. In a genuine trial, a genuine voice goes directly
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to the feature extraction module, while in an impostor trial, an impostor’s voice
passes through the voice conversion to impersonate the target genuine speaker.

Fig. 1 Illustration of the vulnerabilities evaluation framework used in this study.

2 Vulnerability of speaker verification to attacks

When deploying a speaker verification system, the system is expected to be accu-
rate to regular clients, and also robust against spoofing attacks. As pointed out
in [11,45], spoofing attacks can take place at two locations in a speaker verifica-
tion system: at the microphone sensor and during the transmission of the acquired
speech signal. At the sensor level, an impostor, also called an adversary, could com-
promise the system by replaying a pre-recorded speech signal or impersonating the
target speaker at the sensor. During the transmission, the acquired speech signal
could be replaced by a falsifying one. Generally, a spoofing attack is to employ a
forged signal as the system input in either of the above two locations.

A typical speaker verification system is optimised to accept genuine speakers
and to reject impostors, assuming natural human speech. Speech consists of three
primary constituents: voice timbre, prosody and language content. Speakers can
therefore be characterised at three different levels [17,29]: a) short-term spectrum;
b) prosody; and c) high-level idiolectical/lexical features. Being information-rich
and practical to compute, spectral features — usually, the Mel-Frequency Cepstral
Coefficients (MFCCs) [7] — are the primary features used by modern recognisers,
and prosodic features may be added to further enhance accuracy [39,9,19].

As discussed in [50], feature extraction in speaker verification is one of the
weak links. In a replay attack, an attacker plays a pre-recorded speech from the
exact target speaker to spoof a text-dependent speaker verification system. Hence,
it is possible for the replayed speech to have exactly the same spectral attributes,
prosody and high-level lexical features as that of the target speaker, presuming the
text-dependent speaker verification system uses fixed pass-phase. Figure 2 presents
a comparison of a genuine speech and its corresponding replayed speech. It is
observed that it is hard to distinguish the spectrograms between the genuine and
replayed speech. if spectral features are extracted from the replayed spectrogram,
it is possible to achieve a high verification score that matches the target speaker,
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and hence the speaker verification system will lose the ability to prevent replay
attacks.
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Fig. 2 Comparison of a genuine speech and its corresponding replay speech. It is hard to
distinguish between genuine and replay speech from the time-domain and spectrum-domain
representations. The Figure is adopted from [46]

Voice conversion operates on voice timbre and prosody in order to mimic a
target speaker’s voice. It is hence able to move an impostor’s spectral feature and
prosodic feature distributions towards those of a genuine target speaker’s distri-
bution. Utilising pairs of training vectors {(xi,yi)} from the source and the target
speakers, a linear or nonlinear mapping function y = F (x) is then trained to ap-
proximate the distribution of target speaker for any new inputs x, presenting a
great risk to speaker verification systems that utilise similar features. We hence
argue that short-term spectral and prosodic features are two weak links of a veri-
fication system facing voice conversion attacks.

In this work, we use joint density Gaussian mixture model (JD-GMM) and a
harmonic plus noise model (HNM) based vocoder2 to perform voice conversion.
Mel-Cepstral coefficients (MCCs) are converted using JD-GMM described in [49]
while F0 is converted by equalizing the means and variances of source and target
speakers in log-scale.

3 Speaker verification systems

In this study, we investigate the effect of spoofing attacks against text-dependent
systems. To allow a tractable analysis, we use a hierarchical acoustic modeling [26,
21] as shown in Fig. 3, in which two variants of text-dependent speaker models
are progressively trained from the same universal background model, according to
the formulation of the maximum a posterior (MAP) adaptation [37,25].

We consider two text-dependent classifiers:

– TD-GMM: In this setup, a speaker- and text-dependent GMM model is adapted
from a universal background model (UBM). The top and middle layers in Fig.
3 hence correspond to the good old GMM-UBM [37]. In practice, GMMs are
pass-phrase dependent, so we refer to this GMM-UBM model as GMM-based

text-dependent model (TD-GMM).

2 http://aholab.ehu.es/ahocoder/



6 Zhizheng Wu, Haizhou Li

Fig. 3 Hierarchical acoustic modelling approach for text-dependent speaker verification.

– TD-HMM: In the bottom layer, a speaker-dependent and sentence-level hid-
den Markov model (HMM) is adapted from the middle layer TD-GMM. In
particular, each state of the HMM is a GMM adapted from the TD-GMM of
the speaker by using the MAP criteria. We hence call this pass-phrase and
speaker-dependent HMM approach as HMM-based text-dependent model (TD-
HMM).

We consider the structure in Fig. 3 to present TD-GMM and TD-HMM for
two reasons. Firstly, the RSR2015 text-dependent speaker verification database
consists of utterances with very short duration (3 seconds of nominal speech, see
Section 4.1). For short-duration training and test utterances, the conventional
GMM-UBM with MAP adaptation has shown to perform equally well as compared
to JFA or PLDA [40]. Second, a more tractable analysis is possible given that the
bottom layer HMM models additional temporal information absent in the middle
layer GMM.

The likelihood ratio of TD-GMM is calculated between λUBM and λTD−GMM,
and, similarly, the likelihood score of TD-HMM is obtained between λUBM and
λTD−HMM.

All the speaker verification systems use the same acoustic front-end consist-
ing of 12 MFCCs with delta and delta-delta coefficients computed via 27-channel
mel-frequency filterbank. RASTA filtering, voice activity detection (VAD) and ut-
terance cepstrum mean-variance normalization (CMVN) are employed as postpro-
cessing. The VAD decisions of test segments are derived from the original baseline
datasets.

4 Database and protocol

4.1 Spoofing datasets

In light of the mass market adoption of speaker verification technology in smart-
phone [27], we decide to focus on mobile device quality speech. We use the nine
sessions of the first two parts of the RSR2015 database [22]. This corpus has
been recorded using multiple mobile devices and smartphones over nine recording
sessions and this corpus can be used as a standard benchmark database for text-
dependent speaker verification system development and evaluation. During the
recording, a speaker reads 30 pass-phrases for each session of Part I and 30 short
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commands for each session of Part II. The average duration of the pass-phrases is
3.2 seconds. Two non-overlapping sets of speakers are defined: a background set
including 60 male and 60 female speakers, and an evaluation set of 30 male and
30 female speakers. Speakers from the background set are reserved for training a
universal background model (UBM) [37] needed for constructing our classifiers.

For the experiments, each speaker from the evaluation set is used both as a
target speaker and as an impostor against other speakers of same gender. Out
of the 9 sessions available for each speaker, three sessions are used for enrolment
(sessions 1, 4 and 7) while the six remaining sessions are used as test materials.
Note that enrolment and test sessions are defined so that the recording device used
for verification test is different from the one used during the enrolment. To avoid
overlapping between speaker model training and conversion function training, we
further split the 30 sentences into two groups. Pass-phrases 1 to 10 are used for
speaker verification experiments while sentences 11 to 30 are set aside for training
the voice conversion function. Thus, 60 utterances from each speaker are used to
produce genuine and impostor trials (10 pass-phrases and 6 sessions). The statistics
of the trials are presented in Table 1. Given this protocol, we note that only the
genuine and impostor trials with matched pass-phrase and matched gender are
considered. That is, the attacker knows the prompted pass-phrase.

To produce replay trials, the six genuine sessions used as testing materials were
replayed through a laptop and at the same time recorded by a laptop to produce
the replayed version of the genuine speech. In this work, we assume the attackers
know the gender information of the target speaker and can obtain the prompted
pass-phrase. In this way, we only considered the genuine and impostor trials that
with matched pass-phase and gender. We note that the replay version of the target
speaker’s verification trial is used as the verification trial to match the exact target
speaker’s model, assuming the attacker has recorded the target speaker’s previous
verification samples. We also note that for different attackers to spoof the same
target speaker, we repeated the same replay speech, and this explains why the
number of replay trials is the same as that of impostor trials.

Table 1 Statistics of the baseline and spoofing datasets from RSR2015 database (VC=voice
conversion).

Male Female Total

Target speakers 30 30 60
Genuine trials 1,796 1,797 3,593
Impostor trials 51,621 51,853 103,474
Impostor trials via Replay 51,621 51,853 103,474
Impostor trials via VC 51,621 51,853 103,474

To generate the voice conversion spoofing datasets, we pass the test samples
for the impostor trials through voice conversion while keeping the genuine trials
untouched. This allows us to focus solely on the effects of spoofing attack. We
design the spoofing attack datasets by repeating the following three steps for each
impostor trial:

– Estimate a conversion function between an impostor and a target genuine
speaker’s speech;

– Employ the conversion function to modify each test sample of the impostor;
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– Adopt the converted speech sample as a testing sample of the impostor.

In practice, we use the JD-GMM method to generate the voice conversion spoofing
dataset, and make the number of converted trials be the same as that of the original
impostor trials.

We pool the genuine trials and original impostor trials as a baseline test, and
at the same time pool the genuine trials and impostor trials via replay or voice
conversion as a spoofing attack test. We expect to see the decisions of genuine
trials remain the same between the baseline and the spoofing test, and an increase
of false alarm arising from the converted speech samples. In this way, we are able
to compare the performance and examine the spoofing attack effect. The actual
numbers of trials are presented in Table 1.

4.2 Performance evaluation measures

A speaker verification trial where the test and enrolment utterances share the same
speaker identity variable is a genuine trial; otherwise, we call it an impostor trial.
Given a test sample, the acceptance or rejection decision made by a verification sys-
tem falls into one of the four groups shown in Table 2, where false acceptance and
false rejection are the misclassifications. Often classifier parameters are optimized
to obtain low equal error rate (EER), corresponding to a verification threshold at
with false acceptance rate (FAR) and false rejection rate (FRR) are equal.

Table 2 Four groups of trial decisions in speaker verification.

Decision

Acceptance Rejection

Genuine test Correct acceptance False rejection
Impostor test False acceptance Correct rejection

In a spoofing attack scenario, a speaker verification system is unaware of the
attack and is deployed with a fixed threshold, assuming that the testing samples
are natural human voices. FAR is therefore a natural criterion for evaluating vul-
nerabilities of a speaker verification system under spoofing attack. Formally, let
FAR(θ,D) and FRR(θ,D) denote FAR and FRR, evaluated at operating point
(threshold) θ on dataset (corpus) D. Let Dbase denote a baseline corpus consisting
of genuine and zero-effort impostor trials (i.e. no dedicated spoofing attempts).
Further, let Dattack be a corpus that shares the same genuine trials as Dbase but
in which all the impostor trials have been replaced by voice conversion samples
simulating a dedicated attack. With these notations, our protocol is:

1. Determine EER threshold on Dbase:

θEER = arg min
θ
|FRR(θ,Dbase)− FAR(θ,Dbase)|

2. Compute EER(θEER,Dattack) and FAR(θEER,Dattack) and observe their rela-
tive increase w.r.t. baseline dataset.
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5 Experimental results and analysis

The objective of our experiments is to evaluate the vulnerabilities of automatic
speaker verification systems under replay and voice conversion spoofing. As the
study involves both speaker verification, replay and voice conversion techniques,
we look into the research problem from two different angles: a) examining the per-
formance of speaker verification systems under spoofing attacks; and b) analysing
the effectiveness of replay and voice conversion as a spoofing approach. In this
work, details of the speaker verification systems, such as feature extraction and
speaker modelling techniques, are assumed unknown to an attacker.

In this section, we present three case studies. The first case study evaluates
the vulnerability of two variants of text-dependent ASV systems under the same
replay attack, while in the second case study, we examine the vulnerabilities of the
same two variants of text-dependent systems under voice conversion attacks, and
also study how the number of JD-GMM training utterances affects the outcomes.
In the third case study, we extend the second case study by having an inquiry into
the relationship between voice conversion performance and the respective effects
of spoofing attacks to gain further insights.

5.1 Case study 1: Overall effect of replay attack to speaker verification accuracy

In the first set of experiment, we examined the vulnerability of ASV systems to
replay attack. EER and FAR results before and after replay spoofing are shown in
Table 3. In the face of replay, the EERs of the HMM-UBM systems increases from
2.92% and 2.39% to 25.56% and 20.05% for male and female speakers, respectively,
and that of the GMM-UBM systems also increase considerably from 4.01% and
3.67% to 24.94% and 21.95% from male and female, respectively. In general, the
performance in terms of EERs of the two systems is degraded considerably. This
observation is consistent with previous studies over relatively smaller datasets.

Table 3 Performance of text-dependent speaker verification systems under voice conversion
and replay spoofing attacks. False acceptance rate (FAR) is obtained by setting the threshold
to the equal error rate point on baseline dataset. Assuming the impostor knows the exact
pass-phrases.

Spoofing
EER (%) FAR (%)

TD-HMM TD-GMM TD-HMM TD-GMM
Male Female Male Female Male Female Male Female

None (Baseline) 2.92 2.39 4.01 3.67 2.92 2.39 4.01 3.67

Replay 25.56 20.05 24.94 21.95 78.36 73.14 74.32 65.28

VC-2 3.90 1.78 5.90 3.98 4.80 1.06 9.12 4.30
VC-5 5.07 2.51 8.24 5.84 9.17 2.64 16.94 8.43
VC-10 7.04 2.82 11.28 6.88 16.20 3.77 26.60 11.19
VC-20 8.30 3.12 13.34 7.31 21.87 4.68 33.23 13.20

FARs are more related to spoofing attacks, and hence we calculated FARs by
setting the decision threshold at the EER point in order to compare the perfor-
mance before and after spoofing. The FARs are presented in Table 3. It is observed
that in the face of replay spoofing, the FARs of the HMM-UBM system increase
to 78.36% and 73.14% for male and female, respectively, and the FARs of the



10 Zhizheng Wu, Haizhou Li

GMM-UBM system also increase considerably, that is from 4.01% and 3.67% to
74.32% and 65.28% for male and female, respectively. Even though the perfor-
mance of the HMM-UBM system is better than that of the GMM-UBM system in
terms of EERs and FARs, the two systems are both damaged and achieve similar
performance under the same replay spoofing.

We further take a look at the classifier score distributions before and after
replay spoofing, as the increase of EERs and FARs reflects the shift of underlying
classifier scores as a result of replay spoofing. The score distributions of the HMM-
UBM system before and after replay spoofing are presented in Figure 4. It is clearly
observed that as a result of the replay spoofing, the impostor score distribution
is moved towards that of the target genuine scores, and such score shifting makes
a considerable overlap between the impostor’s score distribution and that of the
target genuine. This phenomenon also explains the reason why the ASV systems
are compromised in the face of replay attacks.
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Fig. 4 Score distributions of the male HMM-UBM system before and after replay attacks.

5.2 Case study 2: Overall effect of voice conversion attacks to speaker verification
accuracy

In the second case study, we examine the vulnerabilities of two variants of text-
dependent systems, and also study how the number of JD-GMM training utter-
ances affects the outcomes. In the experiments, we vary the number of parallel
training utterances from 2 to 20. In particular, we used 2, 5, 10 and 20 utterances,
respectively, to estimate the conversion function. They are labelled as VC-2, VC-5,
VC-10 and VC-20 in Table 3, and the corresponding number of Gaussian compo-
nents in JD-GMM is empirically set to 4, 8, 16 and 32, respectively.

We first compare the EERs of TD-HMM speaker verification systems before
and after voice conversion attack. As shown in Table 3, before spoofing attack,
the EERs of TD-HMM systems are 2.92 % and 2.39 % for male and female,
respectively. As a result of spoofing attack using 2 utterances for training, the
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EER of male speakers increases to 3.90 %, however, the EER of female speakers
decreases to 1.78 %. This might be because of too few voice conversion training
utterances. Indeed, when we increase the number of parallel training utterances,
the EERs increase to 8.30 % and 3.12 % for male and female, respectively. When
more than 5 utterances are used to estimate the conversion function, the EERs
after spoofing attack are higher than that before spoofing attack for both male
and female.

We then evaluate the performance of TD-GMM speaker verification systems.
Before spoofing attack, the EERs are 4.01 % and 3.67 % for male and female,
respectively, which are slightly higher than that of TD-HMM systems. As presented
in Table 3, even when only 2 utterances are used for estimating the voice conversion
function, EERs increase over baseline for both genders. When using 20 utterances
to estimate a conversion function, the EERs increase to 13.34 % and 7.31 % for
male and female, respectively. We note that for both TD-HMM and TD-GMM
systems, male speakers have higher EERs than those of female speakers.

The FAR results of both TD-HMM and TD-GMM are also presented in Table
3. When using 20 utterances to train a conversion function, the FARs of the TD-
HMM verification systems increase from 2.93 % and 2.39 % of baseline to 21.87 %
and 4.68 % after spoofing attack for male and female, respectively. The FARs of
the TD-GMM systems increase from 4.01 % and 3.67 % before spoofing attack to
33.23 % and 13.20 % after spoofing attack for male and female, respectively. We
observe a similar effect for EERs as the number of training utterances varies.

To sum up, increasing the number of training utterances for voice conversion
increases both EERs and FARs. Voice conversion with enough training training
data is hence able to move an impostor’s feature distribution towards that of a
target speaker, and presents an increased threat to both TD-HMM and TD-GMM
verification systems. Since TD-HMM uses hidden Markov model to capture both
feature distribution and temporal sequence information, it outperforms TD-GMM
system which only models the feature distribution even under voice conversion
attack. Note that the temporal sequence information remains the same as in the
original impostor samples after voice conversion.

As a further analysis, we present the score distributions of the TD-HMM sys-
tem for males and females in Fig. 5 and 6, respectively. We observe a similar score
shifting pattern for TD-GMM. Trials on the right hand side of the decision thresh-
old are falsely accepted while those on the left hand side are correctly decided as
rejected. For male speakers, all the four cases of spoofing attacks consistently move
the imposture scores towards the right side of the decision threshold. As for female
speakers, we have a similar observation except the case of two utterances (VC-2)
which slightly shifts the score distribution towards the left with a reduced score
variance. Using more VC training data (VC-5, VC-10 and VC-20), score distribu-
tion translates to the right, consistent with the FAR results in Table 3. We note
that VC-2 shows unsuccessful attack when the threshold is set to EER point, but
it might be effective for other settings of the decision threshold. For instance, a
system optimized to have a lower false rejection rate (FRR).

Generally, when enough training data is used to estimate the conversion func-
tion, voice conversion spoofing attack is able to compromise both TD-HMM and
TD-GMM verification systems. This confirms the risk of voice conversion spoof-
ing attack and the vulnerabilities of both TD-HMM and TD-GMM verification
systems.
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Fig. 5 Score distributions of the male TD-HMM system before and after spoofing.
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Fig. 6 Score distributions of the female TD-HMM system before and after spoofing.

5.3 Case study 3: Voice conversion performance vs spoofing effect

In the third case study, we extend the vulnerability evaluation study by having an
inquiry into the relationship between voice conversion performance and the respec-
tive effects of spoofing attacks against speaker verification to gain further insights.
From the previous text-dependent analysis, we have the following observations:
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a) the female systems have lower EERs and FARs than the male systems, b) it
shows unsuccessful spoofing attack simulated by voice conversion using only two
utterances on the female TD-HMM system, c) the more training data for voice
conversion, the higher EERs and FARs of both TD-HMM and TD-GMM under
spoofing attacks.

In voice conversion, spectral distortion, in particular Mel-cepstral distortion
(MCD) [42], is frequently used as an objective evaluation measure to predict voice
conversion performance. MCD is calculated between the source or converted speech
and reference target speech to measure the distance between two speech signals,
as follows

MCD[dB] =
10

ln 10

vuut2
DX

d=1

(cd − c
′
d)2, (1)

where D is the dimension of MCC feature, cd is the d-th dimension reference target
feature, and c

′
d is the d-th dimension source feature with or without conversion.

A lower MCD value indicates higher similarity of the compared speech signals. In
voice conversion, the objective is to minimise the MCD between the source and
target features. A perfect voice conversion system will be able to achieve a MCD
result of zero.

From the perspective of EER and FAR, a lower MCD value may indicate higher
EER and FAR, as higher similarity between two speech signals implies a more dif-
ficult classification task. To calculate spectral distortion, we randomly select 5,000
source-target utterance pairs for each gender. We note that RSR2015 pass-phrase
part is a parallel dataset, that is, each speaker speaks the same utterances. We
use dynamic time warping (DTW) to perform optimal frame alignment between
source and target utterances to get the frame pairs for calculating MCD. To make
a fair comparison, the converted utterance shares the alignment information with
source utterances. Hence, the spectral distortion of a source utterance with and
without conversion to a target utterance is comparable. The calculation is done
frame-by-frame and we report the average distortion.

Figure 7 (a-c) presents the comparison of between spectral distortions and
FARs. Without voice conversion, the spectral distortions between source and target
speech are 7.81 dB and 8.07 dB for male and female, respectively. A higher spectral
distortion of female implies larger variability across speakers, therefore, it is easier
to classify female speakers and is more difficult to estimate conversion functions for
female speaker conversion. Refer to Table 3, the female TD-HMM and TD-GMM
systems have lower EERs than that of the male systems. Due to the difficulty in
capturing the large variability across female speaker, it hence is hard to build a
“good” conversion function using limited training data. This explains why using
only two utterances as training data does not increase the spoofed FAR for female
case.

When we increase the number of training utterances, spectral distortions de-
crease from 6.86 dB and 7.09 dB of two utterances to 6.46 dB and 6.79 dB of
20 utterances for male and female, respectively. Instead, FARs of both TD-HMM
and TD-GMM increase as we expected. This changing trends between spectral dis-
tortions and FARs go opposite directions. We also note that for each conversion
case, female speakers always have a higher spectral distortion than that of male
speakers. This phenomenon is observed in the EER and FAR results, where female
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Fig. 7 Comparison across spectral distortions, FARs of TD-HMM systems and that of TD-
GMM systemss on the RSR2015 dataset. (a): FARs of male and female TD-HMM systems.
No conversion means before spoofing attack. VC-2, VC-5, VC-10 and VC-20 represent differ-
ent voice conversion attacks. (b): FARs of male and female TD-GMM systems. (c): Spectral
distortions of male and female voice conversion systems.

speakers always achieve lower EERs and FARs than those of male speakers, due
to the reason we explain above.

6 Conclusions

We have examined the vulnerabilities of text-dependent speaker verification sys-
tems under replay and voice conversion attacks, and also established a link be-
tween voice conversion quality (Mel-Cepstral distortions) and spoofing success
(false acceptance rates). The experimental results confirmed the vulnerabilities of
text-dependent systems. Our main findings are:

1. Text-dependent ASV systems are vulnerable to both replay and voice con-
version attacks. The first finding is expected and is consistent with previous
studies on text-independent ASV.

2. HMM-based text-dependent systems in which temporal speech information
matters were found more resistant in the face of voice conversion spoofing
than systems lacking temporal modelling, while under replay attacks, the ex-
perimental results show that HMM-based systems with temporal modelling is
equally vulnerable to GMM-based systems without temporal modelling.

3. Successful voice conversion attacks to HMM-based text-dependent classifiers
require sufficiently many training utterances – in our findings, five or more for
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the set-up considered. To attack the female TD-HMM system, it was observed
that the spoofing was unsuccessful when only two voice conversion training
utterances were used (VC-2), however, the effect disappears with increased
number of VC training utterances. With too few VC training utterances, the
speaker transformation (JD-GMM) might be undertrained (e.g. not stable full
covariance matrices to formulate the transformation function), causing conver-
sion artefacts that the TD-HMM correctly considers being far off from natural
speech, leading improved separation of genuine and (converted) impostor score
distributions.

4. The vulnerabilities of speaker verification systems in terms of FARs have a high
correlation with the voice conversion performance. This finding is naturally
expected. Speaker verification is to find a decision boundary between impostor
and target genuine speakers’ feature distributions to make the decision. Voice
conversion might be able to move the impostor’s feature distribution to cross
the decision boundary, as the objective of voice conversion is to shift a source
speaker’s feature distribution to match that of a target speaker, that is to
minimise the MCD.

Our findings suggest that there are two possible directions to enhance the
performance under spoofing: (1) implementing stand-alone countermeasures as a
complementary component to speaker verification systems. The countermeasures
could be motivated by the artefacts introduced in the voice conversion process. The
second direction is to (2) improve the fundamentals of speaker verification, such as
including time sequence information and high level features. As voice conversion is
not perfect, the impostor’s feature distribution is not exactly matched with that of
the target speaker, it would be interesting to involve converted speech to improve
the speaker modelling techniques.
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12. Hautamäki, R.G., Kinnunen, T., Hautamäki, V., Leino, T., Laukkanen, A.M.: I-vectors
meet imitators: on vulnerability of speaker verification systems against voice mimicry. In:
Proc. Interspeech (2013)

13. Hebert, M.: Text-dependent speaker recognition. In: J. Benesty, M. Sondhi, Y. Huang
(eds.) Springer Handbook of Speech Processing, pp. 743–762. Springer Berlin Heidelberg
(2008)

14. Hunt, A.J., Black, A.W.: Unit selection in a concatenative speech synthesis system using
a large speech database. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP) (1996)

15. Jin, Q., Toth, A., Black, A., Schultz, T.: Is voice transformation a threat to speaker
identification? In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP) (2008)

16. Khoury, E., Kinnunen, T., Sizov, A., Wu, Z., Marcel, S.: Introducing i-vectors for joint
anti-spoong and speaker verication. In: Proc. Interspeech (2014)

17. Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: From features
to supervectors. Speech Communication 52(1), 12–40 (2010)

18. Kinnunen, T., Wu, Z., Lee, K., Sedlak, F., Chng, E., Li, H.: Vulnerability of speaker
verification systems against voice conversion spoofing attacks: the case of telephone speech.
In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) (2012)

19. Kockmann, M., Burget, L., Cernocky, J.: Investigations into prosodic syllable contour
features for speaker recognition. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP) (2010)

20. Kons, Z., Aronowitz, H.: Voice transformation-based spoofing of text-dependent speaker
verification systems. In: Proc. Interspeech (2013)

21. Larcher, A., Bonastre, J.F., Mason, J.S.: Constrained temporal structure for text-
dependent speaker verification. Digital Signal Processing 23(6), 1910 – 1917 (2013)

22. Larcher, A., Lee, K.A., Ma, B., Li, H.: The RSR2015: Database for text-dependent speaker
verification using multiple pass-phrases. In: Proc. Interspeech (2012)

23. Larcher, A., Lee, K.A., Ma, B., Li, H.: Text-dependent speaker verification: Classifiers,
databases and RSR2015. Speech Communication 60, 5677 (2014)

24. Lau, Y.W., Wagner, M., Tran, D.: Vulnerability of speaker verification to voice mimicking.
In: Proc. IEEE Int. Symposium on Intelligent Multimedia, Video and Speech Processing
(2004)

25. Lee, C.H., Huo, Q.: On adaptive decision rules and decision parameter adaptation for
automatic speech recognition. Proceedings of the IEEE 88(8), 1241–1269 (2000)

26. Lee, K.A., Larcher, A., Thai, H., Ma, B., Li, H.: Joint application of speech and speaker
recognition for automation and security in smart home. In: Proc. Interspeech (2011)

27. Lee, K.A., Ma, B., Li, H.: Speaker verification makes its debut in smartphone. In: IEEE
Signal Processing Society Speech and Language Technical Committee Newsletter (2013)

28. Li, H., Ma, B.: Techware: Speaker and spoken language recognition resources [best of the
web]. IEEE Signal Processing Magazine 27(6), 139–142 (2010)

29. Li, H., Ma, B., Lee, K.A.: Spoken language recognition: From fundamentals to practice.
Proceedings of the IEEE 101(5), 1136–1159 (2013)

30. Lindberg, J., Blomberg, M., et al.: Vulnerability in speaker verification-a study of techni-
cal impostor techniques. In: Proc. European Conference on Speech Communication and
Technology (Eurospeech) (1999)

31. Masuko, T., Hitotsumatsu, T., Tokuda, K., Kobayashi, T.: On the security of HMM-based
speaker verification systems against imposture using synthetic speech. In: Proc. European
Conference on Speech Communication and Technology (Eurospeech) (1999)

32. Masuko, T., Tokuda, K., Kobayashi, T.: Imposture using synthetic speech against speaker
verification based on spectrum and pitch. In: Proc. Int. Conf. on Spoken Language Pro-
cessing (ICSLP) (2000)

33. Matrouf, D., Bonastre, J.F., Fredouille, C.: Effect of speech transformation on impos-
tor acceptance. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP) (2006)



On the study of replay and voice conversion attacks 17

34. Nuance: Nuance voice biometrics. In: http://www.nuance.com/landing-pages/products/
voicebiometrics/

35. Qian, Y., Soong, F.K., Yan, Z.J.: A unified trajectory tiling approach to high quality
speech rendering. IEEE Transactions on Audio, Speech, and Language Processing 21(2),
280–290 (2013)

36. Ratha, N.K., Connell, J.H., , Bolle, R.M.: Enhancing security and privacy in biometrics-
based authentication systems. IBM Systems Journal 40(3), 614–634 (2001)

37. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian
mixture models. Digital signal processing 10(1), 19–41 (2000)

38. Satoh, T., Masuko, T., Kobayashi, T., Tokuda, K.: A robust speaker verification system
against imposture using a HMM-based speech synthesis system. In: Proc. European Con-
ference on Speech Communication and Technology (Eurospeech) (2001)

39. Shriberg, E., Ferrer, L., Kajarekar, S., Venkataraman, A., Stolcke, A.: Modeling prosodic
feature sequences for speaker recognition. Speech Communication 46(3), 455–472 (2005)

40. Stafylakis, T., Kenny, P., Ouellet, P., Perez, J., Kockmann, M., Dumouchel, P.: Text-
dependent speaker recognition using PLDA with uncertainty propagation. In: Proc. In-
terspeech (2013)
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