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Efficient Power Gating of SIMD Accelerators through Dynamic 

Selective Devectorization in a HW/SW Co-designed Environment  
 
RAKESH KUMAR, Universitat Politècnica de Catalunya, Barcelona, Spain 

ALEJANDRO MARTÍNEZ, Intel Barcelona Research Center, Intel Labs 

ANTONIO GONZÁLEZ, Intel Barcelona Research Center, Intel Labs - UPC 
 

Leakage energy is a growing concern in current and future microprocessors. Functional units of 

microprocessors are responsible for a major fraction of this energy. Therefore, reducing functional unit 

leakage has received much attention in the recent years. Power gating is one of the most widely used 

techniques to minimize leakage energy. Power gating turns off the functional units during the idle periods 

to reduce the leakage. Therefore, the amount of leakage energy savings is directly proportional to the idle 

time duration. This paper focuses on increasing the idle interval for the higher SIMD lanes. The 

applications are profiled dynamically, in a Hardware/Software co-designed environment, to find the higher 

SIMD lanes usage pattern. If the higher lanes need to be turned-on for small time periods, the 

corresponding portion of the code is devectorized to keep the higher lanes off. The devectorized code is 

executed on the lowest SIMD lane. Our experimental results show that the average energy savings of the 

proposed mechanism are 15%, 12% and 71% greater than power gating, for SPECFP2006, Physicsbench 

and Eigen benchmark suites respectively. Moreover, the slowdown caused due to devectorization is 

negligible. 

Categories and Subject Descriptors: C.1.2 [Computer System Organization]: Multiprocessor-SIMD; 

D.3.4 [Software]: Processors-Optimization 

General Terms: Algorithms, Performance, Experimentation  

Additional Key Words and Phrases: Hardware/Software Co-designed Processors, Devectorization, Power 

Gating, Leakage  

1. INTRODUCTION 

Modern microprocessors need to meet the high performance/throughput 

requirements of the increasingly complex applications. In addition, they have to 

provide such high performance under a very stringent power envelope. Moreover, the 

increase in leakage power at sub-100-nanometer technologies has put further 

constraints on the power budget. Therefore, it is of prime importance for computer 

architects to achieve a balance between the energy consumption and performance.  

Single Instruction Multiple Data (SIMD) accelerators are incorporated in the 

processors, from different computing domains, to improve performance, especially for 

compute intensive data parallel applications [Intel Software Developer´s Manual; 

D´Arcy et al. 1999; Baron 2005; Diefendorffet al. 2000; Kahle et al. 2005; Lee 1996; 

 

This article extends an earlier version, Dynamic Selective Devectorization for Efficient Power Gating of 

SIMD units in a HW/SW Co-designed Environment [Kumar et al. 2013], that appeared in the 25th IEEE 

International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2013).  
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Sporny et al. 2002]. However, due to their wider datapaths, they become main source 

of leakage energy for applications lacking data level parallelism. Therefore, it is 

crucial to control the leakage of these accelerators when they are not being utilized.  

Many leakage control techniques have been studied [Hu et al. 2004; Kim et al. 

2010; Tschanz et al. 2003; Ye et al. 1998], power gating being one of the most 

prominent ones. Power gating cuts the supply voltage to the idle functional units, 

resulting in leakage energy savings. The amount of leakage energy saved is directly 

proportional to the length of time interval for which the circuit remains idle. The 

longer the idle time interval, the more is the leakage energy saving. Therefore, it is 

desirable to have longer idle time intervals to save maximum leakage energy. 

However, power gating has an energy and performance overhead associated with it. 

Certain amount of energy is required to turn a functional unit off and then on again, 

resulting in energy overhead. Moreover, a certain number of cycles are required 

before the functional unit can be used after starting the turn on procedure, resulting 

in performance penalty.  

It is important to consider two special cases in power gating context: 

 

(1) Small idle intervals during periods of high utilization 

(2) Small busy intervals during otherwise idle interval 

 
In the first case, a functional unit is awakened too early after turning it off. In 

this case, power gating energy overhead might not be offset by the leakage energy 

savings and power gating will result in net energy loss. Due to their obvious adverse 

effects on the net energy savings, several mechanisms have been studied to avoid 

such cases [Lungu et al. 2009; Youssef et al. 2006]. In the second case, the functional 

unit is awakened only for a small period of time before it is tuned off again. Power 

gating benefits can be increased if, somehow, the functional units can be kept off 

during these intervals. The gain here is twofold: 

 

(1) Since the functional unit is not turned on and then off again, there is no 

energy overhead. 

(2) Avoiding to turn on the functional unit also saves the performance overhead 

of power gating. 

 
However, an alternate functional unit is required to avoid turning on the power 

gated (turned off) unit. The work presented in the paper focuses on reducing these 

cases to improve the net energy savings. 

SIMD accelerators have duplicated functional units/lanes to perform several 

independent operations in parallel. Lowest SIMD lane executes scalar/unvectorized 

code, whereas, the higher SIMD lanes come into the action when the application code 

is vectorized. In the cases when the higher SIMD lanes are power gated and need to 

be tuned on only for smaller periods of time, the corresponding portion of the code 

can be devectorized and executed on the lowest lane. Thus, the energy and 

performance overhead of power gating the higher SIMD lanes can be saved, resulting 

in increased net energy savings. However, the portions of the application to be 

devectorized should be chosen cautiously, as aggressive devectorization might also 

result in significant slowdown. Furthermore, the slowdown might result in a net 

energy loss due to extra leakage energy incurred in the entire core. 

One of the ways of choosing devectorizable portions of the application is to profile 

the application offline and then guiding the compile time vectorizer to vectorize only 

the specific portions of the application. This method, however, has two major 
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drawbacks. First, the execution profile of applications might change with the input. 

Thus, when an application is executed with an input other than the one with which it 

was profiled, the profile guided optimizations will not help. It might even result in 

slowdown if the frequently executed portions with the current input are not 

vectorized. Secondly, the existing code has to be recompiled to get benefits of the new 

techniques. Another alternative is to profile the applications dynamically and choose 

the devectorizable portions of the code at runtime, for the current input. Dynamic 

Binary Translators/Optimizers (DBTO) and Hardware/Software (HW/SW) co-

designed processors both provide this kind of runtime profiling and optimization 

opportunities. HW/SW co-designed processors also provide additional advantage of 

being able to incorporate new hardware features transparently to the software stack. 

Therefore, we choose HW/SW co-designed processor over DBTOs even though we 

don´t rely heavily on this feature.  

We propose to extract maximum vectorization opportunities at compile time. 

Then, at run-time, profile the application dynamically to find out the candidates for 

devectorization. Therefore, dynamic selective devectorization discovers and 

devectorizes only the portions of code that help improving the power gating efficiency 

without having a significant effect on the performance. The main contributions of 

this work can be summarized as: 

 

(1) Proposes a mechanism to increase power gating efficiency by increasing the 

idle interval duration. 

(2) Proposes a dynamic selective devectorization algorithm to keep the higher 

SIMD lanes idle for long time duration without significant effect on 

performance. 

(3) A dynamic profiling technique to discover devectorizable portions of the code. 

(4) Evaluation of the proposals and comparison with power gating. The energy 

savings of the proposed technique are 15%, 12% and 71% greater than power 

gating for SPECFP2006, Physicsbench and Eigen benchmarks respectively. 

(5) A sensitivity study of effects of breakeven threshold and wakeup delay 

variations on the energy savings of proposed mechanism. 

 

For the rest of the paper, Section 2 provides a background and related work on 

HW/SW Co-designed processors and power gating. Section 3 provides the motivation 

for the work presented in this paper. Section 4 describes the proposals of dynamic 

profiling and devectorization. Evaluation of the proposals using SPECFP2006, 

Physicsbench and Eigen benchmarks is presented in Section 5. Finally, Section 6 

concludes the paper. 

2. BACKGROUND AND RELATED WORK 

HW/SW Co-designed processors [Dehnert et al. 2003; Ebcioğlu et al. 1997; Sathaye et 

al. 1999] have enticed researchers for more than a decade. Moreover, there is a 

renewed interest in them in both industry and academia [Lupon et al. 2014; 

Branković et al 2014; Wang et al. 2013; Pavlou et al 2012; Neelakantam et al 2010]. 

These processors employ a software layer that resides between the hardware and the 

operating system. This software layer allows host and guest ISAs to be completely 

different, by translating the guest ISA instructions to the host ISA dynamically. The 

host ISA is the ISA which is implemented in the hardware, whereas, guest ISA is the 

one for which applications are compiled. The basic idea behind these processors is to 

have a simple host ISA to reduce power consumption and complexity.  
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The software layer translates the guest ISA instructions to the host ISA in 

multiple phases. Generally, in the first phase, guest ISA instructions are interpreted. 

In the rest of the phases, guest code in translated and stored in a code cache, after 

applying several dynamic optimizations, for faster execution. The number of 

translation phases and optimizations in each phase are implementation dependent. 

As leakage is becoming a growing concern in the current microprocessor designs, 

several leakage control mechanisms have been studied [Hu et al. 2004; Kim et al. 

2010; Tschanz et al. 2003; Ye et al. 1998]. All these mechanisms try to reduce leakage 

when the circuit is in idle state. Power gating [Hu et al. 2004] consists of shutting 

down parts of the circuit by cutting their power supply by means of high threshold 

header or footer transistors, called sleep transistors. Supply Switching with Ground 

Collapse (SSGC) [Kim et al. 2010] is similar to power gating as this technique also 

cuts the power supply to the circuit. However, it is more effective than power gating 

in reducing leakage in data retention circuits. Input vector activation [Ye et al. 1998] 

changes the input of the circuit to keep the maximum number of transistors in the off 

state. As the number of off transistors between power supply and ground increases 

the leakage reduces. Adoptive body biasing techniques [Tschanz et al. 2003; 

Ananthan et al. 2004] increase transistor threshold voltage by applying a reverse 

bias at transistor body. The increased threshold voltage reduces the sub-threshold 

and gate leakages.  

Among all these leakage control mechanisms power gating has received 

maximum attention. Several in-depth studies have been carried out to improve the 

efficiency of power gating. Hu [Hu et al. 2004] showed several key intervals in power 

gating, three of the most important being: idle detect interval, breakeven threshold 

and wakeup delay. Idle detect interval is the amount of time needed to decide when 

to shut down a unit. At the end of idle detect interval a sleep signal is generated to 

shut down the functional unit. Breakeven threshold is the amount of time a unit 

must remain shut down to offset the power gating energy overhead. Waking up a 

unit before this threshold, results in net energy loss. Finally, wakeup delay is the 

amount of time needed before the unit can be used after turning it on. Therefore, a 

higher wakeup delay translates to a higher performance penalty.  

Hu also proposed a branch prediction based and a counter based technique to 

generate sleep signal. In branch prediction based technique the unit is shut down 

after a branch misprediction is detected whereas, the counter based technique 

generates the sleep signal after the unit has been idle for a fixed number of cycles. As 

noted before, if the power gated unit needs to be awakened before crossing the 

breakeven threshold, power gating suffers a net energy loss. Several techniques has 

been proposed to minimize this energy loss [Agarwal et al. 2006; Lungu et al. 2009; 

Youssef et al. 2006]. A. Youssef [Youssef et al. 2006] proposed to change idle detect 

interval dynamically. Their proposal increases the idle interval during the period of 

high utilization, when the functional units are being used frequently. Since the 

probability of a unit being awakened before crossing the breakeven threshold is high 

during these periods, increasing the idle detect interval reduces the number of power 

gating instances and hence the likelihood of energy loss. On the contrary, they reduce 

the idle detect interval during the phases of low activity to increase the number of 

powered off cycles and hence the energy savings. A. Lungu [Lungu et al. 2009] 

proposed to use success monitors to measure the success of power gating during a 

certain time interval. If power gating saves energy it is applied in the next interval 

as well, if possible. Otherwise, power gating would be deactivated in the next time 

interval even if a possibility existed. K. Agarwal [Agarwal et al. 2006] proposed to 

have multiple sleep modes in power gating. Each mode has different wakeup delay 
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and energy savings. By trading-off these two parameters during periods of different 

activity they achieve higher energy savings. 

All of these techniques focus on improving the power gating efficiency by 

improving the decision of when to shut down a unit. On the other hand, our work 

focuses on how to keep a unit shut down for longer time intervals once it is already 

power gated. Even though we target SIMD accelerators to show the potential of the 

proposal, it can be applied the any functional units with multiple instances. To 

increase the length of the idle periods, the higher SIMD lanes usage is profiled 

dynamically. Then the portions of the code corresponding to the low utilization 

periods of higher lanes are located. This piece of code is then devectorized and 

executed on the lowest SIMD lane. Furthermore, our technique is applicable as long 

as there is some support for dynamic profiling and optimizations, be it HW/SW co-

designed processors or DBTOs. 

3. MOTIVATION 

Power gating net energy savings depend on the leakage energy saved by putting the 

functional units in sleep mode and the energy overhead of doing power gating itself. 

The energy overhead comes due to the fact that the sleep signal needs to be 

generated and distributed to the appropriate functional units. Moreover, turning the 

sleep transistor on and off also requires energy. Therefore the net energy saving of 

power gating can be computed as: 

 

Net Energy Savings = EL * ∑ 𝑜𝑓𝑓_𝑐𝑦𝑐𝑙𝑒𝑠[𝑘]
𝑛

𝑘=0
 – (n * Eoverhead)  

 

Where EL is the leakage energy per cycle, Eoverhead is power gating energy overhead 

per power gating instance and n is the number of power gating instances. Thus, 

having large off_cycles with minimum number of power gating instances (n) results 

in maximum energy savings. Furthermore, a functional unit cannot be used 

immediately after putting the power supply back on, resulting in performance loss. 

Therefore, to get maximum leakage savings at minimum performance penalty, a 

functional unit needs to be kept shut down for longer time intervals, with minimum 

number of power gating instances.  

 Reducing the number of power gating instances not only reduces the power 

gating energy overhead but also has a secondary energy saving effect. Imagine a 

situation where a power gated functional unit needs to be awakened to execute just 

one instruction. First, we need to disable the sleep signal and wait for “wakeup 

latency” number of cycles; then the instruction is executed. Next, we have to wait for 

“idle detect” number of cycles before enabling the sleep signal; then after waiting for 

another “breakeven threshold” number of cycles the leakage energy savings of power 

gating begin. However, if we execute this instruction on a different functional unit 

which is already ON, we can save “wakeup delay + number of cycles required for 

instruction execution + idle detect + breakeven threshold” cycles of leakage energy in 

addition to saving the power gating energy overhead. 

Functional unit usage profile of an application changes during its execution. 

During the low utilization period the function unit is used scarcely. Therefore, power 

gating targets these periods for leakage savings. However, every time the functional 

unit is needed, it needs to be awakened from the power gated state and needs to be 

shut down afterwards. The wakeup and shutting down energy overhead reduces 

overall leakage energy savings. If the functional unit is kept turned off and the 

corresponding code is executed on some other functional unit (which are already on); 



  

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

the effectiveness of power gating in saving leakage energy can be increased. 

Specifically for SIMD accelerators, higher SIMD lanes can be switched off during 

sporadic usage period and the corresponding code can be executed on lowest lane 

after devectorization. 

We profiled SPECFP2006 using a dynamic profiling technique described in the 

next section, to discover the higher SIMD lanes usage pattern. Figure 1 shows the 

percentage of vector instructions (higher lanes usage profile) in the dynamic 

instruction stream over the execution time for 434.zeusmp. The higher lanes usage 

profile shown in the figure is for 4 billion instruction executed starting from the most 

frequently executed function/routine. Moreover, the shown vector instruction profile 

does not include memory instructions since they do not use SIMD functional units. 

As can be seen in the figure, higher lane usage profile changes during the execution. 

During the time intervals A-B, C-D and E-F around 20% of the dynamic instructions 

are vector instructions and utilize higher SIMD lanes. Therefore, higher SIMD lanes 

need be activated during these intervals. On the other hand, during the time 

intervals 0-A, B-C and D-E only less than 3% of the dynamic instructions are vector 

instructions. During these intervals power gating will wakeup SIMD lanes from sleep 

state, for short durations of time, to execute these vector instructions. 

We propose to devectorize the portion of code corresponding to the time intervals 

0-A, B-C and D-E, if it does not affect the percentage of vectorized code in the other 

time intervals. Devectorizing this piece of code results in fewer (in some cases none) 

vectorized instructions during these time intervals. Therefore the number of power 

gating instances also reduces during these intervals. As a result, the power gating 

energy overhead diminishes and the net leakage savings increase. However, the 

dynamic energy consumption of the lowest lane increases, as it has to execute more 

instructions now. Nevertheless, as will be shown in the performance evaluation 

section, this increase is relatively small compared to the reduction in the leakage 

energy. 

4. PROFILING AND DEVECTORIZATION 

This section provides the details of the dynamic profiling and devectorization 

schemes. We start with a brief motivation for dynamic profiling. It is followed by a 

brief description of the software layer of the modeled HW/SW co-designed processor 

leading to profiling and devectorization details. 

 Profiling is necessary to discover the code segments that can be devectorized to 

keep the higher SIMD lanes power gated without affecting the performance. These 

code segments must not be performance critical, as devectorizing performance critical 

code will result in excessive slowdown. Moreover, due to the slowdown caused by 

devectorization overall energy consumption will increase. It is important to note that 

the performance critical code segments of an application might change with the 

0%

5%

10%

15%

20%

25%

30%

A B C D E F

Percentage of vector instructions in dynamic instruction stream

Figure 1 Percentage of vector instruction (excluding memory instructions) in the dynamic instruction 

stream over the time (4 billion instructions). 
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input. Therefore, profiling the applications offline with a particular set of inputs will 

not help in deciding which code segments to devectorize. For that reason, we choose 

to profile the applications dynamically at runtime. Dynamic profiling discovers non-

performance critical devectorization candidates and pass this information to the 

runtime devectorizer. The selected code segments are then devectorized, resulting in 

effective power gating of SIMD units. 

 The software layer of our HW/SW co-designed processor is called Translation 

Optimization Layer (TOL). It operates in three translation modes for generating host 

code from the guest x86 code: Interpretation Mode (IM), Basic Block Translation 

Mode (BBM) and Superblock Translation Mode (SBM). We collect the profiling 

information for the basic blocks in BBM. This information is then used in SBM 

during superblock optimization phase to decide whether or not to devectorize the 

given superblock. 

4.1 Profiling and Superblock Creation 

TOL starts by interpreting guest x86 instruction stream in IM. When a basic block is 

executed more than a predetermined number of times, TOL switches to BBM. In this 

mode, the whole basic block is translated and stored in the code cache and the rest of 

the executions of this basic block are done from the code cache. Moreover, branch 

profiling information for direction and target of branches is also collected. Once the 

execution of a basic block exceeds another predetermined threshold, TOL creates a 

bigger optimization region, called superblock, using the branch profiling information 

collected during BBM.  

A superblock generally includes multiple basic blocks following the biased 

direction of branches. Moreover, branches inside the superblocks are converted to 

“asserts” so that a superblock can be treated as a single-entry, single-exit sequence of 

instructions. This enable more aggressive optimizations. “Asserts” are similar to 

branches in the sense that both checks a condition. Branches determine the next 

instruction to be executed based on the condition, however asserts have no such 

effect. If the condition is true assert does nothing. However, if the condition evaluates 

to false, the assert “fails” and the execution is restarted from a previously saved 

checkpoint in IM. Dynamic selective devectorization is done only on superblocks. 

The applications are profiled in BBM to get the following information  

 

(1) Execution and Branch profiling information: 

Software counters are used to count the number of times a basic block has been 

executed in BBM. Besides, software counters are also employed to get the biased 

direction of branches. As mentioned earlier, this information is used to create 

superblocks in SBM. Furthermore, we also profile the higher SIMD lanes usage 

pattern that helps us in deciding which superblocks to devectorize. 

 

(2) Higher SIMD lanes usage pattern: 

To monitor the usage of higher SIMD lanes an N-bit shift register is employed. 

Before executing an instruction, the content of this register are shifted by one and 

the new position is set to 1 if the current instruction is a vector instruction, otherwise 

it is reset to zero. Therefore, the number of ones in the shift register gives the 

number of vector instructions executed in the last N instructions. 

Each basic block in BBM has a software “devec” counter associated with it. Every 

time a basic block, having at least one vector instruction, is executed in BBM, the 

contents of the shift register are read. If the number of ones in the shift register are 
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less than a threshold (DVth), it would be desirable to devectorize the basic block, if it 

is included in a superblock. The devectorization is desirable in this case because 

having less number of vector instructions indicate low usage of higher SIMD lanes. 

Therefore, devectorizing this code will help improving power gating efficiency 

without a significant impact on the overall performance. To increase the 

devectorization likelihood of this basic block the devec counter is incremented. 

However, if during the next execution of the same basic block the number of ones in 

the shift register is more that DVth, the devec counter is decremented. It indicates 

that devectorization is not favored due to more utilization of higher SIMD lanes. 

Therefore, the final decision of whether to devectorize the basic block or not depends 

on the shift register values during all the executions of the basic block in BBM. This 

helps in devectorizing only the basic blocks which are executing during the low usage 

phase of higher SIMD lanes like B-C in Figure 1.  

While creating a superblock devec counters of all the basic blocks included in the 

superblock are examined. If all the counters are greater than a predetermined 

threshold, the superblock is devectorized. Otherwise, the superblock is kept in the 

vectorized form. This selective devectorization of superblocks improves leakage 

energy savings through power gating while maintaining the performance. 

4.2 Optimizations 

In this phase, several standard optimizations are applied dynamically. First of all, 

the superblock is converted into Static Single Assignment (SSA) form to remove anti 

and output dependences. Then, the optimizations Constant Propagation, Copy 

Propagation, Constant Folding, Common Sub-expression Elimination and Dead Code 

Elimination are applied. The next step is to generate the Data Dependence Graph 

(DDG). During DDG creation, Redundant Load Elimination and Store Forwarding 

are also applied to improve the quality of the generated code. 

4.3 Devectorization 

Once a superblock has been identified for devectorization through profiling, it goes 

through a devectorization phase. The devectorization pass simply replaces vector 

instructions by their corresponding scalar instructions and generates permutation 

instructions if required. Moreover, vector memory instructions are not devectorized 

since they do not use SIMD functional units. 

As shown in Algorithm 1a, “devect” is the top level routine that receives the 

superblock “SB” to be devectorized. The routine goes over all the instructions in the 

superblock in the program order. All the vector instructions (excluding memory 

access instructions) are candidates for devectorization. The first step in 

devectorization is to find devectorization length (get_devec_len). It is the number of 

scalar instructions to be generated corresponding to the vector instruction. Then the 

scalar opcode for the scalar instructions to be generated is obtained 

(get_scalar_opcode). Next, the “get_scalar_in_reg” routine of Algorithm 1b checks if 

the input vector registers of the current instruction have already been mapped to 

scalar registers or not. If the producers of the current instruction have already been 

devectorized, the corresponding input registers are already mapped to the output 

scalar registers of the scalar producers. However, if the producers cannot be 

devectorized (producers being vector memory loads or live-in of the superblock), an 

Unpack instruction is generated (generate_Unpack_insn). This Unpack instruction 

distributes the contents of the input vector register to a set of scalar registers 

depending on the devect length. Once all the input vector registers have been 

mapped to scalar registers, new output scalar registers are allocated (allocate_reg)  
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ALGORITHM 1A. Top Level Dynamic Devectorization Routine 

devect(SB): 

for each instruction s in SB: 

if s is devectorizable: 

devec_len ← get_devec_len(s) 

scalar_op ← get_scalar_opcode(s) 

scalar_in_regs ← get_scalar_in_reg (s) 

 

scalar_out_reg ← ø 

for i ← 0 to devec_len do: 

   scalar_out_reg ← scalar_out_reg ⋃ allocate_reg() 

 

for i ← 0 to devec_len do: 

   generate_insn(scalar_op, scalar_in_reg, scalar_out_reg) 

 

add_to_mapped_reg(org_out_reg) 

 

if org_out_reg is architectural_reg or vectorized_consumer: 

generate_Pack_insn(scalar_out_reg) 

 

ALGORITHM 1B. Vector to Scalar Register Mapping 

get_scalar_in_reg (s) 

scalar_in_regs ← ø 

 

for each input_register ireg of s: 

 if ireg in mapped_regs: 

scalar_in_regs ← scalar_in_regs ⋃ get_mapped_reg(ireg) 

 else 

generate_Unpack_insn(ireg) 

scalar_in_regs ← scalar_in_regs ⋃ get_mapped_reg(ireg) 

 

return scalar_in_regs 

 

 

for new scalar instructions to be generated. In the next step, the scalar instructions 

are generated (generate_insn) using scalar input and output registers collected 

during the earlier steps. The vector output register of the current instruction is 

mapped to the new scalar output registers allocated (add_to_mapped_reg). Finally, if 

the output register is an architecture register or the consumers of the current 

instruction cannot be devectorized (vector memory stores), a Pack instruction is 

generated (generate_Pack_insn).  The Pack instruction collects the values from the 

scalar output registers and packs them in a new vector register so that it can be used 

by the vectorized consumers. 

As the devectorization proceeds the producer-consumer relations keep changing. 

Thus it is important to update the predecessor/successors chains. However, it is not 

shown in the Algorithm 1 for the sake of simplicity. 

4.4 Reducing Devectorization Slowdown 

Dynamic selective devectorization serializes the parallel portions of code to save 

energy at small performance cost. To reduce the effect of this serialization on the 
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performance, we do partial devectorization whenever possible. To better understand 

partial devectorization, consider a 128-bit wide SIMD accelerator with two 64-bit 

wide lanes. Each lane can execute either one 64-bit double-precision floating-point 

operation or two 32-bit single-precision floating-point operations. Devectorized code 

is executed on the lower lane, so that the higher lane could be switched off.  

In general, a single-precision floating-point vector instruction would be 

devectorized into four single-precision scalar instructions. However, partial 

devectorization generates only two single-precision “half-vector” instructions. A “half-

vector” instruction combines two scalar instructions that can be executed in parallel. 

The rationale behind partial devectorization is to utilize the whole 64-bit wide vector 

lane. Since one vector lane can execute two single-precision operations, it is better to 

partially devectorized the code instead of full devectorization. As a result, the effect 

of devectorization on performance is reduced while still saving energy by power 

gating the higher lane. We propose to have “half-vector” instructions in the host 

processor ISA. However, these instructions are transparent to the compiler/user and 

are generated dynamically by the runtime devectorizer. The co-designed nature of 

the host processor allows including new instructions without any change in the guest 

ISA or compiler/recompiling. 

5. PERFORMANCE EVALUATION 

DARCO [Pavlou et al. 2011], which is an infrastructure for evaluating HW/SW co-

designed virtual machines, is used to evaluate the proposals. DARCO executes guest 

x86 binary on a PowerPC-like RISC host architecture. The proposed profiling and 

devectorization algorithm are implemented in TOL. Furthermore, for energy 

consumption analysis McPAT [Li et al. 2009] is integrated with DARCO. Moreover, 

we consider only the floating point instructions for devectorization because they are 

the main target of SIMD accelerators. In our experiments, we assume that the host 

architecture consists of a 128-bit wide SIMD accelerator. Moreover, we consider that 

the SIMD accelerator is composed of two 64-bit wide lanes. 

From power gating point of view SIMD accelerator can be viewed as a single unit 

or two separate lanes. In other words, both the lanes of the SIMD accelerator can be 

powered together or separately. If both the lanes are power gated together, we call it 

combined power gating (CPG). CPG, however, is not efficient, since higher lane, 

generally, is used lesser than the lower lane. Therefore, power gating the higher lane, 

even though the lower lane is functional, would result in more power savings. We call 

this configuration Split Power Gating (SPG). We compare our results with both the 

configurations. Moreover, the optimizations of Section 4.2 are activated in all three 

cases: CPG, SPG and with Dynamic Selective Devectorization (DSD). Furthermore, 

the results presented are for the modeled host processors and include profiling and 

translation overheads if not mentioned otherwise.  

To measure the success of the proposals we use applications from SPECFP2006 

[Standard Performance Evaluation Corporation], Physicsbench [Yeh et al. 2007] and 

Eigen [Eigen] benchmarks suites. For SPECFP2006 we instrument the benchmarks, 

using PIN [Luk et al. 2005], to find the most frequently executed routines. Then we 

simulate four billion instructions starting from these routines. The benchmarks in 

Physicsbench are executed till completion. For Eigen benchmarks also we execute 

only four billion instructions. The benchmarks are compiled with Intel ICC version 

12.1.4, optimization flags “-O3” and vectorization flag “-xSSE3”. Only floating point 

benchmarks in SPEC2006 are considered for evaluation since the floating point code 

is the main target of our proposals. 
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Table I. Processor Microarchitectural and McPAT Parameters. 

Parameter Value 

Processor Microarchitectural Parameters 

L1 I-cache 
64KB, 4-way set associative, 64-byte 
line, 1 cycle hit, LRU 

L1 D-cache 
64KB, 4-way set associative, 64-byte 

line, 1 cycle hit, LRU 

Unified L2 cache 
512KB, 8-way set associative, 64-byte 
line, 6 cycle hit, LRU 

Scalar Functional Units (latency) 
2 simple int(1), 2 intmul/div (3/10) 

2 simple FP(2), 2 FP mul/div (4/20) 

Vector/SIMD Functional Units (latency) 
1 simple int(1), 1 intmul/div (3/10) 
1 simple FP(2), 1 FP mul/div (4/20) 

Registers 128-Integer, 128-Vector, 32-FP 

Main memory Lat 128 Cycles 

McPAT Parameters 

Technology 65nm 

Clock Rate 1.5 GHz 

Temperature 350 K 

Device Type High Performance 

 

5.1 Models and Parameters 

To measure the success of the proposals, we refer to the energy model proposed by 

Hu [Hu et al. 2004]. However, we changed some of model input values. Their 

breakeven threshold value is between 9 and 24 cycles. However, as A. Youssef 

[Youssef et al. 2006] explained, the breakeven threshold value in the real 

implementations can be more than 100 cycles. We use the breakeven threshold of 150 

cycles. The wakeup latency of the functional units is considered to be 10 cycles. 

Moreover, later we show a sensitivity study for breakeven threshold and wakeup 

delay variations. 

A. Lungu [Lungu et al. 2009] proposed a success monitor based improvement to 

the time-based power gating mechanism of [Hu et al. 2004]. They use success 

counters to monitor whether power gating has been successful (saved energy) or 

harmful (consumed more energy) during a monitoring interval. Power gating in the 

next monitoring interval is disabled if it has been harmful in the current interval, 

otherwise it is enabled. This power gating scheme with success monitors serves as 

the baseline for our proposals. A. Lungu [Lungu et al. 2009] have a fixed idle detect 

interval in their proposal. However, this interval is varied dynamically in our 

baseline, depending on the utilization of the functional units (SIMD lanes), as 

proposed by A. Youssef [Youssef et al. 2006].  

We model a simple in-order processor, in congruence with the simple hardware 

design philosophy of HW/SW co-designed processors, with issue width of two. 

Microarchitectural parameters for the modeled processor are given in Table I. The 

table also shows key McPAT parameters used to get the energy consumption of the 

modeled processor. 

5.2 Higher SIMD Lane Usage Profile 

The dynamic selective devectorization (DSD) tries to minimize the usage of higher 

SIMD lane during the low utilization period. As shown in Figure 1 in Section 3, 

434.zesump has several time intervals during which the higher SIMD lane usage 

could be minimized. Minimizing the higher lane usages during these intervals 

minimizes the number of power gating instances and hence the energy overhead of 

power gating. 
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Figure 2 Percentage of vector instruction in the dynamic instruction stream after dynamic selective 

devectorization for 434.zesump. 

 

Figure 2 shows the vector instruction profile for the same benchmark after 

dynamic selective devectorization. As the figure shows, the dynamic selective 

devectorization has been able to reduce the higher SIMD lane usage significantly 

during the time interval B-C. Therefore, the leakage energy savings by power gating 

during this interval will be improved. However, the vector code corresponding to the 

low usage periods 0-A and D-E is not devectorized. This piece of code is executed 

during the high usage periods also and its devectorization would result in significant 

performance loss. Therefore, this code is always executed in the vectorized version. 

Moreover, it is also important to note that the number of vector instructions during 

the high usage periods A-B, C-D and E-F is the same as before devectorization. 

Therefore, the effect of devectorization on the performance is going to be negligible. 

5.3 SIMD Accelerator Energy Savings 

The proposed mechanism reduces the number of higher SIMD lane power gating 

instances to reduce power gating energy overhead and in turn, the leakage energy of 

the SIMD accelerator. However, dynamic selective devectorization has an energy and 

performance overhead associated with it. The energy overhead of DSD includes the 

following components: 

 

(1) Lower SIMD Lane Dynamic energy: The dynamic energy consumption of 

the lower SIMD lane increases, since it has to execute more instructions. 

(2) Rest of the core Energy: The rest of the core includes all the components of 

the core except for the SIMD accelerator. The overall energy of the rest of the 

core may increase due to: 

a. Dynamic energy consumption increases due to profiling and 

devectorization of selected superblocks.  

b. Leakage energy of the rest of the core might increase due to the 

possible slowdown because of devectorization. 

 

Figure 3 and 4 show the SIMD accelerator overall (dynamic + leakage) energy 

savings for Combined power gating (CPG), Split power gating (SPG) and DSD, 

without and with DSD overheads respectively. There as several important points to 

note in these two figures. First of all, the energy overhead of DSD is minimal as most 

of the benchmarks show similar overall energy savings with and without considering 

DSD energy overhead. The only exceptions are 410.bwaves and FFT; the reason 

behind it is explained in Section 5.5 while discussing the performance results. Since 

the energy savings are similar with and without considering the energy overhead of 
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DSD, the rest of this section focuses on results with overhead, the Figure 4. As this 

figure shows, DSD outperforms both CPG and SPG significantly. The overall energy 

savings of the proposed technique are 49%, 35% and 340% greater than CPG and 

15%, 12% and 71% greater than SPG for SPECFP2006, Physicsbench and Eigen 

respectively. In absolute energy savings terms, DSD saves 63%, 72% and 52% overall 

energy, SPG saves 54%, 64% and 31% overall energy whereas, CPG saves 42%, 53% 

and 12% overall energy for SPECFP2006, Physicsbench and Eigen respectively. CPG 

performs worse than SPG because it treats the whole SIMD accelerator as a single 

unit. Therefore, either both lanes are powered or neither of them. On the other hand, 

SPG can turn higher lane off even if the lower lane is in use. Therefore, SPG saves 

more energy than CPG. DSD goes one step ahead and keeps the higher lane powered 

off (because of devectorized code) for longer periods and outperforms SPG as well. 

The benchmarks in Figure 4 can be divided into three categories depending on 

their energy saving pattern: 
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Figure 3 SIMD accelerator overall (dynamic + leakage) energy savings for CPG, SPG and DSD without 

including DSD energy overhead. 

Figure 4 SIMD accelerator overall (dynamic + leakage) energy savings for CPG, SPG and DSD including 

DSD energy overhead. 
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Figure 5 Percentage of vector instruction (excluding memory instructions) in the dynamic instruction 

stream for 470.lbm. 

 

 

1) Moderately Vectorizable Benchmarks: 

The benchmarks in this category include 410.bwaves, 434.zeusmp, 435.gromacs, 

454.calulix, 482.sphinx3, eig33, quatmul and most of the Physicsbench benchmarks. 

These are the benchmarks for which compilers are able to extract enough vector 

parallelism, however they are not completely vectorized. Therefore, during the 

periods of high lower lane usage and idle higher lane, SPG achieves energy savings 

over CPG by power gating only the higher lane. Moreover, these benchmarks have 

periods of low higher lane activity, as shown in Figure 1 for 434.zeusmp. The 

proposed mechanism devectorizes the code corresponding to these intervals and 

achieve even more energy savings. 

 

2) Highly Vectorizable Benchmarks: 

The benchmarks in the category are 436.cactusADM and 470.lbm. These 

benchmarks are completely vectorizable. In other words, the vectorized code uses 

either both the vector lanes or none of them. As a result SPG does not provide any 

additional benefits over CPG. Moreover, the higher lane utilization in these 

benchmarks is uniform over the execution time as shown in Figure 5 for 470.lbm. 

Any attempt of devectorization would result in significant performance loss. 

Therefore, these benchmarks are executed in the vectorized form and no additional 

leakage energy savings are achieved by DSD either. Furthermore, the overall energy 

savings for 436.cactus are much more compared to 470.lbm for all the three 

techniques. The energy savings depend on how long the SIMD accelerator is used 

during the execution time of the application. Even though both the benchmarks use 

both the SIMD lanes together, the overall usage of SIMD accelerator is less in 

436.cactus, hence power gating provides more energy savings in this benchmark. 

 

3) Unvectorizable Benchmarks: 

The benchmarks in this category include 444.namd, 450.soplex, gemm, reverse 

etc. Since compilers do not find enough vectorization opportunities in these 

benchmarks, the higher SIMD lane is idle for most of the time. As a result, SPG is 

able to attain significant energy savings over CPG by power gating the higher SIMD 

lane alone. However, the proposed mechanism does not have enough opportunities to 

devectorize because compilers do not vectorize the code. Therefore, DSD does not 

provide much energy savings over SPG. 
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It is important to note that the most of the benchmarks fall in the first category 

“Moderately Vectorizable Benchmarks” which is targeted by DSD to achieve 

additional power savings over power gating. Another interesting point to note in 

Figure 4 is that in the cases where DSD is not able to reduce leakage, e.g. 470.lbm, 

the energy overhead of DSD is negligible. Hence, DSD has insignificant energy 

penalty when it fails to provide leakage benefits. 

5.4 Core Energy Savings 

This section first presents the ratio of SIMD accelerator leakage energy to the rest of 

energy (SIMD accelerator dynamic energy + rest of the core overall energy) and then 

presents core level overall energy savings by CPG, SPG and DSD. Figure 6 shows the 

energy distribution for five different technologies: 90nm, 65nm, 45nm, 32nm and 

22nm. As the figure shows SIMD accelerator leakage energy accounts for 20% to 30% 

of overall core energy at various technologies. It is also interesting to note that the 

SIMD leakage energy increases as we move from 90nm to 45nm however, it reduces 

as the technology is further scaled down to 22nm. The leakage reduction comes from 

the enhancement in fabrication process below 45nm. Nonetheless, SIMD leakage 

energy still forms a significant portion of the overall core energy.  

C. Bira [Bira et al. 2013] showed that according to Zedboard documentation a 

dual-core ARM CPU consumes a maximum of 1.25 Watts. They also reported that 

according to Xilinx power estimation tools the SIMD accelerator consumes 600 mW. 

This translates to SIMD accelerator being responsible for consuming approximately 

half of the CPU power. Assuming leakage being responsible for 40-50% of total 

power, SIMD accelerator leakage is responsible for 20%-25% of total CPU power. 

This estimation is in coherence with the results of Figure 6. 

Figure 7 shows the overall energy savings of the whole core by CPG, SPG and 

DSD. Since, we consider power gating only the SIMD accelerator and no other 

functional unit, absolute overall energy savings are not as high as for the SIMD 

accelerator alone. However, DSD still outperforms both SPG and CPG. DSD energy 

savings are 48%, 35% and 330% greater than CPG and 15%, 12% and 71% greater 

than SPG for SPECFP2006, Physicsbench and Eigen respectively. In absolute energy 

savings terms, DSD saves approximately 19%, 22% and 16% overall energy, SPG 

saves 16%, 19% and 9% overall energy while CPG saves 13%, 16% and 4% overall 

energy for SPECFP2006, Physicsbench and Eigen respectively. As the results show, 

DSD is able to save comparatively more overall core energy than CPG and SPG even 

when SIMD accelerator is the only power gated functional unit. 
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Figure 6 Core overall energy distribution at different technologies. 
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5.5 Performance 

As mentioned earlier, power gating has both energy and performance overhead 

associated with it. The performance overhead arises because the functional unit 

cannot be used immediately after sending the wakeup signal. Moreover, the 

performance penalty has to be paid every time the functional unit is awakened from 

the power gated state.  

Reducing the number of power gating instances, using DSD, reduces both the 

energy and performance overhead of power gating. However, DSD also has its own 

performance overhead. This overhead arises because the lower SIMD lane has to 

execute more scalar instructions. Furthermore, profiling and devectorization of the 

selected superblocks also diminish performance.  

In summary, DSD, on one hand, reduces power gating performance overhead. 

However, on the other hand, it adds its own overhead. Therefore the overall 

performance depends on the following factors: 

 

(1) Speedup, due to fewer power gating instances. 

(2) Slowdown, due to more scalar instructions. 

(3) Slowdown, due to profiling and devectorization overhead. 

 

Figure 8 shows the performance results after considering all these factors. The 

results are normalized to SPG performance. As the figure shows, on average DSD 

experiences a slowdown of less than 1% for Physicsbench. Moreover, for 

SPECFP2006 the performance is very similar to SPG performance. It is also 

interesting to note that there are benchmarks like 433.milc, 450.soplex, 453.povray, 

482.shpinx3 and Eigen benchmarks that experience a small speedup. The speedup 

comes due to fewer power gating instances and hence lesser performance overhead of 

power gating. The performance increase also translates to reduction in the leakage 

energy in the core because it is now ON for less time. On the other hand, 410.bwaves 

and FFT suffer slowdown of 6% and 4% respectively, due to excessive devectorization. 

Figure 9a and 9b show vector instruction profiles before and after devectorization 

respectively, for 410.bwaves. The excessive devectorization not only affects the 

performance but the overall energy savings also. Due to the slowdown, the leakage 

energy in the rest of the core increases, and hence net energy savings reduce. 
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Figure 7 Core overall (dynamic + leakage) energy savings for CPG, SPG and DSD. 
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Figure 8 Overall Performance after DSD normalized to SPG (Higher is better). 

 

The overall energy savings for 410.bwaves are approximately 50% without the 

energy overheads of DSD as shown in Figure 3, however after considering the energy 

overheads they fall down to 38% as shown in Figure 4. Therefore, DSD provides a 

trade-off between performance and energy. 

 

  
a) Before DSD.            b) After DSD. 

 

Figure 9 Percentage of vector instructions (excluding memory instructions) in the dynamic instruction 

stream for 410.bwaves before and after DSD. 

5.6 DSD Energy Overhead Analysis 

As mentioned earlier DSD energy overhead includes two components: 

 

1) Lower SIMD Lane Energy Overhead: 

Figure 10 shows lower SIMD lane dynamic energy for DSD normalized to SPG. 

As the figure shows the dynamic energy for the lower lane increases by 12% for Eigen 

and 5% for SPECFP2006 and Physicsbench, on average. This increment in the 

dynamic energy consumption comes from the additional scalar code executed by the 

lower SIMD lane after devectorization. 410.bwaves and FFT show significant 

increase in lower SIMD lane dynamic energy due to excessive devectorization. The 

overall (dynamic + leakage) lower SIMD lane energy is shown in Figure 11. On 

average, the overall lower SIMD lane energy reduces for Eigen by 1% and increases 

only by 1% and 2.5% for SPECFP2006 and Physicsbench respectively. This energy 

increment is lower than the dynamic energy increase of Figure 10. There are two 

reasons behind it: 
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Figure 10 Lower SIMD lane dynamic energy for DSD normalized to SPG. 

 
 

Figure 11 Lower SIMD lane overall energy for DSD normalized to SPG. 

a) As shown in Figure 8, the performance for some benchmarks increases after 

DSD over SPG. As a result, the leakage energy of lower SIMD lane reduces 

and this compensate for the increase in dynamic energy. 

b) The lower SIMD lane leakage energy accounts for 80% of its overall energy 

consumption. Hence, the reduction in leakage energy has more weight over 

the increase in dynamic energy. 

 

These two factors make the overall lower SIMD lane energy overhead to be less 

than the increase in dynamic energy. Moreover, as shown in Figure 11 the lower 

SIMD lane energy overhead of DSD is not significant.  

 

2) Rest of the Core Energy Overhead: 

The rest of the core energy includes the overall energy of all the components 

except for the SIMD accelerator. The dynamic energy component here increases due 

to extra energy spent in profiling and devectorization. However, the leakage energy 

component may increase or decrease depending upon slowdown or speedup 

experienced after DSD. Figure 12 shows the increase in dynamic energy. On average, 

the dynamic energy increases by 1.2%, 1.5% and 1% for SPECFP2006, Physicsbench 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

C
h

o
le

sk
y

FF
T

ge
m

m

R
ev

er
se

ei
g3

3

ge
o

m
et

ry

q
u

at
m

u
l

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

Ei
ge

n

SPECFP2006 Physicsbench Eigen Avg

N
o

rm
al

iz
e

d
 E

n
e

rg
y

Normalized Lower Lane Dynamic Energy

0

0.2

0.4

0.6

0.8

1

1.2

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

C
h

o
le

sk
y

FF
T

ge
m

m

R
ev

er
se

ei
g3

3

ge
o

m
et

ry

q
u

at
m

u
l

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

Ei
ge

n

SPECFP2006 Physicsbench Eigen Avg

N
o

rm
al

iz
e

d
 E

n
e

rg
y

Normalized Lower Lane Total Energy



  
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

and Eigen respectively. However, the overall energy increases only by 0.4% and 1.3% 

for SPECFP2006 and Physicsbench. On average, Eigen benchmarks show overall 

energy reduction of 1% as shown in Figure 13. Therefore, the rest of the core energy 

overhead of DSD is also negligible. 

5.7 Sensitivity Analysis 

As mentioned in Section 5.1, we assumed a breakeven threshold of 150 cycles and 

wakeup delay of 10 cycles in our experiments. These two parameters are technology 

dependent and to discover the effect of variations in their values we do a sensitivity 

study. For this study, first we vary the breakeven threshold from 20 cycles to 300 

cycles while keeping the wakeup delay at 10 cycles. Next we vary the wakeup delay 

from 5 to 35 cycles while keeping the breakeven threshold at 150 cycles. 

 

1) Breakeven threshold sensitivity study: 

Figure 14 shows the results for the effect of breakeven threshold variations on 

the overall energy savings of DSD over SPG. As the figure shows, the overall energy 

savings of DSD, across different breakeven thresholds, are similar. However, as 

mentioned in Section 3, one of the components of DSD energy savings is directly 

proportional to the breakeven threshold. Therefore, one would expect the more 
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Figure 12 Rest of the core dynamic energy for DSD normalized to SPG. 

Figure 13 Rest of the core overall energy for DSD normalized to SPG. 
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energy savings as the breakeven threshold is increased. The reason for no (or 

minimal) improvement in the overall energy saving is the use of success monitors 

and dynamic idle detect interval. If we disable these two improvements, we get more 

energy saving as breakeven threshold in increased as shown in Figure 15. The figure 

shows energy benefits of DSD over SPG normalized to the savings corresponding to 

breakeven threshold of 20 cycles. As the figures shows the energy savings of DSD 

increases over SPG as the breakeven threshold increases from 20 cycles to higher 

values. 

 

2) Wakeup Delay sensitivity study: 

Figure 16 shows the effect of wakeup delay variation on the overall energy 

savings of DSD over SPG. As with breakeven threshold variation results, these 

results are consistent over the range of wakeup delay values. Furthermore, these 

results are with success monitors and dynamic idle detect interval enabled. Disabling 

these two features will show improvement in DSD overall energy savings as wakeup 

delay increases.  
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Figure 14 Effect of breakeven threshold variation on DSD overall (dynamic + leakage) energy savings over 

SPG with a fixed wakeup latency of 10 cycles. 
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Figure 15 Effect of breakeven threshold variation on DSD overall (dynamic + leakage) energy savings over 

SPG normalized to breakeven threshold of 20 cycles, with a fixed wakeup latency of 10 cycles (no success 

monitors, no dynamic idle detect interval). 
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Figure 16 Effect of wakeup delay variation on DSD overall (dynamic + leakage) energy savings over SPG 

with a fixed breakeven threshold of 150 cycles. 

Discussion: 

In our experiments, we consider power gating as the leakage control mechanism 

implemented in the hardware. However, our proposal of dynamic selective 

devectorization does not restrict the choice of leakage control mechanism to power 

gating. DSD will work with any other leakage control mechanism equally well. The 

basic idea of DSD is to increase the idle intervals of the functional units independent 

of the leakage control mechanism.  

We presented a mechanism to increase the idle period of higher SIMD lanes to 

save more leakage energy. DSD devectorizes certain portions of the code to reduce 

the higher SIMD lanes utilization during low usage periods. Even though the work in 

this paper focuses on higher SIMD lanes, the basic concept can be extended to any 

functional unit. The only requirement is to have more than one instance of the 

functional unit. For example, if we have two integer units, the idle interval of the 

second one could be increased by executing more code on the first one. This, however, 

is helpful only during the low utilization period of the second unit, to reduce the 

performance penalty of serialization. In case of SIMD accelerator, a dynamic profiler 

guides the devectorizer to decide which segments of code to serialize. However, in the 

case of integer units, the dynamic profiler needs to guide the instruction scheduler to 

make serialization decisions. 

Moreover, even though we considered a HW/SW co-designed environment in our 

experiments, our proposals are general enough to be extended to other environments 

as long as some support for dynamic profiling and optimizations is provided like in 

DBTOs. 

Furthermore, in Performance Evaluation section we considered only single 

threaded applications for the evaluation of our proposals. However, our proposals are 

applicable to multithreaded applications and multi-programmed environment as 

well. For multithreaded applications, we can profile each thread for higher SIMD 

lane utilization and devectorize the code corresponding to the low utilization periods. 

Later, threads should be scheduled such that all the threads being executed enter the 

high/low SIMD lane utilization periods together. The reason for scheduling threads 

in this manner is following:  

 

1) High utilization period for “Higher SIMD lanes”: If all the threads have 

significant vector instructions, whole SIMD accelerator usage will be high and it 

should not be power gated. The proposed mechanism does not target this case. 

2) Low utilization period for “Higher SIMD lanes”:  If there are only a few 

vector instructions, higher SIMD lanes utilization will be low and power gating 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

5 10 15 20 25 30 35
D

SD
 E

n
e

rg
y 

Sa
vi

n
gs

 O
ve

r 
SP

G

SPECFP2006 Physicsbench Eigen



  

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

will shut down these lanes. However, every time a vector instruction is 

encountered (which needs higher SIMD lanes) the higher SIMD lanes need to be 

awakened. This results in energy overhead. The proposed mechanism will 

devectorize this code and as a result, the higher SIMD lanes can be kept switched 

off for longer time duration. Therefore, resulting in additional energy savings. 

Thread scheduling should also take into account resource conflict for SIMD 

accelerator. 

6. CONCLUSIONS 

This paper proposed to increase the leakage energy savings by increasing the idle 

interval of the higher SIMD lanes. To increase the idle interval, we proposed a 

dynamic profiling based dynamic selective devectorization scheme. The dynamic 

profiler monitors higher SIMD lanes usage and discover the code corresponding to 

the low utilization period. A dynamic devectorizer then selectively devectorizes the 

code based upon the inputs from the profiler. The dynamic selective devectorization 

increases the idle interval during the low utilization period of the higher lanes. 

Increase in the idle period helps the leakage control mechanism to save more energy. 

The proposed mechanism can work with any leakage control mechanism like power 

gating, SSGC [Kim et al. 2010] etc. Moreover the idea of increasing idle period is 

general enough to be extended to other functional units as well. 

Our experimental results show on average, our proposed technique´s overall 

energy saving are 15%, 12% and 71% greater than power gating, for SPECFP2006, 

Physicsbench and Eigen benchmarks respectively. Moreover the slowdown caused 

due to devectorization is negligible. Furthermore, our sensitivity study results show 

that DSD energy savings hold across different breakeven threshold and different 

wakeup delay values. 
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