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SUMMARY

Amino acid hydroxylation is a post-translational
modification that regulates intra- and inter-molecular
protein-protein interactions. The modifications are
regulated by a family of 2-oxoglutarate- (2OG) de-
pendent enzymes and, although the biochemistry is
well understood, until now only a few substrates
have been described for these enzymes. Using quan-
titative interaction proteomics, we screened for sub-
strates of the proline hydroxylase PHD3 and the
asparagine hydroxylase FIH, which regulate the
HIF-mediated hypoxic response. We were able to
identify hundreds of potential substrates. Enrich-
ment analysis revealed that the potential substrates
of both hydroxylases cluster in the same pathways
but frequently modify different nodes of signaling
networks. We confirm that two proteins identified in
our screen, MAPK6 (Erk3) and RIPK4, are indeed hy-
droxylated in a FIH- or PHD3-dependentmechanism.
We further determined that FIH-dependent hydroxyl-
ation regulates RIPK4-dependent Wnt signaling, and
that PHD3-dependent hydroxylation of MAPK6 pro-
tects the protein from proteasomal degradation.

INTRODUCTION

Post-translational modifications (PTMs) of proteins provide

versatile mechanisms to regulate protein activity and protein in-

teractions. The aliphatic side-chains of lysine, asparagines, as-

partic acid, tryptophan, and proline as well as methylated lysines

and arginines can all be hydroxylated in an oxygen and 2-oxo

glutarate- (2OG) dependent mechanism by a family of enzymes

termed the (2OG)-oxygenases (Loenarz and Schofield, 2008;

Winston et al., 1999).

Initial observations that (2OG)-oxygenases can post-transla-

tionally modify proteins came from studies involving collagen

and related proteins in which multiple proline and lysine residues

were found to be hydroxylated. Subsequently, it was discovered

that hydroxylation could regulate functions and degradation of

HIF1a (Ivan et al., 2001; Jaakkola et al., 2001). Upon hydroxyl-
ation and binding of VHL, HIF1a is poly-ubiquitinated and tar-

geted for degradation by the proteasome. A third hydroxylation

on a C-terminal asparagine reduces the transcriptional activity

of the complex (Hewitson et al., 2002).

It has become obvious that hypoxia and hydroxylases regulate

many aspects of the cellular signaling machinery, but, despite

high interest in detecting novel substrates, progress has been

slow, especially with respect to the HIF hydroxylases PHD1,

PHD2, and PHD3. So far a few experimental strategies proved

successful in detecting novel substrates. Mass spectrometry

based proteomics was used successfully for FIH (Cockman

et al., 2009) and yeast 2-hybrid screens identified some potential

PHD substrates (Köditz et al., 2007). Several additional PHD sub-

strates were identified by screening for the proposed consensus

sequence LxxLAP (Luo et al., 2011;Moser et al., 2013). However,

only a relatively small number of PHD substrates were success-

fully identified to date, and we still lack full understanding of how

hydroxylation affects signaling pathways beyond the canonical

HIF-pathway.

To address these questions, we employed an unbiased, quan-

titativemass-spectrometry-based approach to detect PHD3 and

FIH substrates, based on a pharmacological substrate-trap

strategy which was previously used for detecting multiple new

and confirming several known FIH substrates (Cockman et al.,

2009). PHD3 was selected because it is expressed both in the

nucleus and in the cytoplasm. This ubiquitous distribution con-

trasts with the nuclear expression of PHD1 and the predomi-

nantly cytoplasmic localization of PHD2 (Metzen et al., 2003).

We expected that a broader distribution pattern of PHD3 would

result in a larger substrate pool.

RESULTS

Dimethyloxaloylglycine (DMOG) ‘‘traps’’ thehydroxylaseenzyme-

substrate complex in an inactive state (Cockman et al., 2009).

Whereas a 2OG-bound complex releases the product upon hy-

droxylation, the reaction and product release are inhibited if

DMOG is bound (Figure 1A). Therefore, the presence of DMOG

in the cell not only inhibits the accumulation of hydroxylated pro-

teins, but also increases the amount of substrate bound to the

hydroxylase.

In order to determinewhether overexpression of a hydroxylase

affects the enzyme-substrate complex formation under DMOG
Cell Reports 14, 1–16, March 22, 2016 ª2016 The Authors 1
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Figure 1. Steady-State Model of Hydroxylase Substrate-Trap and Experimental Design of Hydroxylase-Substrate Screen

(A) Cartoon of how the substrate-trap functions. In the absence of DMOG, the hydroxylases bind to the substrate and are released upon its hydroxylation. In the

presence of DMOG, the hydroxylation is inhibited and the enzyme-substrate complex is trapped.

(B) Reaction scheme of a steady-state model for hydroxylase-substrate interaction under inhibitor (DMOG) treatment. The details of the model with equations are

given in the Supplemental Information.

(C) Dependence of total hydroxylase-substrate (Hdl-Sub) binding in response to gradual overexpression of the hydroxylase (Hdl) enzyme, showing a robust linear

dependence over a wide dynamic range of the enzyme concentration. The inbox figure shows saturation appearing only at extremely high enzyme concentration.

(D) Dependence of total substrate-hydroxylase (Hdl-Sub) binding in response to gradual overexpression of the hydroxylase (Hdl) enzyme under varying substrate

concentration. A linear dependence is still robustly observed for low and high substrate levels.

(legend continued on next page)
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treatment, we developed a mathematical steady-state model of

the interaction based on the reaction steps leading to hydroxyl-

ation of HIF1a by prolyl-hydroxylases (Rose et al., 2011) (Fig-

ure 1B; Supplemental Information). The total DMOG-stabilized

substrate-hydroxylase complex, in response to increasing con-

centrations of the hydroxylase, shows a linear relationship over

several orders of magnitude (Figure 1C). This linear relationship

persists even when substrate levels (Figure 1D) or the binding af-

finities vary strongly (Figures S1A and S1B). In order to confirm

this prediction, we transfected HEK293T cells with increasing

amounts of V5-tagged PHD3 and treated them with DMOG.

We immunoprecipitated PHD3 and analyzed the amount of

endogenous HIF1a, a low tomedium abundant transcription fac-

tor, bound to PHD3. In agreement with the mathematical model,

increasing amounts of cellular PHD3 co-immunoprecipitated

and bound increasing amounts of HIF1a, which was at a con-

stant concentration in the cells (Figure 1E). In conclusion, over-

expression of the hydroxylase was not likely to saturate the com-

plex formation for low, medium, and highly abundant substrates,

allowing us to express tagged hydroxylases as baits for the sub-

strate screen.

To screen for substrates, we selected HEK293T as cell line

models as it maintains a transfection efficiency of above 99%

even when transfecting low amounts of DNA, thus, we would

be able to titer the transient overexpression close to the physio-

logical range (Figures S1C–S1G). The cells were transfected with

either a V5-tagged hydroxylase or an empty vector. Overexpres-

sion of FIH and PHD3 was determined to be 10- and 30-fold over

the endogenous, normoxic level, respectively (Figures S1H and

S1I). Given that cellular levels of low abundant proteins can

vary by an order of magnitude within an isogenic cell line (Yuan

et al., 2011) and that PHD3 can be induced several 10-folds in

chronic hypoxia (Appelhoff et al., 2004), these levels of overex-

pression were not beyond the expected physiological range.

Subsequently, the precipitated proteins were identified and

quantified by label-free quantification, as implemented in Max-

Quant (MaxLFQ) (Tate et al., 2013) (Figure 1F). MaxLFQ has a

performance comparable to isotope-based labeling methods

when it comes to detecting relative changes in protein abun-

dance (Cox et al., 2014). In addition, intensity values determined

by MaxQuant retain information about the relative abundance of

distinct proteins within a complex, albeit at lower accuracy (Fa-

bre et al., 2014). Thus, MaxLFQ intensities not only accurately

represent changes in protein interaction, but can also be used

to rank the proteins in terms of likely relative abundance. We ex-

tracted the specific interactome by comparing the V5-hydroxy-

lase, DMOG, and untreated, sample versus their corresponding

controls. Next, we extracted the DMOG-induced specific frac-
(E) Validation of the model. V5-PHD3 or an empty vector was transfected at the ind

treated with 2 mM DMOG for 3 hr. The cells were lysed, PHD3 immunoprecipitate

indicated antibodies.

(F) Schematic illustration of the mass spectrometry based hydroxylase screen. T

with DMOG. The hydroxylases and their binding proteins were immunoprecipitate

and subsequently quantified by LFQ.

(G) Illustration of data analysis. The LFQ intensity values were averaged and fil

significant hits were then additionally compared to each other after the hydrox

increased by DMOG were deemed to be potential substrates.
tion by comparing intensities of the specific interactome be-

tween the untreated and DMOG treated V5-hydroxylase sam-

ples (Figure 1G). This fraction should be enriched for trapped

substrates, proteins which specifically associate with the hy-

droxylases and are induced by DMOG, but are not necessarily

substrates, and proteins which are in complex with a substrate,

but do not bind to the hydroxylases directly.

Identification of DMOG-Induced Hydroxylase
Interactome
In the combined FIH and PHD3 searches, we were able to detect

and quantify over 3,000 proteins, most of them being non-spe-

cific binders. Among the specific interactions, as judged by a

t test and ratio cutoff of p < 0.05 and ratio >2-fold, DMOG

induced the association of 192 proteins with FIH (Table S1) (Fig-

ures 2A and S2A) and 388 with PHD3 (Table S2) (Figures 2B and

S2B). To test the sensitivity of our method, we screened the pre-

dicted FIH substrates for bona fide known substrates. We readily

identified HIF1a, NOTCH2, TNKS2, NFKBIB, and several An-

kyrin-repeat (AR) proteins (Figure 2C). We did not detect

HIF2a, as it is not expressed in HEK293T cells (Nguyen et al.,

2013). In addition, an InterPro search revealed that 41 of the

192 proteins contained ARs. Furthermore, we screened the

DMOG-induced FIH interactors for the FIH-consensus sequence

Lx(6)[VI]N, detecting 80 proteins containing the sequence at

least once. Assuming that true FIH substrates contain ARs, or

at least the FIH consensus sequence, our screen has a speci-

ficity to detect FIH substrates between 21% (based on AR)

and 41% (based on the consensus sequence) (Figure 2D).

It is not surprising that only a subset of the DMOG-trapped

proteins are substrates, as mass spectrometry (MS) based

interaction proteomics inherently identifies entire complexes

rather than binary interactions. Specifically, we detected HIF1b

(ARNT), which is likely to be indirectly bound to FIH by forming

a hetero-dimer with directly bound HIF1a. Although the dynamic

profile of HIF1b association with FIH is similar to HIF1a, the

directly binding protein is present at a higher LFQ intensity.

Therefore, of two proteins, which are in a tight complex and

have similar dynamic interaction profiles, the more abundant

one is more likely to be the directly bound partner. This trend

should allow triaging the candidates for further validation. In or-

der to reveal indirect interactors, we uploaded the list of potential

substrates into the STRING database (http://www.string-db.org)

and limited the links between nodes to experimentally validated

protein-protein interactions within the FIH (Figure S3A) or PHD3

(Figure S3E) network. We decided to test the predictive power of

our triage on the TCEB1 and TCEB2 complex, as both proteins

are connected to other potential FIH substrates (Figure S3A).
icated amounts into HEK293T cells. At 24 hr post-transfections, the cells were

d, and proteins were separated by PAGE, electro-blotted, and detected by the

he HEK293T cells were transfected with the tagged hydroxylases and treated

d, digested, and analyzed by mass spectrometry. The proteins were identified

tered via a t test and ratio cutoff versus the respective negative controls. All

ylase input was normalized. The proteins whose bindings were significantly
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Figure 2. Overview of FIH and PHD3 DMOG-Trapped Interactors

(A) Scatterplot of LFQ-intensities over DMOG/untreated ratio of 192 proteins specifically binding to FIH upon DMOG treatment. The selected interactors were

labeled with gene name.

(B) Scatterplot of LFQ-intensities over DMOG/untreated ratio of 388 proteins specifically binding to PHD3 upon DMOG treatment. The selected interactors were

labeled with gene name.

(C) Normalized LFQ-intensities of FIH (HIF1AN) and selected, known substrates. The heatmap representation of normalized LFQ-intensity values as obtained

from FIH immunoprecipitations and sorted in descending order by intensity is shown.

(legend continued on next page)
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When we plotted the four most abundant proteins within the

cluster, we saw that ASB8 was the most abundant protein, fol-

lowed by TCEB1, TCEB2, and HIF1A (Figure S3B). When we

plotted the DMOG-induced increase of interaction with FIH, a

measure of the dynamic interaction profile, we saw that ASB8,

TCEB1, and 2 had similar values of induction (between 4- and

6-fold), whereas the interaction with HIF1A was induced 12-

fold (Figure S3C). Overall, these data suggested that HIF1A

and TCEB1/TCEB2/ASB8 were predominantly in different com-

plexes, with HIF1A and ASB8 the likely substrates. We were

able to confirm that ASB8was hydroxylated onN80 (Figure S3D),

whereas we were not able to detect any hydroxylated aspara-

gine residue in TCEB1 or TCEB2, despite expressing FIH and

identifying unmodified counterpart peptide.

We subsequently screened the PHD3 interactome data for

proteins which have been shown to be hydroxylated by PHDs

(see Figure 2E). As with FIH, we readily detected HIF1a and b.

In addition, we found CEP192, a centrosomal protein, which

has been recently described to be hydroxylated by PHD1 (Moser

et al., 2013). We also identified LIMD1 (Foxler et al., 2012) and

OS9 (Baek et al., 2005) as specific DMOG-induced proteins.

Both proteins have been described to interact with PHDs and

HIF, although they have not been identified as PHD substrates.

The fact that both proteins can bind PHD3 in normoxia, albeit

at lower levels, suggests that they can bind PHD3 independently

of HIF, which is absent under normoxic conditions. Additionally,

we detected FOXO3a and DYRK1, two recently discovered

PHD1 substrates, as a specific and DMOG-induced interactor

(Lee et al., 2016; Zheng et al., 2014). We failed to identify two

PHD3 substrates, PKM2 (Luo et al., 2011) and TELO2 (Xie

et al., 2012). Both proteins were detected in our unfiltered

screen, but PKM2 was not deemed to be a specific PHD3 inter-

acting protein, as it was present with equal intensity in the nega-

tive controls. On the other hand, TELO2was identified as a PHD3

interacting protein under untreated and DMOG conditions, but

was not assigned as a substrate because the interaction was

diminished by DMOG. PKM2 is very highly expressed and ap-

pears to bind to agarose beads in an unspecific fashion, thus

masking the interaction with PHD3. TELO2 on the other hand,

may bind to PHD3 via several mechanisms, of which one could

be enhanced by DMOG-inhibited PTMs, would these be hydrox-

ylations or other modifications. Such a mechanism makes bio-

logical sense as it would induce switch-like hydroxylation of

TELO2 in response to a graded oxygen input; however, this is

purely speculation and future experiments will have to test this

hypothesis.

In addition, to determine protein changes induced by a 4 hr

DMOG treatment, we quantified the expression of 8,000 protein

groups bymass spectrometry. Wematched this information with

the interaction data to identify proteins whose altered associa-
(D) Venn diagram of DMOG-trapped FIH interactors containing an FIH consensu

(E) Normalized LFQ-intensities of PHD3 (EGLN3) and selected, known substrat

values as obtained from FIH immunoprecipitations is shown.

(F) Graphical representation of protein domains enriched in either the FIH (orange)

p value of 0.01.

(G) Graphical representation of pathways enriched in the FIH substrate screen. T

(H) Graphical representation of pathways enriched in the PHD3 substrate screen
tion with the hydroxylasesmay be a result of expression changes

rather than changes in the affinity. Surprisingly, although the pro-

tein expression of several interactors was altered, these changes

were generally less pronounced. Overall, only the expression of

HIF1A, GLI3, GLI2, CDC20, and NFKBIE was greater than the

DMOG-dependent induction observed at the interactome, which

indicates that only these proteins are candidates for induced in-

teractors, which may not be necessarily substrates.

FIH has been previously shown to bind and hydroxylate aspar-

agines in AR, and we hypothesized that PHD3 may also have a

preference for specific protein domains. Thus, we determined

which protein domains were enriched in the FIH and PHD3 sub-

strate data set. As expected, AR were highly enriched in the FIH

set and stood out when compared to the additional domains en-

riched in the set (Figure 2F, orange). In contrast, no single protein

domain was predominantly enriched in the PHD3 substrate set.

Protein kinases, WD40 and PDZ-domain proteins were signifi-

cantly enriched (Figure 2F, blue), but given the absence of a clear

outlier, such as AR for the FIH substrates, we have to conclude

that PHD3 does not preferentially interact with any individual

protein domain.

Pathway-Centered Analysis of the DMOG-Dependent
Interactome
Hypoxia and hydroxylases have been shown to regulate several

signaling pathways outside the canonical HIF network (Lenihan

and Taylor, 2013; Moser et al., 2013; Xie et al., 2012). Enrichment

of such pathways would provide additional confirmation that we

have identified bona fide substrates. We mapped our data on

pathway databases using Ingenuity Pathway Analysis (IPA). Fig-

ure 2G gives an overview of the pathways enriched in the FIH

substrate screen. Aside from the HIF pathway, the NFkB, and

ubiquitination signaling networks were heavily overrepresented

in the sample set. Next, we analyzed the PHD3 substrate data,

and we detected that the HIF pathway was enriched (Figure 2H).

In addition, signaling pathways related to cancer, including

NFkB, Hedgehog, p53, Wnt, and Hippo were significantly over-

represented. Reassuringly, all these pathways have been shown

to be regulated by hypoxia, and in the case of NFkB and p53

pathways, some effectors also have been shown to be hydroxyl-

ated by either PHDs or FIH (Cockman et al., 2006; Cummins

et al., 2006; Janke et al., 2013; Scholz et al., 2013; Xie et al.,

2012).

Interestingly, these results also indicate that hydroxylation

may simultaneously affect several proteins in a pathway in

distinct complexes. To corroborate this observation, we system-

atically mapped proteins identified in the substrate screen onto

known signaling pathways. There are four examples that are

shown in Figure 3. A substantial proportion (�50) of potential

substrates were bound to FIH as well as PHD3, suggesting
s motif or AR.

es and interactors. The heatmap representation of normalized LFQ-intensity

or PHD3 (blue) substrate screen. The cutoff is a Benjamini Hochberg corrected

he cutoff is a p value of 0.01.

. The cutoff is a p value of 0.01.
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Figure 3. Schematic Illustration of Path-

ways Enriched in the Substrate Screen

Potential PHD3 substrates are shown as blue, FIH

substrates as orange, and proteins which bind

both FIH and PHD3 in a DMOG inducible way

are show as blue/orange boxes. The heatmaps

represent the normalized LFQ-intensities of the

PHD3 IP (blue) or FIH IP set (orange) and sorted in

descending order by intensity.

(A–C) Members of the core Hippo-pathway are

trapped by PHD3/FIH andDMOG. The coreMST1/

MST2/Salvador (STK4, STK3, and SAV1) complex

interacts with PHD3 in a DMOG-inducible fashion.

In addition, the upstream activator PLK1 and the

downstream effector YAP1 behave in an analo-

gous manner. In addition, the MST1/FIH interac-

tion is also induced by DMOG (B) FIH and PHD3

interact in a DMOG-dependent manner with core

members of the HIF1a-pathway HIF1a/b, OS9,

LIMD1 (C) PHD3 interacts in a DMOG- dependent

manner with core members of the b-catenin

degradation complex. FIH may regulate the up-

stream kinase RIPK4 and the ADP-Ribosylases

TNKS1/2.

(D) Schematic illustration of members of the wider

NFkB pathway identified in the substrate screen.
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that both hydroxylases not only cross-regulate pathways, but

also frequently co-regulate individual pathway nodes as seen

for HIF1a.

We frequently observed that proteins, which are part of the

samemultiprotein complex, appear to co-purify with the hydrox-

ylases. For example STK4, STK3, and their scaffold SAV associ-

ated with PHD3 in a substrate-like manner (Figure 3A). Given that

these proteins form a tight complex (Hauri et al., 2013), it is plau-

sible that only one protein is directly bound to PHD3, most likely

STK3 due to the interaction abundance and profile. Within the

wider HIF-pathway we identified the HIF-heterodimer, we also

detected OS9 and LIMD1 as DMOG induced PHD3 interactors

(Figure 3B). The intensity distribution showed that both proteins

could interact with PHD3 independently of HIF, as we detected

both proteins specifically interacting with PHD3 in the absence

of HIF1a in the untreated data set. In the Wnt-pathway, a large
6 Cell Reports 14, 1–16, March 22, 2016 ª2016 The Authors
proportion of the b-catenin degradation

complex associated with PHD3 (Fig-

ure 3C). Additionally, the AR proteins

RIPK4, TNKS, and TNKS2 bound to FIH

in a DMOG-dependent fashion, as did

the ubiquitin-ligase SKP1. Most potential

substrates were matched to the NFkB-

pathway (Figure 3D). This observation

ties in with a wealth of data, which has

demonstrated that hypoxia regulates

this pathway at multiple levels in a PHD

and FIH-dependent manner (Cockman

et al., 2006; Cummins et al., 2006; Scholz

et al., 2013; Shin et al., 2009; van Uden

et al., 2011). The number of potential sub-

strates in distinct protein complexes sup-

ports the idea that the pathway is not
regulated by a single master controller, but rather by distributed

control.

In summary, the pathway analysis suggests that hydroxylation

controls whole regulatory programs rather than single network

nodes and hence may serve to coordinate signaling pathways

in a highly integrated fashion. Nevertheless, as the pathway anal-

ysis has been performed on the entire DMOG-trapped interac-

tome, the enrichment does not necessarily represent a direct de-

gree of regulation. Due to the trapping of protein complexes,

some pathways may have been overrepresented.

Confirmation of RIPK4 and MAPK6 as Substrates
To prove that a protein is indeed a substrate requires the identi-

fication and quantitation of the hydroxylation sites in the pres-

ence and absence of hydroxylase activity. If the protein is hy-

droxylated, the question arises how it affects the molecular
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and biological function of the target. The majority of hydroxyl-

ations have been shown to alter protein-protein binding and

identifying hydroxylation-dependent changes in the interactome

should give an indication as to what interactions are regulated by

the modification. Therefore, we designed a screen which al-

lowed us not only to quantify the hydroxylation status, but also

to quantify the interactome of the selected target.

We decided to confirm if two proteins were indeed substrates,

one for either hydroxylase analyzed in our screen (Figures S3A

and S3E). As selection criteria, we limited the list of prospective

substrates to those which were the most intense hydroxylase in-

teractors detected within a co-precipitated complex.

We elected to focus on RIPK4 as a potential FIH-substrate

(Figure S4A). RIPK4 is a receptor bound kinase (Bertrand et al.,

2011; Meylan et al., 2002), which has not yet been found to

interact with any of the other predicted FIH substrates. RIPK4

regulates the Wnt pathway and has been recently shown to sta-

bilize b-catenin by phosphorylating Dishevelled (Huang et al.,

2013). Moreover, RIPK4 has been shown to regulate the NFkB

pathway by affecting the upstream signaling by binding to

TRAF proteins (Meylan et al., 2002).

We quantified the hydroxylation and normalized the value by

dividing the intensity of the hydroxylated peptide by the intensity

of the unmodified, corresponding peptide. Subsequently, we

determined which sites were statistically different between the

FIH-overexpressing and the DMOG-treated samples and were

present at higher levels in the FIH-overexpressing sample. There

were four peptides that fulfilled these conditions, all containing a

hydroxylated asparagine (Figures 4A–4C and S4C–S4E) match-

ing the general consensus sequence for FIH, L(x6)JN.

We selected MAPK6 as a potential PHD3 target (Figure S4B).

As with RIPK4, MAPK6 has not been shown to be regulated by

hydroxylation or hypoxia. Our interest in MAPK6 was heightened

by the technical challenge of detecting a hydroxylation site on a

protein which is continuously degraded by the proteasome (Cou-

lombe et al., 2003), a trait that MAPK6 shares with HIF1a.

We transfected C-terminally FLAG-tagged MAPK6 with or

without V5-PHD3, incubated with a PHD-specific inhibitor JNJ-

42041935 (JNJ) (Barrett et al., 2011) or transfected Control of

PHD3 specific small interfering RNA (siRNA) in the presence of

the proteasome inhibitor MG132 to limit the plausible effects of

PHD3 on MAPK6 protein stability. We analyzed the data as

above and detected several hydroxylation sites of which only

Pro25 hydroxylation was significantly altered (Figures 4D–4F

and S5). In the same peptide, we detected an additional

oxidation of the methionine. The oxidation of the methionine

decreased the hydrophobicity of the peptide more than the pro-

line hydroxylation, resulting in a shift in the elution time, which al-

lowed us to completely resolve elution profiles for both isobaric

peptides. This enabled us to calculate the ratios for the P(ox)/

non-modified (Figure S5) and the P(ox)M(ox)/M(ox) (Figures 4D

and 4E) independently of each other. The identified site (YMDLK-

P(ox)LGCGG) does not match the LxxLAP motif, but matched a

more degenerated, FxxLxP, motif.

To establish whether the asparagine and proline residues de-

tected could be hydroxylated in vitro, we incubated biotin

tagged 21 amino acids long peptides surrounding either

Asp(646) (LLAKQPGVSVNAQTLDGRTPL) or Pro(25) (DLGSRYM
DLKPLGCGGNGLVF).We incubated the peptideswith lysates of

HEK293T cells overexpressing V5-FIH, V5-PHD3, or a vector.

We readily detected an oxidized peptide in the samples,

although closer inspection of the fragmentation spectra revealed

that all the peptides were oxidized exclusively on the biotin res-

idue. Consequently, we attempted a second in vitro assay,

where we used the in vitro translated (IVT) full-length proteins

as substrates instead of the purified peptides. As before, we

incubated the purified proteins with lysates of HEK293T cells

overexpressing wild-type (WT) V5-FIH, WT V5-PHD3, their

respective inactive mutants or a vector. This time we were able

to detect two of the four peptides hydroxylated on the aspara-

gine residue (Figure 4G). The basal hydroxylation efficiency of

the lysates from the vector and H199A FIH mutant transfected

cells were very low and hydroxylated peptides were hardly

detectable. In contrast, asparagine hydroxylations could be

easily observed and quantified in in vitro assay containing over-

expressed V5-FIH, resulting in a 20- to 50-fold induction of

asparagine hydroxylation. Disappointingly, we failed to detect

two hydroxylated asparagine residues which were detected in

the cellular assay. Nevertheless, given the strong data obtained

from the cellular assays, in terms of quantification of the hydrox-

ylation, localization in the AR and the matching consensus

sequence, we must conclude that for unknown reasons the

in vitro assay is giving us false negatives.

In addition, we were also able to detect and quantify the pro-

line hydroxylation in the IVT-MAPK6. Pro(25) which was

increased 2-fold in the V5-PHD3 sample in comparison to the

vector and H196A PHD3 control (Figure 4H).

Biological Consequence of FIH-Dependent
Hydroxylation of RIPK4
The inclusion of a vector control in the hydroxylation/interactome

screen allowed us also to identify proteins which specifically

interact with RIPK4 andMAPK6, as well as to determine whether

blocking the hydroxylation alters the stoichiometry of the interac-

tion. It is generally accepted that most proteins function as part

of multiprotein complexes. Therefore, hydroxylation-dependent

changes in the interactome should provide an indication of

how hydroxylases shape the signaling of these substrates. After

comparing the LFQ-intensities of the RIPK4 and MAPK6 immu-

noprecipitations to their respective negative controls, we iso-

lated 333 interactors for RIPK4 (Table S3) and 276 interactors

for MAPK6 (Table S4).

In order to determine how hydroxylation of RIPK4 by FIH may

affect the function of the substrates, we compared how the inter-

actome changed in response to FIH overexpression and DMOG

treatment. Both conditions are the extremes with respect to the

hydroxylation status, and it is therefore plausible that changes in

hydroxylation-dependent protein-protein interactions would be

most significant between these two sets. Initially, we confirmed

that we could reproduce that hydroxylase inhibition enhanced

the interaction between RIPK4 and FIH when overexpressed

(Figure 5A). Unfortunately, we were unable to confirm the inter-

action between endogenous FIH and endogenous RIPK4 as

neither FIH nor RIPK4 antibody immunoprecipitated the bait pro-

tein with sufficient efficiency. Nonetheless, we were able to iden-

tify endogenous FIH in a FLAG-RIPK4 immunoprecipitation (IP)
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Figure 4. Mass-Spectrometry-Based Targeted Hydroxylation Site Screen

(A) Bar graph represents the normalized hydroxylation ratio of RIPK4 peptides in the presence/absence of DMOG or overexpressed FIH. The identified peptides

are on the x axis, with the localization probability of the hydroxylation in brackets. The error bars represent SEM and n = 3.

(B and C) Representative fragmentation spectrum of hydroxylated NASVN(ox)EVDFEGR (C) XIC of NASVN(ox)EVDFEGR (gray) and non-hydroxylated NASV

NEVDFEGR (petrol). The numbers represent the ratio of hydroxylated over the corresponding non-hydroxylated peptide.

(D) Bar graph represents the normalized hydroxylation ratio of MAPK6 peptides YM(ox)DLKP(ox)LGCGGNGLVFSAVDNDCDKR over YM(ox)DLKPLGCG

GNGLVFSAVDNDCDKR in the presence/absence of JNJ or overexpressed V5-PHD3 or PHD3 specific siRNA. The error bars represent SEM and n = 3.

(E and F) Representative fragmentation spectra of P(ox), M(ox), and P(ox)M(ox) of MAPK6 peptide (F) XIC of doubly hydroxylated/oxidized (burgundy) and M(ox)

(black) MAPK6 peptide. The numbers represent the ratio of doubly hydroxylated/oxidized over the corresponding M(ox) peptide.

(legend continued on next page)
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(Figure 5B) and endogenous RIPK4 in a V5-FIH IP (Figure S6D).

We are therefore confident that the interaction is physiological.

Additionally to the induction of the FIH/RIPK4 complex, we

noticed that chaperones such as HSP90 and members of the

T-complex protein complex decreased their association with

RIPK4 upon FIH overexpression (Figures 5C and S6A), as did

three members of the SCF complex, BTRC, FBXW11, and

SKP1 (Figure S6B). As we were only able to observe a significant

regulation of the interaction when we overexpressed FIH, these

changes within the RIPK4 complex may be due to altered hy-

droxylation levels or could be caused by FIH displacing proteins

by tightly binding to the AR. To distinguish between either, we

decided to test both hypotheses by either overexpressing FIH

or inhibiting the hydroxylase activity in the follow-up experi-

ments. The interaction with chaperones is an indication that

the protein is in a flexible, thermodynamically less stable confor-

mation. Because protein structure and flexibility can affect enzy-

matic activity (Taipale et al., 2013), we hypothesized that hydrox-

ylation may affect RIPK4’s intrinsic kinase activity by regulating

the stability of the C-terminal regulatory domain. The SCF com-

plex on the other hand is involved in the degradation of signaling

proteins such as b-catenin andNFkB (Chen, 2005;Winston et al.,

1999). The FIH-dependent reduced interaction with the SCF

complex suggested that RIPK4 protein stability might be regu-

lated in a hydroxylation-dependent manner.

Neither overexpression of FIH nor incubation with DMOG influ-

enced RIPK4 protein levels (Figure S6C). Thus, ruling a hydrox-

ylation-dependent degradation out. To test if kinase activity of

RIPK4 was regulated by hydroxylation, we relied on the fact

that RIPK4 overexpression has been shown to activate b-cate-

nin-dependent transcription, as well as inducing cytoplasmatic

b-catenin levels (Huang et al., 2013). As both inductions are

dependent on RIPK4 kinase activity, altered kinase activity

should translate into enhanced or inhibited TCF/LEF transcrip-

tional activity and cytoplasmatic b-catenin. We therefore co-

transfected cells with TOPFLASH, a TCF/LEF luciferase reporter,

vector kinase-dead RIPK4 (KD), and WT RIPK4 in conjunction

with V5-FIH or FIH siRNA. As an additional control, we treated

cells with 2 mM DMOG for 4 hr prior to lysis. Lysates were split,

with one set analyzed for luciferase activity, one fraction

analyzed for cytoplasmatic b-catenin (Huang et al., 2013), and

a final fraction was lysed and used to determine expression

levels.

As previously reported, activation of TCF/LEF transcriptional

activity is induced by WT RIPK4, when compared to KD (Fig-

ures 5D and 5E). In addition, we observed that incubation

with DMOG or FIH knock down reduced TCF/LEF-driven lucif-

erase activity. Similarly, overexpression of V5-FIH was able to

significantly increase luciferase activity (Figure 5D). As previ-

ously shown (Huang et al., 2013), WT RIPK4 induced non-

membrane-bound, b-catenin levels. This induction was ablated

by KD, DMOG, or FIH siRNA. To confirm that the observation

that FIH regulates RIPK4-driven TCF/LEF transcriptional activ-
(G) Bar graph represents the normalized hydroxylation ratio of RIPK4 peptides

expressing a vector control, H199A, or WT V5-FIH. The error bars represent SEM

(H) Bar graph represents the normalized hydroxylation ratio of one MAPK6 pepti

expressing a vector control, H196A, or WT V5-PHD3. The error bars represent S
ity in other systems, we repeated the luciferase reporter assay

in RKO cells, a colon cancer cell line which has not been shown

to have a mutated Wnt-signaling pathway. As expected,

expression of RIPK4 increased TCF/LEF-driven luciferase

expression when compared to a vector control. The induction

was completely ablated when we knocked down FIH by siRNA

(Figure S7A). Taken together, these data demonstrated that

FIH-dependent hydroxylation stimulates RIPK4 signaling in

RKO and HEK293T cells. RIPK4 has also been shown to be au-

tophosphorylated (Meylan et al., 2002), we therefore decided to

quantify RIPK4 kinase activity by quantifying kinase activity-

dependent RIPK4 phosphorylation sites. Initially, we compared

the phosphorylation status of WT and KD RIPK4. We identified

several phosphorylation sites of which some were absent in

KD mutant (Figure 5F), indicating that the phosphorylation of

these sites required RIPK4 kinase activity. Next, we quantified

the phosphorylation status of WT RIPK4 in the presence or

absence of DMOG and when V5-FIH was overexpressed (Fig-

ure 5G). We quantified the phosphorylation sites by LFQ and

were able to detect that DMOG inhibition and FIH overexpres-

sion altered the phosphorylation on sites which were deter-

mined to be kinase dependent in the previous assay. Overall,

these data demonstrated that hydroxylation and FIH regulate

RIPK4 kinase-dependent phosphorylations.

Taken together, we demonstrated that FIH binds to RIPK4 and

that hydroxylase inhibition and FIH-driven hydroxylation affects

RIPK4 activity and downstream signaling.

Biological Consequence of PHD3-Dependent
Hydroxylation of MAPK6
Subsequently, we analyzed the MAPK6 interaction data set and

15 proteins were significantly affected by hydroxylase inhibition.

Of these, four have been linked to ubiquitination (HUWE1 and

UBE3A), ubiquitin recognition (RAD23b), and the proteasome

(ECM29) (Figures 6A and 6B). Considering these data, it was a

reasonable hypothesis reduced hydroxylation leads to an ubiqui-

tin directed proteasomal degradation of MAPK6 by HUWE1 and

UBE3A.

Initially, we confirmed that PHD3 interacted withMAPK6 at the

exogenous as well as endogenous level and that the interaction

was inducible by DMOG (Figures 6C6E). Second, to test whether

hydroxylase inhibition increases proteasomal degradation of

MAPK6, we treated cells with two structurally unrelated hydrox-

ylase inhibitors (DMOG and JNJ) and quantified the expression

levels of endogenous MAPK6 by western blotting (Figures 7A

and 7B). In line with our hypothesis, MAPK6 protein levels

decreased in a linear fashion over the duration of the treatment

with either inhibitor. To ascertain that the decrease of the

MAPK6 was due to proteasomal degradation, we transfected

cells with FLAG-MAPK6 and treated the cells with DMOG or

JNJ in the presence or absence of the proteasomal inhibitor

MG132 (Figures 7C and 7D). Incubation with MG132 was able

to stabilize and hydroxylase inhibition to reduce MAPK6 protein
following an in vitro hydroxylation assay in the presence of HEK293T lysate

and n = 2.

de following an in vitro hydroxylation assay in the presence of HEK293T lysate

EM and n = 2.

Cell Reports 14, 1–16, March 22, 2016 ª2016 The Authors 9



Figure 5. FIH Potentiates RIPK4 Signaling

(A) FIH interacts with RIPK4 in a DMOG-dependent fashion. The HEK293T cells were transfected with FLAG-tagged RIPK4 and with V5-FIH as indicated and

treated for 4 hr with DMOG 24 hr post transfection. The cells were lysed, FLAG-RIPK4 immunoprecipitated, and proteins were separated by PAGE, electro-

blotted, and detected by the indicated antibodies.

(B) HEK293T cells were transfected with FLAG-tagged RIPK4 as indicated and treated for 4 hr with DMOG 24 hr post transfection. The cells were lysed, FLAG-

RIPK4 immunoprecipitated, and proteins were separated by PAGE, electro-blotted, and detected by the indicated antibodies.

(C) Graphs showing endogenous HSP90 interacting with exogenous FLAG-RIPK4 in the presence/absence of DMOG or overexpressed FIH. Bar graphs rep-

resenting LFQ-intensity values normalized to the RIPK4 input are shown. The error bars represent SD and n = 6.

(legend continued on next page)
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levels. When cells were treated with DMOG or JNJ and MG132

simultaneously, no decrease in MAPK6 level was observable.

To confirm that the hydroxylase inhibitor-dependent degrada-

tion was mediated by hydroxylation on Pro25, we mutated the

site to an alanine (P25A) and transfected WT and P25A MAPK6

into HEK293T cells and treated the cells for 8 hr with JNJ or

DMOG (Figures 7E and S7B). Incubation with JNJ or DMOG

reduced exogenous levels of MAPK6, whereas overexpression

of V5-PHD3 did not increase MAPK6 protein levels. On the other

hand, protein levels of the P25A mutant expressed at lower

levels, when compared to theWT, and, crucially, were not further

suppressed by 8 hr of either inhibitor. Intriguingly, expression of

mutant and WT MAPK6 could be increased to equal levels by

blocking proteasomal degradation, suggesting that the differen-

tial expression levels are due to enhanced degradation of the

mutant (Figure S7B).

Having established that Pro25 regulates the expression levels

of MAPK6 in a hydroxylase-dependent manner, we wanted

to ensure that PHD3 is an essential regulator of MAPK6

under endogenous, normoxic conditions. Therefore, we reduced

cellular PHD3 levels by siRNA. Reassuringly, we observed a

robust reduction of endogenous MAPK6. Moreover, treatment

with the pan-hydroxylase inhibitor DMOG was unable to further

suppress the expression of MAPK6 (Figure 7F). Next, we deter-

mined if any of the other PHDs were able to interact with MAPK6.

We expressed FLAG-MAPK6 in the presence of a vector control

or V5-tagged PHD1, 2, or 3. We immunoprecipitated the hydrox-

ylase and were only able to detect the interaction between

MAPK6 and PHD3 (Figure 7G). Taken together, both these

data demonstrated that PHD3 is the main MAPK6-hydroxylase

in HEK293T cells under normoxic conditions.

In conclusion, we confirmed that MAPK6 interacts specifically

with PHD3, that PHD3-dependent hydroxylation of Pro25 of

MAPK6 regulates its protein stability, and that PHD3 is the

endogenous enzyme which regulates MAPK6 protein levels.

DISCUSSION

Our data suggest that these oxygen-dependent enzymes regu-

late multiple signaling pathways by means of a distributed con-

trol, which is in contrast to the paradigm that hydroxylases regu-

late predominantly the HIF-pathway by exercising their control

on the master switch. Interestingly, a substantial set of proteins

in the canonical Wnt-pathway were identified as potential sub-
(D) HEK293T cells were transfected with FIH siRNA or non-targeting siRNA and 24

b-Gal, FLAG-tagged RIPK4 or KD K51R mutant, and with or without V5-FIH or tre

luciferase and b-Gal activity was measured. The bar graphs represent the lucifera

three biological replicates each (n = 9). The error bars are SD (p value < 0.05 = *

(E) Western blot control of (D). In addition, cytoplasmatic b-catenin was enriche

blotted and cytoplasmatic b-catenin was detected with an anti-b-catenin antibo

(F) Quantification of RIPK4 phosphorylation sites. The HEK293T cells were transf

and analyzed by mass spectrometry. The phosphorylation sites were identified by

graphs representing LFQ-intensity values normalized to the unmodified peptide

UniProt entry B7ZAU7. The error bars represent SEM and n = 6.

(G) Quantification of RIPK4 phosphorylation sites. The HEK293T cells were trans

transfection, were treated for 4 hr with DMOG and immunoprecipitated, digested,

by searching against a human database and subsequently quantified by LFQ

peptides. The numbers on the x axis are the phosphorylation sites detected for
strates. Given that these proteins are members of multiprotein

complexes, it is likely that only some of them are directly interact-

ing with, and are substrates of, PHD3. Nevertheless, this is a

clear indication that b-catenin signaling is regulated by both

FIH and PHDs. This is intriguing, as comparative oxygen and

b-catenin gradients have been reported in colonic crypts, where

low oxygen correlates with low nuclear b-catenin. Our initial data

on RIPK4 induced TCF/LEF transcriptional activity appears to

support this connection. We also confirmed that MAPK6 is hy-

droxylated by PHD3 close to two N-terminal domains which

regulate protein degradation (Ulyatt et al., 2011) In contrast to

many PHD substrates, hydroxylation of MAPK6 on Pro(25) stabi-

lizes the protein. MAPK6 has recently been reported to control

the expression of VEGFR2 (Wang et al., 2014), and it is therefore

possible that the suppression of the protein by hypoxia may

switch in the expression the VEGFR isoforms, which has been

indeed observed in low oxygen (Ulyatt et al., 2011). The question

still arises as to how MAPK6 may regulate VEGFR2 expression.

Based on our interaction data, MAPK6 interacts specifically with

IRAK1, a protein involved in interleukin signaling, and the MAPK

cascade proteins PRAK, Raf-1, and BRAF, suggesting an

involvement in MAPKs and NFkB signaling pathways. As

VEGFR2 mRNA expression is regulated by NFkB (González-Pa-

checo et al., 2006), it is plausible that this pathway provides the

link to MAPK6.

Over the past years, several attempts have been made to

systematically screen hydroxylation sites of endogenous pro-

teins. Although these approaches had some success, identi-

fying hydroxylation sites remains a formidable task. This is in

stark contrast to identification of phosphorylations, acetyla-

tions, and ubiquitination sites which benefit from availability

of affinity based enrichment methods at the peptide and protein

level (Olsen and Mann, 2013). Further complicating the anal-

ysis, hydroxylations and oxidations can occur on a multitude

of amino acid side chains. Thus, in order to assign the site

correctly within a peptide, fragmentation data have to be of

high resolution and coverage to give confidence in the assign-

ment of the site. We have overcome this issue by using high

resolution and mass accuracy HCD spectra as well as adding

oxidations of nine individual amino acid side chains as variable

modification. The inclusion of this array of oxidations permits to

determine localization probabilities in an unbiased manner and

reduces the need for visual inspection of the fragmentation

spectra. In the absence of an efficient systematic screening
hr later re-transfected with vector, TCF/LEF luciferase reporter TOPFLASH-8,

ated for 4 hr with DMOG 24 hr post transfection. The cells were lysed and the

se activity normalized by b-Gal activity of three independent experiments with

< 0.01 = **).

d by removing glycosylated proteins with ConA beads. The supernatant was

dy.

ected with FLAG-tagged WT or KD RIPK4 and immunoprecipitated, digested,

searching against a human database and subsequently quantified by LFQ bar

s. The numbers on the x axis are the phosphorylation sites detected for the

fected with FLAG-tagged WT RIPK4 with and without the FIH, and 24 hr after

and analyzed bymass spectrometry. The phosphorylation sites were identified

bar graphs representing LFQ-intensity values normalized to the unmodified

the UniProt entry B7ZAU7. The error bars represent SEM and n = 6.
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Figure 6. MAPK6 Interaction Screen

(A) Graphs showing selected MAPK6 interactions which specifically change upon treatment with JNJ for 4 hr. The bar graphs representing LFQ-intensity values

normalized to the MAPK6 input are shown. The error bars represent SD and n = 6.

(B) HEK293T cells were transfected with FLAG-MAPK6 and treated 24 hr post-transfection for 3 hr with JNJ. The cells were lysed, FLAG-MAPK6 immuno-

precipitated, and proteins were separated by PAGE, electro-blotted, and detected by the indicated antibodies.

(C) HEK293T cells were transfected with FLAG-tagged MAPK4 and V5-PHD3. At 24 hr post transfection, cells were treated for 2 hr with DMOG. The cells were

lysed, FLAG-MAPK6 immunoprecipitated, and proteins were separated by PAGE, electro-blotted, and detected by the indicated antibodies.

(D) HEK293T cells were treated for 2 hr with DMOG. The cells were lysed, PHD3 immunoprecipitated, and proteins were separated by PAGE, electro-blotted, and

detected by the indicated antibodies.

(E) HEK293T cells were treated for 2 hr with DMOG. The cells were lysed, MAPK6 immunoprecipitated, and proteins were separated by PAGE, electro-blotted,

and detected by the indicated antibodies.
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and enrichment method for hydroxylations, we conclude that a

targeted screen is currently the best way to identify regulated

hydroxylations and to determine the function in an unbiased

manner.
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Our results indicate that a cellular assay followed by quanti-

tative mass spectrometry is a viable way to determine enzy-

matic regulation of hydroxylation sites. We also attempted to

confirm the hydroxylase specificities in vitro with purified



Figure 7. PHD3 Stabilizes MAPK6 by Hydroxylating Pro25

(A) HEK293T cells were treated for indicated times with DMOG. The cells were lysed and proteins were separated by PAGE, electro-blotted, and detected by the

indicated antibodies. The western blot bands corresponding to MAPK6 were quantified and normalized against tubulin levels.

(B) HEK293T cells were treated for indicated times with JNJ. The cells were lysed and proteins were separated by PAGE, electro-blotted, and detected by the

indicated antibodies. The western blot bands corresponding to MAPK6 were quantified and normalized against tubulin levels.

(legend continued on next page)
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substrates. The outcomes of experiments with biotinylated

peptides were disappointing. We easily detected oxidized/hy-

droxylated peptides, but exclusively oxidized on the biotin res-

idue. Fortunately, as we analyzed the assay by liquid chroma-

tography (LC)-MS/MS, we were able to detect this false

positive result, and based on these data, we would not recom-

mend performing this assay without such a setup, as analyzing

the assay by MALDI-MS would not reveal these issues.

Because we were unable to hydroxylate peptides in vitro, we

switched to IVT-full-length proteins and obtained much more

encouraging results. We were able to confirm that MAPK6

and RIPK4 can be hydroxylated in vitro. Disappointingly, we

failed to confirm all four FIH-mediated hydroxylations in

RIPK4, despite strong evidence in cells. Based on our observa-

tions, we conclude that in vitro assays have to be tailored to the

individual substrate in order to avoid potential false positives

and negatives.

EXPERIMENTAL PROCEDURES

Cell Culture

HEK293T cells were cultured in Dulbecco’s modified Eagle medium (DMEM)

supplemented with 2 mM glutamine (Invitrogen) and 10% fetal calf serum (In-

vitrogen). Plasmids and siRNA oligonucleotides were transfected with Lipo-

fectamine 2000 (Invitrogen) according to the vendor’s instructions.

Immunoblotting

Total lysates and affinity precipitates were fractionated by SDS-PAGE and

transferred onto nitrocellulose filters. Immunocomplexes were visualized by

enhanced chemiluminescence detection (GE Healthcare) with horseradish

peroxidase-conjugated secondary antibodies (Bio-Rad Laboratories). Experi-

ments were repeated at least three times.

Mass Spectrometry and Immunoprecipitations

Samples were generated and processed as described. For interaction data:

Turriziani et al. (2014) and for expression data: Farrell et al. (2014). Variable

modifications were N-terminal acetylation (protein) and oxidation (M) for the

interaction and expression screen and oxidation (MWYFKPHDN) for the hy-

droxylation screen.

Bioinformatic Analysis

Uniprot accession numbers were reduced to one entry per protein group and

uploaded either into the IPA (http://www.ingenuity.com/), StringDB (http://

www.string-db.org/), or DAVID Bioinformatics Resources (https://www.

david.ncifcrf.gov/). IPA was used to identify enriched pathways, and DAVID

to identify enriched protein domains. String output was limited to ‘‘experi-

mental data’’ and stringency was set to ‘‘moderate’’.
(C) HEK293T cells were transfected with FLAG-tagged MAPK4 and 24 hr post tra

lysed, proteins were separated by PAGE, electro-blotted, and detected by the i

were quantified and normalized against tubulin levels.

(D) HEK293T cells were transfected with FLAG-tagged MAPK4 and 24 hr post tr

lysed, proteins were separated by PAGE, electro-blotted, and detected by the i

were quantified and normalized against tubulin levels.

(E) HEK293T cells were transfectedwith FLAG-taggedMAPK6 or the P25Amutant

The cells were lysed and proteins were separated by PAGE, electro-blotted, and d

FLAG-MAPK6 were quantified and normalized against tubulin levels.

(F) HEK293T cells were transfected with PHD3 siRNA or non-targeting siRNA and

proteins were separated by PAGE, electro-blotted, and detected by the indicated

and normalized against tubulin levels.

(G) HEK293T cells were transfected with FLAG-tagged MAPK6 with and without

immunoprecipitated and separated by PAGE, electro-blotted, and detected by t
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