

Edinburgh Research Explorer

Incremental Updates on Compressed XML

Citation for published version:
Böttcher, S, Hartel, R, Jacobs, T & Maneth, S 2016, Incremental Updates on Compressed XML. in 2016
IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, pp. 1026 - 1037, 2016 IEEE 32nd
International Conference on Data Engineering, Helsinki, Finland, 16/05/16. DOI:
10.1109/ICDE.2016.7498310

Digital Object Identifier (DOI):
10.1109/ICDE.2016.7498310

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2016 IEEE 32nd International Conference on Data Engineering (ICDE)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICDE.2016.7498310
https://www.research.ed.ac.uk/portal/en/publications/incremental-updates-on-compressed-xml(e128b842-2ee6-4868-9f1e-598a6654adf7).html

Incremental Updates on Compressed XML

Stefan Böttcher∗, Rita Hartel∗, Thomas Jacobs∗ and Sebastian Maneth†
∗University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

Emails: {stb@, rst@, tjacobs@mail.}uni-paderborn.de
†University of Edinburgh, Informatics Forum, Crichton Street, Edinburgh, EH8 9AB, UK

Email: smaneth@inf.ed.ac.uk

Abstract—XML tree structures can be effectively compressed
using straight-line grammars. It has been an open problem
how to update straight-line grammars, while keeping them
compressed. Therefore, the best previous known methods resort
to periodic decompression followed by compression from scratch.
The decompression step is expensive, potentially with exponential
running time. We present a method that avoids this expensive
step. Our method recompresses the updated grammar directly,
without prior decompression; it thus greatly outperforms the
decompress-compress approach, in terms of both space and time.
Our experiments show that the obtained grammars are similar
or even smaller than those of the decompress-compress method.

I. INTRODUCTION

Typical XML document trees compress well by means
of dictionary-based methods. Buneman, Koch, and Grohe [1]
show that XML document trees compress to about 10% of
their edges, when represented as minimal DAGs (directed
acyclic graphs). The idea of DAGs is to represent repeating
subtrees only once. This idea was generalized to the sharing of
repeated (connected) XML subgraphs by Busatto, Lohrey, and
Maneth [2]. They show that straight-line tree (SLT) grammars
compress typical XML trees to 3% of their edges. These
ratios are further improved by the current state-of-the-art SLT
compressor TreeRePair [3].

Dictionary-based compression methods are special, be-
cause they can provide in-memory representations which are
queryable without decompression. TreeRePair provides the
smallest queryable in-memory representation of XML docu-
ment trees that we are aware of [4].

These features make SLT grammars ideal for in-memory
XML processing. The downside however is: no previous
method supports efficient updates, i.e., updates that can be
executed on the grammar without decompression to the tree
and that keep the updated grammar small. Updates lead to
a significant blow-up in grammar size. In order to overcome
this problem, the best known method is, after some updates,
to decompress to a tree and then compress the resulting tree
again. This can take exponential time and space. Therefore,
SLT-compressed trees have only been applied in static sce-
narios. Many applications however rely on dynamic trees that
change frequently; consider for instance DOM-trees used in
web browsers.

This paper presents the first implementation of SLT-
compressed trees with efficient updates. The idea is to general-
ize TreeRePair from running on trees to running on grammars.
In this way, updates can be realized by first efficiently pro-
ducing an updated grammar and then running GrammarRePair
over this grammar. Our contributions are:

(1) We devise the compression algorithm GrammarRePair
which executes RePair compression directly on an SLT
grammar, without prior decompression.

(2) We show that on typical XML trees, GrammarRePair
compresses as well as TreeRePair; on some trees it even
compresses considerably better.

(3) We investigate the update performance of SLT grammars
under GrammarRePair compression:

a) For sequences of thousands of updates (inserts and
deletes), our grammars achieve virtually the same com-
pression ratios as achieved by the update-decompress-
compress (udc) method.

b) For typical files, our space consumption overhead is
less than 1% compared to the compression result of
udc, while naive updates (without further compression)
cause about 40% overhead. For a few files with extreme
compression ratios, our overhead compared to the com-
pression result of udc is a factor of two, while naive
updates cause blow-ups of more than 100-fold.

c) For XML trees with more than 100k edges, our update
time is faster than that of udc. For trees with more
than 200k edges, our update time is even faster than
the mere compression time of udc.

Let us describe in a few more words the idea of our method.
The idea of RePair compression is to repeatedly replace the
most frequent digram by a new nonterminal. For strings [5]
a digram simply consists of two adjacent symbols. Thus, on
the string w = ababababa we can replace ab by a nonterminal
symbol A, obtaining AAAAa, and then replace AA by B,
obtaining the final grammar Gw = {S → BBa,B →
AA,A → ab}. Note that the size of this grammar (= sum
of lengths of right-hand sides) is 7, while the original string
has length 9. In a tree, a digram is a triple (a, i, b) where a, b
are labels of adjacent nodes and i is a child number. Note
that a naive implementation that counts digrams after each
round of replacements, does not run in linear time. A linear
time implementation is non-trivial. It was solved by Larson
and Moffat [5] through careful incremental updates of digram
occurrence lists together with clever data structures such as a
priority queue of length

√
n (where n is the length of the input

string) holding frequent digrams. To see the challenge caused
by an update, consider changing the w above into v = bw. A
grammar for this is Hv = {S → bBBa,B → AA,A → ab}.
However, this is not the grammar RePair would produce on
v, because initially now ba is the most frequent digram. The
desired smaller grammar would be Gv = {S → BBA,B →
AA,A→ ba}. The question arises, how this grammar Gv can
efficiently be obtained from the grammar Hv?

In our setting, we need to count digram occurrences not
only in a string, but in a tree T generated by the SLT grammar
G, but without decompressing G to T . We show how this is
possible in one pass over an SLT grammar.

The main challenge is the efficient replacement of all
occurrences of a given digram α = (a, i, b) in a tree T
generated by a grammar G, in one pass through G, and with
minimal decompression of G. One major technical issue is that
an occurrence of α need not reside in just one rule, but can
span over several rules. This implies that we first have to apply
these rules (thus locally decompressing) in order to make this
occurrence explicit to be able to replace it. The delicate issue is
to do as few rule applications as possible (by running them in a
particular order), and to apply these rules in a “compact” way
(by introducing new rules). At the end of the Preliminaries,
we give a more technical outline of our technique.

Related Work

The idea of updates through path isolation is used by
Fisher and Maneth [6]. For typical XML documents, they
find that long update sequences of delete/inserts (on the same
document) increase grammar sizes by around 40%. Their SLT
grammars are produced by BPLEX [2].

Bätz, Böttcher, and Hartel [7] use path isolation to find that
updates can be performed faster than using the decompress-
update-compress method. Moreover, they show how to perform
multiple updates in parallel during one grammar pass. This ap-
proach is further improved by Böttcher, Hartel, and Jacobs [8]
by computing DAG-compressed representations of the update
positions induced by an XPath query (when evaluated over the
given SLT grammar).

For straight-line string grammars, digram replacement in a
given grammar has been used by Jez [9] in his recompression
framework. For this, he distinguishes “non-crossing” digrams
that fully reside in rules (and thus are easy to replace) from
“crossing” digrams which are more difficult to replace. He
shows that all occurrences of a digram can be replaced in
linear time with respect to the size of the grammar. Jez’s
recompression approach has been generalized to trees by Jez
and Lohrey [10] in order to present a compression algorithm by
SLT grammars with the currently best proven approximation
ratio (with respect to the minimal SLT grammar, which is NP-
complete to compute, cf. [11]).

Succinct trees offer are a compact tree representation, see,
e.g., the work by Munro and Raman [12]. They have been used
to build in-memory DOM representations for XML trees by
Delpratt, Raman, and Rahman [13]; while this representation is
space efficient and supports fast navigation, it does not support
updates. Dynamic succinct versions are more complicated
and efficient implementations are still missing, even though
appropriate data structures have recently been implemented by
Joannou and Raman [14], cf. the concluding remarks in [15].

II. PRELIMINARIES

Our formal models of an XML tree and a tree grammar
follow and slightly extend [3]. Like TreeRePair, we consider
an input document as a labeled binary tree, where each non-
leaf node has exactly two children, i.e., it has rank two:

its first-child and its next-sibling (Figure 1). Different from
TreeRePair, we introduce a leaf node with label ⊥ called the
empty node to represent non-existing first-child or next-sibling
nodes. Our compression works on ranked labeled ordered trees
of which binary XML trees are just a special case.

f

a a

a a

a a

f

a

⊥ a

a

⊥ a

⊥ ⊥

a

⊥ a

⊥ ⊥

⊥

Fig. 1. An XML tree and its binary tree

A ranked alphabet Σ consists of a finite set of symbols
each of which is associated a natural number, called the rank
of the symbol. We fix the set Y = {y1, y2, . . . } of formal
parameters, and assume it to be disjoint with all other ranked
alphabets. A finite tree (over Σ) with parameters is a tree t,
such that for every node u of t, if the label of u is a symbol in
Σ of rank k, then u has exactly k children, and, if the label of
u is in Y , then u has zero children. Let params(t) denote the
number of nodes of t that have their label in Y . We demand
that if params(t) = m, then for each i ∈ {1, . . . ,m}, there is
exactly one node in t labeled by yi. Thus, our trees are linear
in the parameters Ym = {y1, . . . , ym}.

Let t, t′ be trees and v be a node of t. By t[v/t′], we
denote the replacement of the subtree rooted at node v by
the tree t′. Now let params(t′) = m and t1, . . . , tm be trees.
Then t[y1/t1, . . . , ym/tm] denotes the tree obtained from t
by replacing each occurrence of yj by the tree tj , for 1 ≤
j ≤ m. If t[v/t′[y1/t1, ..., yn/tn]] = t, then t′ is a pattern of
rank m occurring in tree t at node v. For example, the pattern
a(y1, a(y2, y3)) occurs at four different nodes in the tree of
Figure 1, namely, at the top a-node of each dashed box.

To compress a ranked labeled ordered tree by extracting
patterns that occur multiple times, so-called straight-line linear
context-free (SLCF) tree grammars can be used. Using the
model of [3], a linear context-free tree grammar is a 4-tuple
G = (F ,N , P, S), where F is the set of ranked terminal
symbols (including the null pointer ⊥ with rank(⊥) = 0), N is
the set of ranked nonterminal symbols, F ∩N = ∅, P denotes
the set of rules, and S ∈ N is the start nonterminal symbol not
occurring on the right-hand side of any rule. For each R ∈ N
of rank m, there is exactly one rule (R→ tR) ∈ P , where tR
must not consist of a single node that is a parameter. Each such
tR is a tree over F ∪N ∪ Ym, such that each yj ∈ Ym occurs
exactly once in tR. The derivation relation of G is denoted
by ⇒G (or by ⇒). For trees t, t′, t ⇒G t′ if (1) t contains a
subtree t0 = A(t1, . . . , tm) with A ∈ N and (2) t′ is obtained
from t by replacing t0 by the tree tA[y1/t1, . . . , ym/tm].

In order to identify a particular node v occurring in the
right-hand side tB of a grammar rule B → tB , we denote
v as (B,m), where n is the number of nodes (terminals,
nonterminals, parameters) occurring in tB , 1 ≤ m ≤ n, and
(B,m) is the m-th node of tB in preorder.

For example, consider the grammar G = (F ,N , P, S)
with F = {a, f,⊥}, N = {A,B, S}, and P = {S →

f(A(B,B),⊥), B → A(⊥,⊥), A → a(⊥, a(y1, y2))}. Then,
B ⇒ A(⊥,⊥); we apply the A-rule to the tree A(⊥,⊥)
by replacing y1 and y2 in tA by ⊥, i.e., A(⊥,⊥) ⇒
a(⊥, a(⊥,⊥)) = t. Then, A(B,B) ⇒ a(⊥, a(B,B)) ⇒
a(⊥, a(t, t)). Thus, S ⇒ f(A(B,B),⊥) which derives to the
binary tree f(a(⊥, a(t, t)),⊥) which is shown in Figure 1.

Furthermore, refG(Q) = {(R,n) | (R → tR) ∈ P ∧
label(tR, n) = Q} denotes the set of the Q-labeled nonter-
minal nodes within the rules of G. If (R,n) ∈ refG(Q), we
also say that R calls Q, callsG(Q,R) for short. Then, the
transitive closure, calls∗G(Q,R), contains all pairs of nodes,
where R directly or indirectly calls Q. We consider only
grammars that are non-recursive, also called straight-line, i.e.,
¬∃Q : calls∗G(Q,Q). We say that Q occurs before R in anti-
straight-line order (anti-SL) in G, if calls∗G(Q,R).

To inline a rule, means for (R,n) ∈ refG(Q) that occurs
in the right-hand side of a rule R → tR, we modify tree tR
by replacing (R,n) by tQ, where the i-th parameter node of
tQ is replaced by the subtree rooted in the i-th child node
of (R,n). Formally, let rank(Q) = m and let ti be the i-th
subtree of (R,n). That is, inlining Q into (R,n) is formally de-
fined by the replacement tR[(R,n)/(tQ[y1/t1, . . . , ym/tm])].
If afterwards |refG(Q)| = 0, we delete rule Q → tQ from
grammar G. For example, if we inline rule B for node (S, 3),
we obtain S → f(A(A(⊥,⊥), B),⊥). Let valG(R) be the
tree corresponding to R, i.e., the tree that we obtain when
repetitively inlining nonterminals in tR, until tR does not
contain any nonterminals. As a special case, valG(S) = T
is the tree generated by the grammar G. Let b be a terminal
node in any rule of a grammar G with start symbol S, and
let T = valG(S) be the tree generated by inlining all rules
into S. We define a correspondence between b and a set of
nodes v in T by the following procedure. We mark b in G,
and whenever a rule containing a marked node b is inlined, the
mark is copied during the inlining step. When no more rules
can be inlined, i.e., when we have transformed G into T , all
the marked nodes in T are the nodes that correspond to b.

As defined in [3], a digram α = (a, i, b) is a triple, where
a, b ∈ F and i ∈ {1, ..., rank(a)}. It denotes an edge from an
a-labeled node to its i-th b-labeled child node. An occurrence
of a digram α = (a, i, b) is a pair of nodes v and w in T , such
that label(v) = a and v’s i-th child is w with label(w) = b.
Two occurrences of the same digram α are overlapping, if they
share a common node in T . For two distinct occurrences of
α, overlapping can only happen if a = b.

For example, in the tree T shown above in Figure 1, we
have several occurrences of the digram (a, 2, a) marked by a
dashed box. The occurrences marked with a blue box overlap
with the occurrence marked by the red box.

Finally, let α = (a, i, b) be a digram with rank(a) = m
and rank(b) = n. The pattern tX representing α is defined to
be a(y1, . . . , yi−1, b(yi, . . . , yi+n−1), yi+n, . . . , ym+n−1).

α is called appropriate if

1) rank(α) = m + n − 1 ≤ kin, where kin is a predefined
constant limiting the maximum numbers of parameters of
a rule X → TX and

2) α has more than one occurrence within T .

Outline of the Proposed Solution. Recompression of
a grammar G is done stepwise by finding a most frequent
digram α = (a, i, b) in valG, partially decompressing G, such
that all digram occurrences of α are isolated, and replacing
all digram occurrences of α with a new nonterminal X . In
order to minimize the amount of decompression during partial
decompression of G, we first minimize the amount of inlining
steps, i.e., replace only those nonterminals A by tA, for which
we can isolate a terminal a or a terminal b that belongs to
a digram occurrence of α. Second, instead of replacing each
nonterminal A determined in the first step by tA, we transform
tA into an equivalent tree t′A by recompressing parts of tA that
are not needed to isolate a or b, and then replace A by the
smaller tree t′A.

III. GRAMMAR UPDATES AND MOTIVATING EXAMPLES

XML tree structures can be updated using three atomic
update operations: renames, deletes, and inserts. For this
section, we mostly consider renames. Let t be a binary tree
representation of an XML tree, u a node of t, and σ be a label.
Then rename(t, u, σ) denotes the tree obtained from t by rela-
beling the node u by the label σ. To guarantee that the resulting
tree is again a correct binary tree representation of an XML
tree, we require that σ 6= ⊥ and that the label of u in t is not
⊥. As an example, let t = f(d(⊥, b(⊥, a(⊥, b(⊥,⊥))))) and
let u = 2, i.e., u denotes the d-node in t. Then rename(t, u, a)
is the tree f(a(⊥, b(⊥, a(⊥, b(⊥,⊥))))).

A. Path Isolation

In order to perform an update on a tree that is given
as grammar, we first need to “isolate” the node at which
the operation is to be performed. To see this, consider the
following string grammar G8:

{A→ BB,B → CC,C → DD,D → ab}.

This grammar represents the string (ab)8. We would like to
rename the first a-symbol in this string by a c. Clearly, if we
simply change the a-symbol of the D-production into c, then
the whole string changes to (cb)8 which is not what we want.
The issue is that D appears many (eight) times in the string,
and only the very first occurrence should be changed. Thus, we
must “unfold” the grammar until the particular terminal symbol
is available, and then perform the change. In the example, we
can use this derivation:

A⇒ BB ⇒ CCB ⇒ DDCB ⇒ abDCB.

Since the symbol a occurs in its terminal form, at the correct
position of the update, we may now change it, and obtain
cbDCB. Thus, a grammar with rule A → cbDCB and the
B, C, and D rules as before, represents the renamed tree. We
call this process of making a node terminally available a “path
isolation”. As another example, consider this grammar Gexp:

A → A1A1

Ai → Ai+1Ai+1, for 1 ≤ i ≤ 9
A10 → a.

The grammar represents the string a1024. Note that the size of
the grammar is 21. Assume that we want to rename the letter
at position 333 by the letter c. Since A1 produces a string of
length 512, we know that this position is produced by the left

A1 in the A-production. Thus, we derive A⇒ A2A2A1. Since
A2 produces a string of length 256, we now need to expand
the second A2, to obtain A2A3A3A1. After a few more steps,
we obtain

A2A4A7A8aA10A9A6A5A3A1

and as we may verify: 256 + 64 + 8 + 4 = 332, thus, the a
above is at the correct position.

Let G be a grammar and u a node in valG(S). In one pass
through G, we can precompute for every nonterminal A of G
of rank k, the numbers size(A, 0), size(A, 1), . . . , size(A, k).
These are the numbers of nodes in valG(A) that appear before
y1 (in pre-order), between y1 and y2, . . . , after yk. For instance,
if valG(A) = f(y1, g(h(a, y2), g(a, y3))) then size(A, 0) = 1,
size(A, 1) = 3, size(A, 2) = 2, and size(A, 3) = 0.

Using these numbers, it is straightforward to determine a
shortest derivation S ⇒∗ ξ, such that a terminal symbol occurs
in ξ that uniquely represents u: we start at the root node of
the right-hand side of S. Assume that it is a nonterminal X of
rank k. Using the size-information, we can determine whether
u is produced by X , and if not, determine the j ∈ {1, . . . , k}
such that u is produced in the j-th subtree. The tree ξ is the
path isolation of G for u, denoted by iso(G, u). Path isolation
is used already in [6]. The following lemma is straightforward
because each production is applied at most once during path
isolation.

Lemma 1. Given a grammar G and a node u in valG(S),
|iso(G, u)| ≤ 2 · |G|.

B. Updating the Path-Isolated Grammar

As we have seen, even performing a single rename opera-
tion over a grammar can, due to path-isolation, cause a blow
up of (almost) a factor two. Clearly, if we repeatedly apply
more and more updates, then we can blow-up again and again,
eventually loosing all compression of the grammar. In general
this cannot be avoided: consider renaming every single node by
a new unique symbol. Then the output cannot be compressed,
thus, after n steps (where n is the size of the uncompressed
tree) we obtain a grammar of size n, which does not exhibit
any compression.

Typically, however, the grammars after update are much
larger then they need to be. Consider again the grammar G8 of
before. We now insert a b symbol before the first symbol, and
an a symbol after the last symbol. These positions are available
immediately in the start rule’s right-hand side, without any
further path isolation needed. We obtain this grammar:

{A→ bBBa,B → CC,C → DD,D → ab}.

The represented string is b(ab)8a. How would RePair compress
this string? Clearly, the most frequent digram now is ba and
not ab as previously. Therefore, we want to execute repair
compression directly on the grammar shown above, causing
as little as possible decompression.

C. Grammar Recompression

Let us outline our algorithm on this example. At first,
we need to count the number of occurrences of digrams.
Let us defer this step until later, and assume that we have

determined that ba is the most frequent digram and hence
shall be replaced by the new nonterminal X . We traverse the
productions bottom-up. Obviously, the right-hand side ab of D
does not contain any occurrence of ba. We record that the first
letter of D is an a, and that the last letter of D is a b. Consider
now the production C → DD. None of the D’s contains
ba, however, the string of DD does contain an occurrence,
stemming from the last letter of the first D and the first letter
of the second D. Hence, this production is changed into

C → aXb.

With this, the right-hand side of B rewrites to aXbaXb and
hence becomes aXXXb. In order to limit decompression
when we need to insert this string for B in the future, we would
introduce a new auxiliary nonterminal Y for XXX . We refer
to the memorization technique as lemma generation. Thus, we
have {B → aY b, Y → XXX} Finally, we replace B by
aY b in the right-hand side of A to obtain: baY baY ba, which
becomes XYXYX . Thus, we obtain the following grammar:

{A→ XYXYX, Y → XXX,X → ba}.

Note that the size of this grammar is 10, while the correspond-
ing grammar without lemma generation has size 11 (its A rule
has X9 in its right-hand side). Thus, even in this tiny example,
lemma generation is beneficial.

We now need to run a next round of RePair. Again, let us
defer how digram occurrences are counted in this grammar, and
assume that XX is the most frequent digram. We introduce
Z → XX and change Y → XXX into Y → ZX . With
this, the right-hand side of A becomes XZXXZXX and thus
XZZZZ. The resulting grammar is {A → XZZZZ,Z →
XX,X → ba} Even though this will not change the size of
this grammar, RePair would replace ZZ by a new nonterminal
W to yield this final grammar:

{A→ XWW,W → ZZ,Z → XX,X → ba}.

Observe, when Y ’s right hand side XXX was changed
to ZX . This is a left-greedy replacement. Such a replace-
ment need not be optimal. Consider a rule S → XY Y X .
Replacing Y by ZX in this rule yields XZXZXX which
contains only one occurrence of XX (and thus would become
XZXZZ). Similarly, choosing the right-greedy XZ would
give us XXZXZX and then ZZXZX . To get an optimal re-
sult (especially in the presence of more occurrences of Y X and
XY), one would need to introduce two rules: Y → XZ and
Y ′ → ZX . With these rules, the S-rule becomes XXZZXX
and thus ZZZ. In the case of trees, even two rules would not
be enough, e.g., the rule Y → a(a(y1, y2), a(a(y3, y4), y5))
would require four versions. In a tree, left-greedy matching
of a digram is generalized to “top-down greedy” matching. In
summary:

(1) we use lemma generation in order to keep the grammar
compressed during replacement of digrams, and

(2) we always replace digrams in a left-greedy way, in order
to only generate one version of a production.

IV. GRAMMAR REPAIR COMPRESSION

TreeRePair [3] takes as input a labeled ordered binary tree
T and produces as output an SLCF tree grammar G′ with

valG′(S) = T . Our generalization GrammarRePair takes as
input an SLCF grammar G and produces a (smaller) grammar
G′, such that valG′(S) = valG(S).

GrammarRePair works on so called digrams, i.e., pairs of
adjacent terminal nodes of the tree T generated by G.

Algorithm 1, the steps of which are later described in more
detail, shows an overview of GrammarRePair.

Algorithm 1: GRAMMARREPAIR(G = (F,N, P, S))

1 RETRIEVEOCCS(G)
2 while α = MOSTFREQUENTDIGRAM exists do
3 replace each occurrence of α in G by X , where X

is a new nonterminal
4 P = P ∪ {X → tX} with tX representing α
5 F = F ∪X
6 UPDATEDIGRAMOCCURRENCES

7 PRUNINGPHASE

First, GrammarRePair computes a set of digram occur-
rences within G for each digram and counts how often the
occurrences are present within T (line 1). Afterwards, it
iterates through the following steps:

1) A most frequent appropriate digram α regarding T is
selected (line 2).

2) Each digram occurrence of α in G is replaced by X , where
X is a new nonterminal (line 3).

3) A rule X → tX is added to G where the pattern tX
represents the digram α (line 4). In the following steps,
T is the tree generated by the grammar that treats X as a
terminal (line 5).

4) As the grammar is modified, the sets of digram occurrences
are updated (line 6).

Finally, if no more appropriate digram exists, the Pruning
Phase (line 7) removes all rules that do not contribute to the
compression. To be more precise, GrammarRePair consists of
the following steps outlined in the sections IV-A to IV-D.

A. Counting and Locating Digram Occurrences

In this section, we first explain the steps of TreeRePair
working on trees as a simple case, and then extend each step
to work on arbitrary SLCF grammars.

Considering the simpler case of a tree as input, TreeRePair
searches for digrams in a tree T and counts the sizes of
maximal sets of non-overlapping occurrences of each digram.
This is done in a bottom-up greedy way: TreeRePair traverses
T in post-order and adds each occurrence of a digram α to
the digram list of α, provided it does not overlap with an
occurrence that is already stored in the digram list of α.

While the location of each digram occurrence (v, w) in T
can be uniquely described by the child node w, as its parent v
is unique, an SLCF grammar may contain a terminal node w
that belongs to different digram occurrences (v1, w), (v2, w).

For an arbitrary SLCF grammar G as input, we define
digrams, digram occurrences, their generators, their tree parent,
and their tree child in G as follows.

Let R → tR be a rule in G and (R,n) a node in tR
with n 6= 1 and label(tR, n) 6= yi, i ∈ N, i.e., (R,n)
is neither the root of tR nor a parameter. Then, (R,n) is
called a digram occurrence generator of a digram occurrence
((A, k), (B,m)) of a digram α = (a, i, b) in grammar G,
where a = label(tA, k) and b = label(tB ,m).

We call the node (B,m) = TREECHILD(R,n) the tree
child in G of this digram occurrence, and the node (A, k)
with ((A, k), i) = TREEPARENT(R,n) the tree parent in G
of this digram occurrence. Here, the functions TREECHILD
and TREEPARENT are defined as follows.

Algorithm 2: TREECHILD(B,m)

1 while (B,m) is nonterminal do
2 B := label(tB ,m);
3 m := 1;

4 return (B,m)

The function TREEPARENT returns the tree parent of
(R,n) and the child index i as follows. The auxiliary method
parent(t,m) computes the position of the parent node of the
m-th node in preorder within t. Furthermore, i = index(t,m)
denotes that the m-th node within t is the i-th child node of
the node at position parent(t,m). Note that TREEPARENT is
only called for nodes (A, k) that are not the root of the tree
tA, i.e., nodes with k 6= 1.

Algorithm 3: TREEPARENT(A,k)

1 while label(tA, parent(tA, k)) is nonterminal do
2 i := index(tA, k);
3 A := label(tA, parent(tA, k));
4 k := index(tA, yi);

5 return ((A, parent(tA, k)), index(tA, k))

Consider the following fragment “Grammar 1” of an SLCF
grammar

C → A(B(⊥),⊥)
A → a(y1, a(B(⊥), a(⊥, y2)))
B → b(y1,⊥)

For example, consider the node (C, 2) labeled with the
label B in the first rule of Grammar 1 as digram occurrence
generator. By calling TREECHILD(C, 2), we obtain the termi-
nal (B, 1) having label b as (C, 2)’s tree child. And by calling
TREEPARENT(C, 2), we obtain ((A, 1), 1), i.e., the terminal
node (A, 1) having label a as (C, 2)’s tree parent and the index
1 as the child index. This together forms an occurrence of the
digram α = (a, 1, b).

Let (R,n) be a digram occurrence generator in G with
tree child (B,m), tree parent (A, k), and child index i and
let T = valG(S) be the tree generated by G. We define the
set CDO(R,n) of digram occurrences in T corresponding to
(R,n) as CDO(R,n) = {(vT , wT) | vT corresponds to (A, k)
and wT corresponds to (B,m) and wT is the i-th child of vT
in T} .

As one digram occurrence generator within a rule Q→ tQ
of G can correspond to multiple digram occurrences within
the tree T generated by G, we have to compute based on G,
the number of digram occurrences within T . Informally, this
depends on how often the nonterminal Q is used within G
to generate T . Formally, we recursively define the function
usageG with usageG(S) = 1, and for each Q ∈ N\{S} :
usageG(Q) =

∑
(R,n)∈refG(Q) usageG(R). In general, for each

digram occurrence generator (C,mC), the number of corre-
sponding digram occurrences within T is given by usageG(C).

For example, in Grammar 1, if we assume that
usageG(C) = 3 and A is called only twice in a further rule
S of Grammar 1, usageG(A) = 2*usageG(S) + usageG(C) =
2 ∗ 1 + 3 = 5, i.e., the occurrence of the digram α = (a, 1, b)
generated by node (A, 4) corresponds to five occurrences of α
in tree valG(S).

One major challenge when dealing with SLCF tree gram-
mars instead of DAGs or trees is to find a maximum set of
non-overlapping occurrences of a digram (b, i, b).

To avoid overlapping occurrences, we use the same re-
striction as TreeRePair uses on DAG-compressed grammars.
That is, we do not consider occurrences of equal label digrams
where the tree child is the root of a rule. Note however that we
do consider occurrences of digrams of the form (b, i, b) that
cross parameter boundaries.

Algorithm 4: RETRIEVEOCCS(G = (F ,N , P, S))

1 foreach (C → tC) ∈ P,C ∈ N ,
2 in anti-SL order do
3 foreach (C, n) ∈ tC in pre-order do
4 if n 6= 1 ∧
5 label(tC , n) 6= yj then
6 ((A, k), i) :=TREEPARENT(C,n);
7 (B,m) :=TREECHILD(C,n);
8 α := (label(tA, k), i, label(tB ,m));
9 if (label(tA, k) 6= label(tB ,m))∨

10 (label(tC , n) /∈ N∧
11 (A, k) /∈ occG(α)) then
12 occG(α) := occG(α) ∪ {(C, n)};

Algorithm RETRIEVEOCCS computes the set occG(α) of
generators of all non-overlapping occurrences of all digrams
α = (b, i, b) and of all occurrences of digrams α = (a, i, b)
within grammar G in parallel within a single pass through
grammar G. Therefore, RETRIEVEOCCS assumes that the tree
parents (A, k), the child indices i (line 6), and tree children
(B,m) (line 7) of all occurrences have been precomputed in
a prior single pass.

The algorithm works as follows: We traverse the set of
rules in an anti-SL order. Each rule is traversed in a pre-
order run which assures that we combine the digrams in a
“top-down greedy” way. If the node (C, n) visited is not a
formal parameter and if it is not the root of tC , we check,
whether a digram occurrence can be added for the digram
occurrence generator (C, n). There are two cases where a
digram occurrence generator can be added: first (line 9), its

tree parent (A, k) and its tree child (B,m) have different
labels, second, if label(tA, k) = label(tB ,m), the node (C, n)
is no nonterminal, and ((A, k), (B,m)) does not overlap with
another occurrence of the same digram. Such an overlap
can only happen, if the tree parent (A, k) is a tree child
of another occurrence of the same digram α, so line 11
checks whether (A, k) was added to the set of occurrences
of α before. The missing case – (C, n) is a nonterminal and
label(tA, k) = label(tB ,m) – would create an overlapping
occurrence crossing the root of a rule, i.e., we do not add
this occurrence. This implies that our approach does not
produce overlapping digram occurrences, and it does not add
occurrences of equal label digrams that cross rule boundaries
to the root of a rule. This allows us to directly replace digram
occurrences where tree parent node and tree child occur within
the same rule without preparing the grammar. However, as
shown in the next section, occurrences covering nodes from
different rules still need to be treated in a separate way.

Consider again the fragment Grammar 1 of an SLCF
grammar. Table I shows the results of applying the inner loop
(lines 3-12) of Algorithm RETRIEVEOCCS to the rule A→ tA
of applying it to the rule C → tC . Note that we omitted all
results having the empty tree ⊥ as tree child. The column
∆occG(α) contains the digram occurrence generators added
to the set of digram occurrence generators. The nodes (A, 1)
and (C, 1) calculated in the first lines of Table I and of Table
II do not generate a digram occurrence, as the considered
node is the root of each rule. Nodes (A, 2) and (A, 8) are
parameters and therefore do not generate digram occurrences
either. The digram occurrence generated by node (A, 6) is not
added to occG(α = (a, 2, a)), as it overlaps with the previously
stored occurrence generated by node (A, 3). Node (C, 2) is
an example for a digram occurrence generator where the tree
parent (B, 1), the tree child (A, 1), and the node generating
the digram occurrence occur all within different rules.

node tree parent tree child α ∆occG(α)

(A, 1) − − − −
(A, 2) − − − −
(A, 3) ((A, 1), 2) (A, 3) (a, 2, a) (A, 3)
(A, 4) ((A, 3), 1) (B, 1) (a, 1, b) (A, 4)
(A, 6) ((A, 3), 2) (A, 6) (a, 2, a) −
(A, 8) − − − −

TABLE I. RETRIEVEOCCS FOR RULE A→ tA

node tree parent tree child α ∆occG(α)

(C, 1) − − − −
(C, 2) ((A, 1), 1) (B, 1) (a, 1, b) (C, 2)

TABLE II. RETRIEVEOCCS FOR RULE C → tC

B. Replacing Digrams

We start again with considering the simpler case of trees.
After computing all digrams and their occurrences, a most
frequent digram α = (a, i, b), with rank(α) ≤ kin is selected,
where kin is a predefined constant limiting the maximum
rank of digrams that are replaced. For α, TreeRePair in-
troduces a grammar rule X → tX with tX representing α.

Let v.i be the subtree rooted in the i-th child node of a
node v. For each occurrence of α consisting of tree parent
v and tree child w, TreeRePair applies an operation that is
inverse to inlining X , i.e., it replaces the subtree rooted in v
by a subtree X(v.1, . . . , v.(i − 1), w.1, . . . , w.rank(b), v.(i +
1), . . . , v.rank(a)).

In order to replace digrams α = (a, i, b) in arbitrary
SLCF tree grammars, first, GrammarRePair generates the same
rule X → tX as TreeRePair does. Then, Algorithm 5 or an
optimized version of it, Algorithm 6, is used for replacing all
occurrences of the digram α.

Algorithm 5: REPLACINGALLOCCURRENCESOF(α)

1 DDα = DEPENDENCYDAG(G = (F,N, P, S))
2 foreach (Q→ tQ) ∈ P in anti-SL order do
3 foreach node (Q,n) ∈ tQ do
4 if (Q,n) ∈ DDα and (Q,n) is a nonterminal R

then
5 inline tR for (Q,n)

6 replace each digram occurrence of α in tQ by X as
done in TreeRePair

Algorithm 5 consists of two parts:

1) The computation of a so called DependencyDAG DDα

for α (line 1), which contains all the rules that need to
be considered when replacing the occurrences of α. This
DependencyDAG contains all paths of grammar nodes
(Q,n) which are nonterminals that have to be expanded
when computing the tree parent or the tree child of a
digram occurrence generator of α by Algorithm 2 or
Algorithm 3.

2) A loop (lines 2-6) proceeding bottom-up through DDα

that does the digram replacements (line 6), preceded in
some cases by inlining steps (lines 3-5).

The replacement of α = (a, i, b) traverses the grammar G
bottom-up (lines 2-6), and for each production rule Q → tQ
of G, the following steps are executed:

1) For each node (Q,n) that is contained in DDα and that
is a nonterminal R, we inline tR for R, thereby isolating
a and b.

2) As now a and b are isolated, and b is the i-th child of
a, we replace the digram occurrence α = (a, i, b) as in
TreeRePair.

C. Updating the Context

The updates of the contexts are mainly the same, no matter
whether we work on trees or on grammars – considering that
we know for grammars how to compute the tree child and the
tree parent of a digram occurrence.

For each occurrence that is replaced, we update the digram
occurrences within the neighborhood. Conceptionally, this step
results in the same result as repeating the step described in
Section IV-A. But in order to avoid unnecessary re-counting,
only the occurrences that overlap with an occurrence of the
replaced digram α = (a, i, b) have to be adapted. If we

consider a digram occurrence of α having tree parent v and
tree child w, such that v is the j-th child node of its parent
node p, with label(p) = q, we have to delete the occurrence
consisting of tree parent p and tree child v of digram (q, j, a)
and instead add an occurrence of (q, j,X). Similarly, for each
child c of w with label(c) = d being the k-th child of w,
we delete the occurrence consisting of tree parent w and tree
child c of digram (b, k, d) and instead add an occurrence of
(X, i+ k − 1, d). Finally, the complete digram list of digram
α has to be deleted.

The replacement step and the context update are repeated
as long as a digram exists that has less than kin parameters
and occurs more than once.

D. Pruning

Finally, the resulting grammar is pruned, i.e., so-called
unproductive grammar rules are removed. This step again is
similar, no matter whether we work on trees or on arbitrary
SLCF tree grammars. The productiveness of a rule R → tR
can be calculated by value savG(R) = |refG(R)| ∗ (size(tR)−
rank(R)) − size(tR), where size(tR) is the number of edges
of tree tR [3]. If savG(R) < 0 holds for a rule R, this rule is
unproductive and it is removed by inlining.

Note that the order of removing unproductive rules matters,
as inlining a rule Q into a rule R changes the size of
tR, and therefore savG(R) changes. We follow the greedy
strategy used by TreeRePair. We first remove all rules Q with
|refG(Q)| = 1 and then analyze the grammar in anti-SL order
to find unproductive rules.

E. Optimized Digram Replacement Algorithm

Before we can explain the main optimization idea, i.e., the
export of rule fragments to new rules, we present an example
motivating that inlining has to consider multiple rule versions.

Consider α = (a, 1, b) and the following fragment of a
grammar, “Grammar 2”, and assume that A and C, but not B
are called elsewhere in Grammar 2.

C → A(⊥, A(A(B,⊥), A(B,A(⊥,⊥))))
A → b(a(y1, c(d(a(y2,⊥),⊥),⊥)),⊥)
B → b(⊥,⊥)

The nodes (C, 3), (C, 4), (C, 5), (C, 7), (C, 8), and (C, 9)
are digram occurrence generators of α. In order to replace
all digrams α, we have to isolate the tree parent a and the tree
child b of these digram occurrence generator by inlining.

Inlining tB into nodes (C, 5) and (C, 8) is needed for later
digram replacement and makes the rule B → tB superfluous.

As the nonterminal A is called in different contexts, i.e.,
different parts of tA have to be isolated to isolate a or b, we
consider different versions of the rule A→ tA and inline that
version of tA that matches the demands of the context.

Whenever a node with nonterminal A is a digram occur-
rence generator (e.g. nodes (C, 3), (C, 4), (C, 7), and (C, 9)),
we have to isolate tA’s root node (A, 1).

Similarly, we have to isolate the tree parents: e.g. the node
(C, 1) has as second parameter a digram occurrence generator,
i.e., valG((C, 1)) contains a tree parent. Therefore, to isolate

the tree parent found in valG((C, 1)), we have to isolate node
(A, 6) which is the parent of the second parameter within tA
before inlining tA for (C, 1).

But this is not the only version of tA that needs to be
inlined. Nodes (C, 3) and (C, 7) contain the tree parents of
both of their parameters (and are digram occurrence generators
themselves), i.e., we need a further version of tA, where we
isolate the nodes (A, 1), (A, 2), and (A, 6). A third version of
tA is needed for inlining the node (C, 4), which contains the
tree parent of its first parameter (and is a digram occurrence
generator itself). Finally, a fourth version of tA is needed for
inlining into the node (C, 9) that does contain no tree parent,
but is a digram occurrence generator itself.

If we want to isolate the root node of tA only, the first-child
of tA’s root can be exported into a new rule to minimize the
decompression when inlining tA. I.e., instead of inlining tA for
(C, 9), in an optimized version, we create a rule version A→
tAr and inline tAr for (C, 9) with tAr = b(Ar(y1, y2),⊥) and
generate a new export rule Ar → a(y1, c(d(a(y2,⊥),⊥),⊥)).

On the other hand, if we have to isolate the root node
and the parent of both parameters, the only fragment that
is not needed in order to isolate the tree parent or the tree
child is the subtree c(d(y2,⊥),⊥). So here we create a
different version of tA and inline tAr,y1,y2 with tAr,y1,y2 =
b(a(y1, A

r,y1,y2(a(y2,⊥))),⊥) instead and generate a new
export rule Ar,y1,y2 → c(d(y2,⊥),⊥).

We create in a similar way versions tAy2 for (C, 1) and
tAr,y1 for (C, 4). Altogether, as we want to keep the grammar
small, we need to consider multiple versions, in this case tAy2 ,
tAr,y1,y2 , tAr,y1 , and tAr of a rule A→ tA for the nonterminal
A, depending on in which context A is called in tC .

These different versions of a rule A → tA will be further
optimized by exporting fragments to new rules as described at
the end of this section.

To avoid a full decompression, instead of the simple
DependencyDAG (line 1 of Algorithm 5), we use the so-
called ReplacementDAG RDα to collect and manage the dif-
ferent versions of a rule, e.g. A→ tA. In order to compute the
ReplacementDAG RDα we go top-down through the grammar,
and for each rule C → tC , we do the following: For each
digram occurrence generator (C, n) in tC , we generate two
flags: The first is an r flag attached to (C, n), the second is a
yi flag attached to (C, n)’s parent P in tC , such that (C, n)
is the i-th child of P in tC . After having set all flags in tC ,
for each nonterminal D in tC that has a non-empty set FD
of flags attached to it, RDα contains a node DFD and an
edge from C to DFD . Repeatedly, for each new node CFC of
RDα, we generate a copy Cα → tCα of C → tC and assign
flags to nodes of tCα as follows. If r ∈ FC and (Cα, 1) is a
nonterminal R, we add a flag r to R. For each yi ∈ FC , we
find the parent P of yi in tCα , such that yi is the k-th parameter
of P , and if P is a nonterminal, we assign the flag yk to P .
After having set all flags in tCα , again for each nonterminal
node R in tCα that has a non-empty set FR of flags attached
to it, we generate a node RFR in RDα if it does not exist, and
we add an edge from CFC to RFR . If we consider Example 2,
we obtain the following ReplacementDAG RDα:

C

Ar,y1Ar,y1,y2Ay2 Ar B

Algorithm 6: REPLACINGALLOCCURRENCESOF(α)

1 RDα = REPLACEMENTDAG(G = (F,N, P, S))
2 foreach node CFC of RDα in bottom-up order do
3 APPLYINLININGSTEPS(CFC)
4 replace each digram occurrence of α in tQ by X as

done in TreeRePair
5 EXPORTFRAGMENTSTONEWRULES(tC)

6 Add exported rules to G

We replace Algorithm 5 by the optimized version, Al-
gorithm 6, that uses the ReplacementDAG RDα instead of
the simple DependencyDAG to keep track of all paths to
nonterminals that shall be expanded.

Algorithm 7: APPLYINLININGSTEPS(QFQ)

1 foreach node (Q,n) in occG(α) do
2 if (Q,n) is a nonterminal R then
3 inline tR for (Q,n)

4 if parent(Q,n) is a nonterminal P then
5 inline tP for parent(Q,n)

6 if r ∈ FQ then
7 if root(tQ) is a nonterminal R then
8 inline tR for root(tQ)
9 mark root(tQ)

10 foreach parameter yi in tQ with yi ∈ FQ do
11 if parent(tQ, yi) is a nonterminal P then
12 inline tP for parent(tQ, yi)
13 mark parent(tQ, yi)

The inlining steps of Algorithm 5, e.g., inlining a tree tQ
for a nonterminal Q, have the purpose to isolate the a node
or the b node of a given digram occurrence α = (a, i, b).
However, tQ contains more nodes than the a or the b node to
be isolated. In order to distinguish nodes that shall be isolated
like the a or the b node of a digram occurrence α = (a, i, b)
from other nodes of tQ, Algorithm 7 not only applies inlining
steps (lines 3, 5, 8, and 12), but also marks the nodes that shall
be isolated (lines 9 and 13).

The key idea of the optimization called in line 5 of
Algorithm 6 is the following. A tree tQ that is inlined for
multiple occurrences of Q may contain a connected fragment
fU of nodes all of which are non-marked, i.e., do not need
to be considered for replacing occurrences of α. By inlining
tQ multiple times, multiple copies of fU will occur. To reduce
the grammar size, a new rule U → fU will be inserted, and
all occurrences of fU can be replaced by U.

Assume, that we look for digrams (a, 1, b) and have a rule

A → t0A with t0A = a(y1, d(e(⊥,⊥), a(y2,⊥))). Then, tC =
d(e(⊥,⊥), y1) is such a connected fragment in t0A. By adding
a rule C → tC , we can rewrite the rule A→ t0A to its simpler
form A→ tA with tA = a(y1, C(a(y2,⊥))).

When multiple occurrences of A have to be replaced by
inlining, we can hope to get smaller grammars by inlining tA
for A instead of t0A for A, as tA is smaller than t0A.

Algorithm 8: EXPORTFRAGMENTSTONEWRULES(tQ)

1 if |refQ(G)| > 1 and at least one node of tQ is marked
then

2 Identify in tQ all root nodes rU of a fragment fU
containing multiple connected non-marked
non-parameter nodes.

3 foreach such rU do
4 Create a tree tU , such that tU is a copy of the

subtree of tQ rooted in rU
5 foreach tU do
6 Substitute each subtree rooted in a marked node

with a new parameter yj
7 Add a rule RU → tU

8 Replace each fragment fU in tQ by applying the
compression rule RU → tU to fU

9 Remove all marks from tQ

If a node is marked within the modified tree tQ, we know
that Q → tQ will be inlined when continuing the bottom-
up traversal of RDα. However, only marked nodes need to
be inlined or are needed in order to execute replacements
of occurrences of α. Therefore, the optimization algorithm,
Algorithm 8, in line 1, checks whether |refG(Q)| > 1 and at
least one node of tQ is marked, and if so, decreases the size
of tQ as follows: Each marked node of tQ partitions tQ into
fragments of multiple connected non-marked, non-parameter
nodes (line 2). In the previous example, d and e form such
a fragment that is exported into the rule C → tC , where the
parameter y1 marks the position of the next marked node a of
tQ. For each such fragment fU of tQ that consists of multiple
nodes, we generate a subtree tU for fU (lines 3-7), export fU
into a new rule RU → tU (line 7), and replace fU by applying
this rule (line 8), before we inline Q→ tQ itself.

Intuitively, exporting fU of tQ is inverse to inlining RU →
tU in tQ. Exporting a fragment fU that is rooted in a node vU
of tQ means that in tQ, we replace the subtree tvU rooted in vU
with the tree U(t1, ..., tn), such that t1, ..., tn are the subtrees
of tvU rooted in the top-most nodes of tvU in preorder that are
not contained in fU . Formally, tQ := tQ[vU/U(t1, ..., tn)].
Then, tU is tvU [t1/y1, ..., tn/yn].

Finally, we unmark all marked nodes within the modified,
but possibly smaller tree tQ (line 9).

F. Concluding Example

In this example, we discuss the optimized replacement of
the digram α = (a, 1, b) by a new rule X → a(b(y1, y2), y3)
on the grammar fragment Grammar 1. We assume that it is
a fragment only, i.e., the rules A, B, and C are called by

further nonterminals anywhere else in the grammar. For this
fragment, the two occurrence generators of α are the nodes
(A, 4) and (C, 2). The ReplacementDAG RDα consists of the
nodes {C,Ar, B} and the edges {(C,Ar), (C,B), (Ar, B)}.

We start bottom-up with rule B. The root node (B, 1) is
marked, but there is no fragment to export, so rule B stays
unchanged.

Next, we continue with rule A. First, we inline
tB for (A, 4) yielding the new right-hand side
a(y1, a(b(⊥,⊥), a(⊥, y2))). Now, we can replace
the digram occurrence by nonterminal X yielding
a(y1, X(⊥,⊥, a(⊥, y2))). The root node a is marked, and as
we assume that A is called from further rules, we apply the
optimization and export the fragment X(⊥,⊥, a(⊥, y2)) into
the new rule D → X(⊥,⊥, a(⊥, y2)). This leads to the new
rule A→ a(y1, D(y2)).

Finally, we continue with rule C. We start with inlining
the right-hand sides of rules A and B yielding the new right-
hand side a(b(⊥,⊥), D(⊥)). Now, we replace the digram
occurrence by X yielding C → X(⊥,⊥, D(⊥)).

This leads to the new grammar version

C → X(⊥,⊥, D(⊥))
D → X(⊥,⊥, a(⊥, y2))
X → a(b(y1, y2), y3)

V. EXPERIMENTS

We present an experimental evaluation of our prototype
implementation of GrammarRePair. There are two groups
of experiments: (1) Static Compression and (2) Dynamic
Compression. In the static part, we gauge the compression,
and memory behavior of GrammarRePair; these experiments
are over static XML document trees, without any updates
performed. In the dynamic part, we investigate the compression
and runtime behavior of GrammarRePair for XML document
trees under updates.

A. Setup

Machine. All tests are performed on an Intel Core2 Duo
CPU P8400 @3GHz with 4GB of RAM running the 64 bit
version of Linux 3.11.10-25. The tests of our prototype are
performed using Java 1.9 (64 bit) with 3400MB heap space and
a thread stack size of 4MB. The TreeRePair implementation
is Version 201004281 and was compiled using g++ 4.8.1. All
runtimes are measured using the user runtime given through
the linux command ’time’. When measuring running times,
we always perform four consecutive runs and then report the
average over those runs.

Datasets. We execute over XML files that consist of
element nodes only; thus, there is no text content of attributes
(or other features of XML such as comments or processing
instructions). These files have been obtained from well known
benchmark files, by stripping off all non-element content.
Almost all of our files can be found on the XMLComp-
Bench [16] site, which provides the original XML documents,
the structure-only documents (as used in the experiments),

1Available at https://code.google.com/p/\trp/downloads/detail?name=
TreeRePair 20100428.zip

and the references to where these files originated. The two
additional files used are Medline2 and NCBI3. Table III lists
all the files used in our tests, together with some document
statistics: the number of edges and the depth (denoted “dp”)
of the original document tree. The number c-edges refers to the
number of edges in the grammar obtained by GrammarRePair
(calculated as defined in Section II); the last column shows the
corresponding compression ratio of c-edges divided by #edges.

dataset #edges dp c-edges ratio (%)

EXI-Weblog 93434 2 42 0.04
XMark 167864 11 22105 13.17
EXI-Telecomp 177633 6 107 0.06
Treebank 2437665 35 503830 20.67
Medline 2866079 6 118067 4.12
NCBI 3642224 3 59 <0.01

TABLE III. DOCUMENT STATISTICS AND
GRAMMARREPAIR-COMPRESSION RESULTS

B. Static Compression

Recall that GrammarRePair takes an SLT grammar G as
input, and produces as output a new SLT grammar obtained
by running RePair-compression over the tree represented by
the grammar G. Thus, since the original grammar G may
consist of a single rule with a large tree as right-hand side,
GrammarRePair can be seen as a tree compressor itself. It is
therefore reasonable to compare the tree compression behavior
of GrammarRePair with existing compressors. This is done
in two parts: first the compression ratios, then the running
times are compared. In a third part, we investigate the memory
consumption of GrammarRePair. This is measured in terms of
the sizes of the intermediate grammars.

Compression Ratio Comparison. We compare the com-
pression ratios obtained by TreeRePair, and our new Gram-
marRePair applied to trees as well as to grammars. In nearly
all cases, our algorithm GrammarRePair produces similar or
better results than TreeRePair. Better results are obtained on
documents with very strong compression, viz. very small
ratios; for instance, on EXI-Weblog (which compresses to
only 0.1% by TreeRePair), our compressor GrammarRePair
is better than TreeRePair by almost 20%. But in general, all
three approaches compress as good as the others. That is, there
is hardly a difference in the absolute compression ratio reached
by TreeRePair, or our new GrammarRePair applied to trees as
well as to grammars.

Memory Consumption. During compression, Grammar-
RePair produces a number of intermediate grammars, each
of them being the outcome of a digram replacement. We
measure the memory consumption in terms of the sizes of
these intermediate grammars. We call the fraction (max. size of
intermediate grammar) divided by (size of final grammar) the
blow-up. Our experiment starts with a grammar, and then runs
GrammarRePair over the grammar. Figure 2 shows the blow-
up. The number of edges within each XML file, the reached
compression ratio, and the compression ratio at maximum
blow-up are shown below the name. The worst blow-up is

2Available at http://www.ncbi.nlm.nih.gov/pubmed
3Available at http://snp.ims.u-tokyo.ac.jp

just over 2, while for many files, it is only around a few
percent above 1. This is easily explained: files with extreme
compression ratios such as NCBI and EXI-Weblog contain
long lists that are compressed exponentially. Breaking such
a list “open” during the run of GrammarRePair can quickly
double the size of the intermediate grammar. However, that in-
termediate grammar is still minuscule compared to the original
tree; this is seen by comparing the compression ratios of the
grammars against the original tree. As we can see, for NCBI
and EXI-Weblog, these values coincide, i.e., the difference
in intermediate grammar size can hardly be measured when
compared against the original tree size. The biggest difference
here is on XMark, where the intermediate grammar has around
12% compression, while the compression by GrammarRePair
is around 8%.

NCBI
39

0 %
0 %

EXI−
Weblog

39
0.05 %
0.09 %

EXI−
Telecomp

71
0.06 %
0.11 %

Medline
13096
4.71 %
4.89 %

XMark
34649
7.94 %
11.38 %

Treebank
52266

20.67 %
21.26 %

0%

100%

200%

m
ax

 |
in

te
rm

ed
ia

te
 g

ra
m

m
ar

 |
| f

in
al

 g
ra

m
m

ar
 |

Fig. 2. Blow-up during recompression

Effect of the Optimization. In this experiment we com-
pare the optimized version – i.e., exporting fragments tU not
needed in order to replace the digram into new rules RU → tU
– to the non-optimized version.

For simplicity, we show string grammars here (to obtain a
similar tree grammar, the reader may consider one additional
root symbol, under which these grammars generate long chil-
dren lists). For a natural number n, we consider the grammar
Gn with these rules:

S → aAnAnb
Ai → Ai−1Ai−1, for 1 ≤ i ≤ n
A0 → ba.

The grammar Gn produces a string consisting of a list of n+1
pairs of siblings a, b. This grammar is recompressed to the
grammar with these rules:

S → B0BiBi
Bi → Bi−1Bi−1, for 1 ≤ i ≤ n
B0 → ab.

We choose values for n in the range from 64 to 4096. As
this example compresses exponentially, i.e., the size of the tree
val(Gn) is exponential in the size of the compressed grammars,
the obtained grammars have at most 44 edges.

Figure 3 shows the results of our experiments. As we can
see, if we use the optimization of Algorithm 8, the size of the
grammar as well as the runtime seems to stay linear in the size
of the compressed grammar. As expected, we reach a blow-up
of less than 2 (the green curve varies from 1.2−−1.7). Due
to the exponential compression of our files, we have several

input XML documents of different sizes and thus several data
points for each resulting grammar size.

0

30

60

90

120

m
ax

 |
in

te
rm

ed
ia

te
 g

ra
m

m
ar

 |
| f

in
al

 g
ra

m
m

ar
 |

0

1

2

3

4

5

20 25 30 35 40 45
edges of grammar

ru
nt

im
e

in
 m

s

 Non−Optimized Optimized

Fig. 3. Effect of our optimization on grammar size and runtime

If we deactivate the optimization, the blow-up seems to
grow rather in the size of the original XML tree. For our
sample data, we reach a blow-up of more than 110. This can
also be observed for the runtime, as the runtime of the non-
optimized version scales much worse than the runtime of the
optimized version. Only for very small grammars, the runtime
overhead caused by the optimization is greater than the yielded
benefit, resulting in runtimes including the optimization that
are slightly worse than the runtimes without the optimization.

C. Dynamic Compression

In this section, we investigate the use of GrammarRePair as
a tool generating a mutable compressed tree data structure. For
this purpose, we perform updates on the grammar-compressed
tree and then execute GrammarRePair on the resulting gram-
mar. We compare this grammar with the one obtained by first
performing the update, then decompressing the grammar, and
then compressing the obtained tree.

We consider three update operations: (1) to rename the
label of a given node, (2) to insert a tree before a given node
(i.e., as previous sibling of that node), and (3) to delete the
subtree rooted at a given node.

Since we work on binary tree representations of the original
unranked XML trees, we can execute an insert on a null
pointer, thus executing an “insert after” the last element (or
an insert into an empty child sequence).

More formally, if t and s are binary trees representing XML
structures, u is a node of t, and v is the right-most leaf of
s (which is necessarily a null pointer), then insert(t, u, s) is
defined as t[u/s] if u is a null pointer node, and otherwise
as t[u/s′] where s′ = s[v/tu] and tu is the subtree of t
rooted at u.

Compression Ratio Comparison. Here, we consider
sequences of random insert and delete operations (10% deletes
and 90% inserts). The sequences are obtained by starting
from a given document, and then applying the inverse of the
operations until a seed document is derived. In this way, each

update sequence starts with a seed document and ends up with
an original document from our datasets. This is a well-know
technique for approximating realistic update workloads.

 1.0

1.1

1.2

1.3

1.4

| g
ra

m
m

ar
 a

fte
r u

pd
at

e
|

| g
ra

m
m

ar
 |

1.0000

1.0025

1.0050

1.0075

0 1000 2000 3000 4000
of updates

| g
ra

m
m

ar
 a

fte
r r

ec
om

p.
 |

| g
ra

m
m

ar
 |

 XM MD TB

Fig. 4. Update without any recompression (top) and under GrammarRePair
(bottom)

As was observed previously, repeated updates to a grammar
compressed tree causes rapid degradation of the compression
ratio [6]. The reason is that the path isolation process causes
decompression of the grammar. We show this effect on a
subset of six files: three with very strong compression (NCBI
(NC), EXI-Telecomp (ET), and EXI-Weblog (EW)) and three
with moderate compression (XMark (XM), Treebank (TB),
and Medline (MD)). The results are shown in the top plots
of Figures 4 and 5. In a second measurement, we perform
the recompression from scratch, i.e., decompression to XML
and the compression of the XML to remove the overhead
caused by the update after every 100 udpates. We compute the
overhead as (size of grammar after update) divided by (size of
grammar after recompression from scratch). For the files with
moderate compression, the overhead caused by updates is up
to 0.4, while for the files with very strong compression, there
is a blow-up of up to 400. The latter is because exponentially
compressed lists are broken down. The “spikes” in Figure 5
are caused by the decrease of the grammar size after each
recompression from scratch.

In contrast, we now run GrammarRePair on the grammar
obtained after every 100 updates. Again we compute the
overhead as (size of grammar after recompression by Gram-
marRePair) divided by (size of grammar after recompression
from scratch). The results are shown in the bottom plots of
Figures 4 and 5. For the three moderate files, we obtain an
overhead of less than 0.008. On the extreme files, we obtain a
maximal overhead of around 5; recall that the latter grammars
are still minuscule compared to the original. Thus, the result
shows that GrammarRePair can perform incremental updates
and obtains results that are comparable to update-decompress-
compress.

Runtime Comparison. In this experiment, we randomly
rename 300 nodes of the document to fresh labels (not used in
the document). The resulting documents are recompressed us-
ing either decompression followed by compression of TreeRe-
Pair (gray line), decompression followed by compression of

100

200

300

400
| g

ra
m

m
ar

 a
fte

r u
pd

at
e

|
| g

ra
m

m
ar

 |

 1

 2

 3

 4

 5

0 1000 2000 3000 4000
of updates

| g
ra

m
m

ar
 a

fte
r r

ec
om

p.
 |

| g
ra

m
m

ar
 |

 EW ET NC

Fig. 5. Update without any recompression (top) and under GrammarRePair
(bottom) for exponentially compressing files

GrammarRePair (green boxes) or the recompression of Gram-
marRePair (red box). Figure 6 shows the results. The number
of edges within each XML file and the runtime of 1 are
shown below the name. Note that we consider the minimum
decompression runtime of TreeRePair and GrammarRePair as
decompression time. Although the sequence of decompression
and compression of TreeRePair performs better for the smallest
file in our tests, it is outperformed by the recompression of
GrammarRePair for the larger files. The recompression of
GrammarRePair outperforms the sequence of decompression
and compression of GrammarRePair for all files. For the largest
files, already the compression time of TreeRePair is worse than
the recompression time of GrammarRePair. When both applied
to trees, TreeRePair only takes 0.1−0.4 times the time needed
by GrammarRePair. This it not astonishing: GrammarRePair is
a prototype implemented in Java operating on complicated data
structures (as it takes grammars as input), while TreeRePair is
a C implementation and optimized for tree input.

In terms of space (not shown), we observe that in the worst
case, GrammarRePair uses 23% of the space needed by update-
decompress-compress (udc). On average, the space needed by
GrammarRePair is much less: it uses only 6% of udc. Thus,
GrammarRePair is not only faster, but is also much more space
efficient than udc.

EXI−
Weblog
93434
2.8s

XMark
167864

6.2s

EXI−
Telecomp
177633

5s

Treebank
2437665

71.5s

Medline
2866079
241.4s

NCBI
3642224

293s

0.00

0.25

0.50

0.75

1.00

ru
nt

im
e

of
 G

ra
m

m
ar

R
eP

ai
r

ru
nt

im
e

of
 d

ec
om

. +
 c

om
p.

 GrammarRePair
 applied to Grammar Decompress GrammarRePair

 applied to tree

Fig. 6. Runtimes of GrammarRePair versus update-decompress-compress

VI. CONCLUSIONS

Straight-line context-free (SLCF) tree grammars offer a
compact in-memory representation of XML document trees.
Many operations can be supported efficiently over the rep-
resentation, such as traversals [2, 4], XPath queries[4, 17],
equivalence [2], and unification and matching [18]. One major
drawback of SLCF tree grammars has been the lack of efficient
updates. One way to tackle this problem is to recompress
the grammar after an update. In this paper, we present an
algorithm that recompresses a given SLCF tree grammar, using
the RePair compression scheme. It works surprisingly well in
practice: The resulting grammars are as small as compressing
from scratch from an uncompressed document. A possible
application are compressed DOM representations with updates,
as DOM is a memory-hungry ingredient of any web browser.

REFERENCES

[1] P. Buneman, M. Grohe, and C. Koch, “Path Queries on Compressed
XML,” in VLDB, 2003, pp. 141–152.

[2] G. Busatto, M. Lohrey, and S. Maneth, “Efficient memory representation
of XML document trees,” Inf. Syst., vol. 33, no. 4-5, pp. 456–474, 2008.

[3] M. Lohrey, S. Maneth, and R. Mennicke, “XML tree structure
compression using RePair,” Inf. Syst., vol. 38, pp. 1150–1167, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.is.2013.06.006

[4] S. Maneth and T. Sebastian, “Fast and Tiny Structural Self-Indexes for
XML,” CoRR, vol. abs/1012.5696, 2010.

[5] N. J. Larsson and A. Moffat, “Offline Dictionary-Based Compression,”
in DCC, 1999, pp. 296–305.

[6] D. K. Fisher and S. Maneth, “Structural selectivity estimation for XML
documents,” in ICDE, 2007, pp. 626–635.

[7] A. Bätz, S. Böttcher, and R. Hartel, “Updates on Grammar-Compressed
XML Data,” in BNCOD, 2011, pp. 154–166.

[8] S. Böttcher, R. Hartel, and T. Jacobs, “Fast Multi-update Operations on
Compressed XML Data,” in BNCOD, 2013, pp. 149–164.

[9] A. Jez, “Faster Fully Compressed Pattern Matching by Recompression,”
in ICALP, 2012, pp. 533–544.

[10] A. Jez and M. Lohrey, “Approximation of smallest linear tree grammar,”
in STACS, 2014, pp. 445–457.

[11] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat, “The smallest grammar problem,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2554–2576,
2005.

[12] J. I. Munro and V. Raman, “Succinct Representation of Balanced
Parentheses and Static Trees,” SIAM J. Comput., vol. 31, no. 3, pp.
762–776, 2001.

[13] O. Delpratt, R. Raman, and N. Rahman, “Engineering succinct DOM,”
in EDBT, 2008, pp. 49–60.

[14] S. Joannou and R. Raman, “Dynamizing Succinct Tree Representa-
tions,” in SEA, 2012, pp. 224–235.

[15] G. Navarro and K. Sadakane, “Fully Functional Static and Dynamic
Succinct Trees,” ACM Transactions on Algorithms, vol. 10, no. 3, p. 16,
2014.

[16] Sherif Sakr. XMLCompBench: Benchmark of XML Compression
Tools. http://xmlcompbench.sourceforge.net (last accessed: 25.09.2014).

[17] M. Lohrey and S. Maneth, “The complexity of tree automata and XPath
on grammar-compressed trees,” Theor. Comput. Sci., vol. 363, pp. 196–
210, 2006.

[18] A. Gascón, G. Godoy, and M. Schmidt-Schauß, “Unification and
matching on compressed terms,” ACM Trans. Comput. Log., vol. 12,
no. 4, p. 26, 2011.

