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Abstract. Spectroscopic measurements of atmospheric N2O

and CH4 mole fractions were made on board the FAAM

(Facility for Airborne Atmospheric Measurements) large

atmospheric research aircraft. We present details of the

mid-infrared quantum cascade laser absorption spectrometer

(QCLAS, Aerodyne Research Inc., USA) employed, includ-

ing its configuration for airborne sampling, and evaluate its

performance over 17 flights conducted during summer 2014.

Two different methods of correcting for the influence of wa-

ter vapour on the spectroscopic retrievals are compared and

evaluated. A new in-flight calibration procedure to account

for the observed sensitivity of the instrument to ambient pres-

sure changes is described, and its impact on instrument per-

formance is assessed. Test flight data linking this sensitivity

to changes in cabin pressure are presented. Total 1σ uncer-

tainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are de-

rived. We report a mean difference in 1 Hz CH4 mole fraction

of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements

made using the QCLAS and simultaneous measurements us-

ing a previously characterised Fast Greenhouse Gas Analyser

(FGGA, Los Gatos Research, USA). Finally, a potential case

study for the estimation of a regional N2O flux using a mass

balance technique is identified, and the method for calculat-

ing such an estimate is outlined.

1 Introduction

CH4 and N2O emissions together comprise 38 % of the to-

tal global radiative forcing attributable to emissions of well-

mixed greenhouse gases (Myhre et al., 2013). N2O is also a

major component of stratospheric chemical cycles, acting as

the largest contributing species towards stratospheric ozone

depletion, and predicted to remain so throughout the 21st

century (Ravishankara et al., 2007). CH4 emissions can also

lead to the formation of tropospheric ozone through reaction

with OH radicals, leading to air quality issues associated with

potentially dangerous respiratory problems in many cities

across the world (Ebi and McGregor, 2008).

The globally averaged atmospheric abundances of CH4

and N2O have increased respectively from 722±25 to 1803±

2 ppb and 270±7 to 324.2±0.2 ppb in the period 1750–2011

(Hartmann et al., 2013). However, the relative contribution of

individual sources and sinks to the atmospheric abundance of

both species is highly uncertain (Ciais et al., 2013; Kirschke
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et al., 2013). Top-down, atmospheric measurement-based ap-

proaches can provide important constraints on these global

budgets, both through direct estimation of sectorially and/or

regionally disaggregated emissions using atmospheric inver-

sion models (Fraser et al., 2013; Thompson et al., 2014) and

by enabling validation of the process models used to compile

bottom-up emission inventories (Krinner et al., 2005; O’Shea

et al., 2014b). Representative sampling on regional and na-

tional scales can also act as an important aid to establishing

effective emission reduction policies at both national and in-

ternational levels.

In situ aircraft-based measurements form an important part

of this top-down approach, enabling high-resolution sam-

pling on regional scales (e.g. O’Shea et al., 2013a), vertical

profile measurement (e.g. Wofsy et al., 2011), and sampling

in remote regions far from ground stations (e.g. Kort et al.,

2012). Greenhouse gas flux estimates can then be made using

mass balance (Karion et al., 2013; O’Shea et al., 2014a; Peis-

chl et al., 2015), eddy covariance (Ritter et al., 1992; Hiller

et al., 2014; Yuan et al., 2015) or inverse modelling tech-

niques (Kort et al., 2008; Polson et al., 2011; Xiang et al.,

2013), the latter frequently in association with ground-based

measurements (Miller et al., 2013). Aircraft measurements

can also be used to validate both ground-based and satellite-

based remote sensing techniques, forming an important link

across a wide range of spatial and temporal measurement

scales (Tanaka et al., 2012; Wecht et al., 2012). However, it

should be noted that of the studies listed above, only Wofsy

et al. (2011) and Xiang et al. (2013) made continuous in situ

measurements of N2O, emphasising the need for wider de-

ployment of in situ instrumentation to measure N2O on air-

craft.

During summer 2014, the FAAM (Facility for Airborne

Atmospheric Measurements) large atmospheric research air-

craft (hereafter referred to as the FAAM aircraft) participated

in the GAUGE (greenhouse gas UK and global emissions)

and MAMM (methane and other greenhouse gases in the

Arctic: measurements, process studies and modelling) mea-

surement campaigns. This aircraft component of the GAUGE

campaign focussed on greenhouse gas measurement around

the UK to allow emission estimates to be made in conjunc-

tion with both inverse modelling and mass balance tech-

niques. An important element of this campaign was to bet-

ter constrain emissions from the agricultural sector, which

is the second largest contributor (after the energy sector) to-

wards the UK’s total greenhouse gas emissions, producing

N2O through the use of nitrogen-based fertilisers and CH4

by enteric fermentation in livestock (Webb et al., 2014). The

MAMM campaign focussed on improving understanding of

Arctic CH4 emissions, dominated by biogenic emission from

natural wetlands (Zhuang et al., 2006), in order to help bet-

ter constrain measurement-derived global CH4 budgets and

to allow comparison against the emissions predicted by re-

gional land surface models (O’Shea et al., 2014b). Accurate

measurement of CH4 and N2O on board the FAAM aircraft

was therefore of critical importance during these campaigns.

Infrared (IR) spectroscopy is frequently employed for air-

borne measurement of greenhouse gas mole fractions (Chen

et al., 2010; O’Shea et al., 2013b; Santoni et al., 2014), en-

abling high frequency measurement (usually≥ 1 Hz) and fast

instrument response times (of the order seconds). Many in-

struments make use of the superior lasers, optics and de-

tectors available in the near-IR region around ∼ 6000 cm−1

(Baer et al., 2002; Crosson, 2008). However, line strengths

for CH4 and N2O are of the order 100 and 100 000 times

stronger respectively in the mid-IR spectral region of ∼

1000–4000 cm−1 (Rothman et al., 2013). For CH4 these

competing effects lead instruments operating in both spec-

tral ranges to achieve broadly comparable performances. For

N2O, however, the comparatively weak line strengths in the

near-IR, coupled with the lower atmospheric abundance of

N2O, make mid-IR spectroscopy much more suitable for at-

mospheric measurement. Rannik et al. (2015) find that the

best long-term and short-term precisions for N2O measure-

ment are obtained using continuous-wave quantum cascade

laser (QCL)-based instruments, which operate in the mid-IR

region.

In this paper we discuss the development of an airborne

measurement system for CH4 and N2O, using a mid-IR,

continuous-wave, quantum cascade laser absorption spec-

trometer (QCLAS, Aerodyne Research Inc., USA) on board

the FAAM aircraft. We focus on measurements from the

GAUGE and MAMM campaigns conducted during summer

2014.

Details of the direct absorption spectroscopy and asso-

ciated spectral retrieval algorithm employed are given in

Sect. 2, including the empirically derived correction for the

presence of water vapour. The configuration and optimisation

of the sample and calibration air flow systems for airborne

measurement are also presented in this section. In Sect. 3,

calibration procedures used to tie the data to the WMO

(World Meteorological Office) greenhouse gas scale are de-

scribed and assessed, both through analysis of in-flight cal-

ibration data and comparison with simultaneous CH4 mea-

surements using a Fast Greenhouse Gas Analyser (FGGA,

model RMT-200, Los Gatos Research, USA; described by

O’Shea et al., 2013b). Section 4 presents N2O data from

GAUGE flight B868 in more detail and outlines how these

data could be used in combination with a mass balance tech-

nique to estimate a regional N2O flux for the north-west

of England. Finally, the key findings of this work are sum-

marised in Sect. 5.
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2 Operational design

2.1 Instrument specification

In this section we briefly describe the operating principles

of the QCLAS used to measure N2O and CH4 on board the

FAAM aircraft. This instrument uses a mid-IR, thermoelec-

trically cooled, continuous-wave, distributed feedback QCL

(Alpes Laser, Switzerland) as a light source. The laser beam

is directed through an astigmatic Herriott multipass absorp-

tion cell, providing an effective optical pathlength through

the sample of 76 m (McManus et al., 1995), and collected by

a thermoelectrically cooled photovoltaic detector (Vigo Sys-

tems, Poland). The output frequency of the QCL is scanned

over a small spectral region (1275.3–1275.8 cm−1), contain-

ing rotational–vibrational N2O, CH4 and H2O line transi-

tions, by repeatedly ramping the laser current whilst hold-

ing the laser at a constant temperature. The laser is swept

across this region at a rate of ∼ 5 kHz, with a measurement

of the detector’s zero-light output (noise-equivalent signal)

recorded at the end of each sweep by dropping the current

below the laser threshold (such that there is no emission from

the laser). Because the linear current ramp does not produce a

precisely linear frequency response from the laser, it is neces-

sary to determine the tuning rate using a Germanium etalon,

which can be placed in the path of the beam before the mul-

tipass cell.

The laser temperature is held at ∼−23 ◦C using a Peltier

cooler. Excess heat is removed using a coolant fluid, which

is recirculated and maintained at ∼ 25 ◦C by a CustomChill

thermoelectric liquid chiller (CRAL300DHP-12, Custom-

Chill, USA). The optical layout of the instrument is described

in detail by Nelson et al. (2004), although our use here of a

continuous-wave laser rather than a pulsed laser allows for

removal of the beam splitter and the incorporation of two

additional mirrors to aid the adjustment of beam alignment

prior to entering the cell.

2.2 TDLWintel software

The laser current control and mole fraction retrievals were

performed using the TDLWintel software package, details of

which are provided by Nelson et al. (2002). In brief, this re-

trieval relies on the Beer–Lambert law, given by

I (ν)

I0(ν)
= exp(−α(ν,P,T )nCl), (1)

where l is the path length of the beam through the absorber,

C is the concentration of sample gas, n is the absorber

mole fraction and α(ν,P,T ) is the frequency-, pressure-

and temperature-dependent absorption cross section of the

absorber. The intensity I (ν) is measured by the detector,

which also measures the background intensity I0(ν) at win-

dow wavelengths outside the wings of target absorption lines.

A polynomial fit is applied to the data obtained at these non-

absorbing wavelengths such that variation in baseline inten-

sity measurement, due to changes in both laser output and

detector sensitivity across the measured spectral range, can

be subtracted from the spectrum (Zahniser et al., 1995).

In order to determine the mole fraction of a target species

at a sampling rate of 1 Hz, TDLWintel fits a Voigt line shape

profile to an averaged spectrum, consisting of ∼ 5000 indi-

vidual laser sweeps, using a Levenberg–Marquardt retrieval

algorithm. Line strengths and positions are taken from the

HITRAN 2012 database (Rothman et al., 2013). The pressure

and temperature of the sample are continuously measured by

in situ sensors positioned within the sample gas flow on the

outlet of the cell, allowing air broadening effects to be con-

sidered in the retrieval.

2.3 Configuration for airborne measurement

The QCLAS is mounted on a rack inside the cabin of the

FAAM aircraft, with a rearward-facing, 3/8′′ outer diameter,

stainless steel inlet inserted through a customised window

blank (Avalon Aero Ltd., UK). The sample flow line consists

of Swagelok 1/4′′ outer diameter PFA Teflon tubing, partly

encased within the inlet, and forming a pressure seal via a

bored-through Swagelok 3/8′′ to 1/4′′ reducing union. Fig-

ure 1 shows a schematic of the QCLAS air sampling system

including the configuration for delivering calibration gas to

the sample cell. The sample flow line is ∼ 2.5 m in length

from the inlet tip to the pressure controller. Sample flow rate

is measured using a 30 SLPM (standard litres per minute)

mass flow meter (M10MB01334CS3BV, MKS Instruments

UK Ltd, UK), placed directly upstream of a 0.5 µm sintered

particle filter (SS-4F-05, Swagelok, USA).

The choice of sample cell pressure is a balance between

two effects: higher pressures increase the absorption, thus

improving the signal-to-noise ratio of the measurement,

whilst pressure broadening of the spectral lines increases

spectral overlap and line mixing (as discussed by Zahniser

et al., 1995). Airborne operation is also complicated by the

large variation in inlet pressures typically encountered over

the course of a flight (down to ∼ 250 hPa at 10 km altitude).

Control of the cell pressure is provided by an electronic

pressure controller (640A-13TS1V62V, MKS Instruments

UK Ltd, UK) placed upstream of the sample cell, as shown

in Fig. 1. This maintains a constant pressure by automatically

adjusting an internal valve to restrict the flow of air through

it. As the inlet pressure decreases, the valve is set to a pro-

gressively more open position. The minimum inlet pressure

that can be sampled whilst maintaining any given cell pres-

sure is attained when the pressure controller valve reaches

its fully open position. This minimum inlet pressure is then

equal to the sum of the (chosen) cell pressure and the pres-

sure drops across each component of the inlet system (includ-

ing the fully open pressure controller valve). Hence choosing

a lower cell pressure decreases this minimum inlet pressure,

enabling the cell to be held at constant pressure up to a higher

www.atmos-meas-tech.net/9/63/2016/ Atmos. Meas. Tech., 9, 63–77, 2016
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Figure 1. Schematic showing the QCLAS air sampling and data handling systems. The C.E.P.E. (calibration, exhaust, power and electronics)

unit and the Aerodyne QCL mini-monitor enclosures are represented by dashed boxes around the components they contain. The calibration

cylinders are labelled “low”, “high” and “target”. The flow rate of the calibration gas is controlled by the MFC (mass flow controller), and

the flow rate into the instrument is monitored by the MFM (mass flow meter). The optical components associated with the alignment of the

laser beam are not shown.

altitude. A cell pressure of 68.9± 3.6 hPa (at 1σ) was used

during the GAUGE and MAMM campaigns.

Air is pulled through the system using a single stage scroll

pump (Edwards XDS10, Edwards, UK). A throttle valve

(253B-1-40-1, MKS Instruments UK Ltd, UK) positioned

between the sample cell outlet and the pump inlet is used to

control the flow rate through the system. This again is a bal-

ance between the desire to decrease the instrument response

time, favouring a faster flow rate, and the desire to reduce

the total pressure drop between the inlet and the sample cell,

favouring a slower flow rate. Throughout the GAUGE and

MAMM campaigns the valve was set to 18 % of its fully open

position, resulting in a constant mass flow rate of 1.43±0.21

SLPM (at 1σ) down to inlet pressures of∼ 380 hPa. At lower

inlet pressures both the mass flow rate and the cell pressure

were reduced.

Laboratory tests were performed to establish the effect of

cell pressure changes on the mole fractions retrieved when

sampling a compressed air cylinder. The variability in re-

trieved mole fraction was found to be no greater across

cell pressures typically encountered during high altitude fly-

ing (inlet pressures below 380 hPa; cell pressures down to

∼ 46 hPa) than across the range experienced during low alti-

tude flying (inlet pressures above 380 hPa; cell pressures be-

tween 65 and 76 hPa). It was therefore deemed unnecessary

to filter data according to the absolute cell pressure value.

However, rapid changes in pressure were found to impact

upon the retrieved mole fractions; consequently data were re-

moved whenever the 10 s standard deviation in cell pressure

exceeded 0.1 Torr (13.3 Pa).

The response time of the system was determined in the

laboratory (at 1017 hPa inlet pressure) by overflowing the in-

let with N2 from a compressed gas cylinder. The e-folding

time of the system was determined using an exponential fit

to the decay in retrieved mole fractions and was found to be

0.68± 0.12 s (mean±1σ). The inlet lag time was given by

the time between turning on the N2 flow and the first drop in

retrieved mole fractions. In this laboratory test it was found

to be in the range 2–3 s; however, we expect this lag time

to decrease with altitude (up to ∼ 380 hPa) as the volumetric

flow rate of the system scales inversely with air density (for

a constant mass flow rate).

In principle the Beer–Lambert relationship described

above can be used to retrieve absolute mole fractions. How-

ever, in-flight calibration is commonly used to account for

instrumental drift when using optical-based measurements

(e.g. O’Shea et al., 2013b; Santoni et al., 2014), as external

variables such as temperature and pressure can undergo sig-

nificant variation during a flight. Our system employs three

calibration standards to scale the data and assess instrument

performance, as described in Sect. 3.1.

The three calibration standards are stored in 10 L carbon

fibre hoop-wrap cylinders (BFC 124-136-002, Aluminium

Alloy 7060, Luxfer, UK), which are filled to ∼ 300 bar

and mounted to the QCLAS rack. Each cylinder is fitted

with a high-pressure brass valve (C215, Rotarex, Luxem-

bourg), screwed into the cylinder collar using PTFE (poly-

tetrafluoroethylene) tape. An all brass adapter connects this

to instrument-grade stainless steel tubing of 1/8′′ outer di-

ameter, specially cleaned for high purity service (21512,

Thames-Restek, UK). This tube joins each cylinder to a

separate single-stage diaphragm brass regulator (44-2212-

244-1382, TESCOM, UK). On the low-pressure side of the

regulator, Swagelok 1/8′′ outer diameter PFA Teflon tub-

ing is used. Three three-way valves (009-0294-900, Parker-

Hannifin, USA) and one two-way valve (009-0089-900,

Parker-Hannifin, USA) are used to select the flow from the

desired calibration cylinder (a fourth port allows sampling

Atmos. Meas. Tech., 9, 63–77, 2016 www.atmos-meas-tech.net/9/63/2016/
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from an external cylinder). The flow rate is set using a mass

flow controller (1179A01314CS1BV, MKS Instruments UK

Ltd, UK) to provide an overflow of calibrant at the inlet (up-

stream of the mass flow meter).

2.4 Water vapour correction

The influence of water vapour on spectral retrievals can be

very significant (e.g. Allen et al., 2014), particularly given the

wide range of natural water vapour concentrations typically

encountered over the course of a flight (from a small fraction

of a percent to many percent in the troposphere alone). To

ensure comparability between measurements made at differ-

ent humidity levels it is necessary to remove this effect and

report dry mole fractions.

Many opt to circumvent the need to correct for this in-

fluence by drying the sample air before it enters the instru-

ment, often using a combination of Nafion gas dryers and

dry ice traps (e.g. Daube et al., 2002; Peischl et al., 2010;

Santoni et al., 2014). The advantage of this approach is obvi-

ous, as any empirically derived correction for the influence

of water vapour will contribute, often significantly, to the

overall uncertainty of the measurements. However, there are

several disadvantages associated with drying the sample, as

discussed in detail by Rella et al. (2013). Of particular rel-

evance for the QCLAS system described here are the issues

associated with increasing the pressure drop across the inlet

system, increasing the residence time in the inlet system and

the logistical problems of supplying dry ice to remote field

locations and transporting it in a sealed cabin environment.

In cases such as this, where the sample is not dried, an

empirical correction must be derived in order to account for

the water vapour influence. Typically this involves applying

a scale factor to the retrieved mole fractions, with its form

and coefficients determined through laboratory experiment.

Rella et al. (2013), O’Shea et al. (2013b) and Zellweger et

al. (2012) employ this approach across a variety of spec-

troscopic instruments. However, a recently added feature of

the TDLWintel software allows the effect of line broadening

(in addition to sample dilution) due to the presence of wa-

ter vapour to be included in the spectroscopic retrieval itself.

Instrument-specific coefficients quantifying the broadening

due to water vapour must be derived empirically for each

species. These coefficients are equal to the dimensionless ra-

tio of the line broadening due to water vapour pressure to

the line broadening due to dry air pressure. Water-corrected

mole fractions are then determined by first retrieving the wa-

ter vapour mole fraction, then combining this result with the

appropriate water broadening coefficients in the retrieval of

the other species.

Here we compare the effectiveness of these two ap-

proaches in the case of the QCLAS. Such a comparison of

these two methods is instructive to other experimentalists

that may seek to apply similar corrections. Both approaches

require empirical (laboratory) data, which can be obtained

simultaneously for direct comparison.

As the empirical coefficients required by both methods can

be determined using the same experiment, and TDLWintel

retains the measured raw spectral data, it was possible to per-

form this comparison by reanalysing the same data set, ei-

ther deriving a scale factor to post-process the data or vary-

ing the way in which the water vapour influence was treated

in the retrieval. The data here were gathered in four separate

laboratory experiments, each using an identical experimen-

tal setup to that employed by O’Shea et al. (2013b), who

provide a full description. In summary, dry compressed air

was humidified to a variety of different water vapour mole

fractions, spanning the range of 0–2 % typically measured in

flight. Between each measurement of humid air, a dry refer-

ence was sampled, using a dry ice trap to reduce the sample

dew point to less than −60 ◦C. It should be noted that by re-

drying the air downstream of the humidifier we accounted for

any dissolution of gases in the humidifier and the temperature

dependence of this effect.

The first approach used the following relationship to scale

the measurements of the wet sample to corresponding dry

mole fractions

Xdry =
Xwet

a+ bH2O
, (2)

where Xwet and Xdry are the raw and the scaled water-

corrected mole fractions respectively for speciesX, and H2O

represents the retrieved mole fraction of water vapour. Coef-

ficients a and b were derived by performing a weighted least

orthogonal distance regression of Xwet/Xdry as a function of

H2O for data from all four experiments.

The empirical values for the QCLAS were found to be a =

1.00096, b =−0.0154563 %−1 for N2O and a = 1.00071,

b =−0.0136929 %−1 for CH4. The uncertainties associated

with these values can be quantified by the residuals of this re-

gression for CH4 and N2O, shown in Fig. 2. The RMS (root

mean square) values for these residuals are 2.5 and 0.50 ppb

for CH4 and N2O respectively.

It is apparent from Fig. 2 that substantially different be-

haviour was observed on 20 June 2014 when compared to the

three other experiments. This is likely to be associated with a

lack of long-term stability in the retrieval of H2O mole frac-

tion, as indicated by the drift in the average retrieved H2O

mole fraction during the dry runs seen in Fig. 2. As this is a

measurement of very dry air (less than −60 ◦C dew point),

this drift can be assumed to represent the variability in the

baseline intensity in the region of the H2O absorption line,

likely resulting from very small changes in the optical align-

ment and/or pathlength. This subtle variability in baseline

intensity then manifests as systematic variability in the accu-

racy of the retrieved H2O mole fractions. The consequence of

this on the long-term stability of the scale factor method, and

the improvement gained using the spectroscopic correction,

is discussed below.
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Figure 2. Residual error due to the influence of water vapour for

the retrieval of (a) CH4 and (b) N2O after applying an empirically

derived scale factor to correct the data. Data from four identical

experiments are shown; the residuals are calculated as the product

of the fractional error for each measurement and the average mole

fraction for the dry measurements taken during all four experiments.

The second, spectroscopic, water vapour correction

method used the water broadening function in TDLWintel

to correct for the influence of water vapour. Reanalyses of

the raw spectra were performed using a variety of different

water broadening coefficients in the retrieval. For each coef-

ficient, the difference between the retrieved wet mole frac-

tion and the corresponding dry measurement was calculated

at every water vapour level used during the four experiments.

The RMS difference for each coefficient, averaged over the

entire data set, is shown in Fig. 3. It can be seen that the cor-

rection performed best using water broadening coefficients

of 1.6 and 1.8 for CH4 and N2O respectively. These opti-

mal coefficients resulted in RMS differences between corre-

sponding wet and dry measurements of 1.6 ppb for CH4 and

0.32 ppb for N2O; these are the values used to determine the

contribution of uncertainty in this water vapour correction to

the total measurement uncertainty of the instrument.

It was thus concluded that in this case a better correc-

tion for the influence of water vapour was obtained using

the spectroscopic correction performed by the TDLWintel

software than was achieved by scaling the wet mole frac-

tions according to Eq. (2). There are two potential factors that

could explain the improved performance of the spectroscopic
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Figure 3. RMS (root mean square) difference between the retrieved

wet mole fractions and the corresponding dry measurements for

CH4 and N2O, as a function of water broadening coefficient. These

RMS values are determined using data taken over the full experi-

mental range of H2O mole fraction during all four identical experi-

ments.

method over the scale factor method. Firstly, because the

spectroscopic correction determines the water vapour pres-

sure broadening relative to the dry air pressure broadening,

it implicitly accounts for changes in absolute water vapour

pressure associated with corresponding changes in measured

sample cell pressure. In contrast, the scale factor method us-

ing Eq. (2) relies only on the retrieved mole fraction of water

vapour and so fails to account for any increase or decrease

in water vapour pressure broadening at higher or lower cell

pressures.

Secondly, in the scale factor method, drift in the uncali-

brated water vapour mole fraction measurements propagates

directly via Eq. (2) into a systematic error in the water-

corrected mole fraction for both CH4 and N2O (Xdry). In

the spectroscopic method, inaccuracies in the measurement

of water vapour mole fraction instead impact upon the sub-

sequent retrieval of CH4 and N2O by affecting the fitting of

the Voigt line profile. Although inaccurately calculated wa-

ter vapour line broadening will change the retrieved mole

fraction using the spectroscopic method, because the water

vapour broadening is just one of several parameters con-

straining the spectral fit, inaccuracy resulting from this effect

will be manifest in part as a reduction in the goodness of fit

(spectral residual). Hence the spectroscopic method is less

sensitive to any potential drift in the retrieval of water vapour

mole fraction than the scale factor method.

All flight data presented in this paper have been reanal-

ysed using this spectroscopic water vapour correction, with

empirically derived water broadening coefficients of 1.6 and

1.8 for CH4 and N2O respectively.
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3 Data quality

Systematic instrumental error associated with changes in ex-

ternal variables such as temperature and pressure can be com-

pensated for by repeated sampling of calibration gas. During

airborne sampling an instrument is exposed to rapid changes

in these variables over a wide range of values; hence regular

calibration is required.

In this section we first describe the calibration procedure

used during the two campaigns and explain the rationale be-

hind it. We then seek to diagnose and understand the sources

of systematic error which remain uncaptured by this calibra-

tion. Finally, we describe an alternative calibration procedure

designed to better address these key sources of error and eval-

uate the effect of both methods on the overall data quality.

3.1 Original calibration procedure

The in-flight calibration procedure employed throughout the

GAUGE and MAMM campaigns was in principle similar to

that described by O’Shea et al. (2013b). The data were scaled

using two cylinders of known composition, traceable to the

WMO greenhouse gas scale (WMO, 2009), whose mole

fractions spanned the normal measurement range for N2O

and CH4. By sequentially pumping gas from these cylinders

through the system and comparing the retrieved mole frac-

tions to their WMO-traceable values, two reference points

could be established for the QCLAS on the WMO scale. By

assuming a linear relationship, the “true” mole fraction corre-

sponding to each retrieved QCLAS mole fraction was given

by interpolating the scale between the two reference points.

For each calibration a scale factor (Mx) and zero offset (Cx)

were found using

Mx =

(
Xhigh,WMO−Xlow,WMO

)(
Xhigh,meas−Xlow,meas

) , (3)

Cx =Xhigh,WMO−MxXhigh,meas, (4)

where Xhigh,WMO and Xlow,WMO are the “true” WMO-

traceable mole fraction values, and Xhigh,meas and Xlow,meas

are the measured mole fraction values, for the high and low

calibration cylinders respectively for a given species X.

These two cylinders were sampled sequentially on an ap-

proximately hourly basis and the values for Mx and Cx were

linearly interpolated between calibrations. The raw data were

then calibrated by applying

Xcal(t)=Mx(t)Xraw(t)+Cx(t). (5)

In order to check that both interpolation between the

two cylinder mole fraction values and temporal interpolation

between hourly calibrations were justified, a third WMO-

traceable “target” cylinder containing intermediate CH4 and

N2O mole fractions was measured approximately mid-way

between the hourly high–low span calibrations. Applying the

above calibration to this target cylinder measurement and
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Figure 4. A selection of raw CH4 data from flight B848, over-

laid with calibration index markers to highlight the hourly calibra-

tion cycle. The target cylinder measurement (green markers) is per-

formed approximately mid-way between the high–low span cylin-

der measurements (black and blue markers respectively) used to cal-

ibrate the data to the WMO scale.
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Figure 5. The offset between the raw QCLAS CH4 data and the

calibrated FGGA data (used here as our reference) during flight

B848. Gradients of over 30 ppb in less than 10 min can be seen to

be present.

comparing the resulting calibrated mole fractions with the

WMO-traceable values for the cylinder enabled errors as-

sociated with this method to be quantified. Raw CH4 data

demonstrating a typical calibration cycle are shown in Fig. 4.

This calibration procedure was designed to remove lin-

ear drifts acting over timescales of the order of the inter-

calibration time, here approximately 1 h. However, analy-

sis of the difference in CH4 mole fraction between the

raw QCLAS data and the calibrated data from the on-

board FGGA frequently showed gradients of over 30 ppb in

timescales of less than 10 min, as shown for flight B848 in

Fig. 5. The FGGA on board the FAAM aircraft has previ-

ously been shown not to exhibit any significant systematic

errors on this timescale (O’Shea et al., 2013b), suggesting

that these gradients represent a source of systematic error in

the QCLAS data. Note that although we have compensated

here for the lag time between the two instruments using the

correlation between the two CH4 data sets, large deviations

from the overall trend with very short durations are present
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Figure 6. The offset between the raw QCLAS CH4 measurements

and both the corresponding calibrated FGGA data and the known

contents of the target, high and low calibration cylinders during

flight B848, shown as a function of static pressure. Although the

absolute magnitude of the offset differs for these four different mea-

surements, the same broadly repeatable pattern is exhibited by each

of them.

as a result of small differences in the measurement time of

large CH4 enhancements.

Figure 6 shows the same CH4 data from flight B848 plot-

ted as a function of static pressure, as measured by the air-

craft’s RVSM (reduced vertical separation minimum) sys-

tem. It can be seen that a broadly repeatable pattern exists

as a function of pressure, which was found to dominate vari-

ability in the raw QCLAS CH4 data offset with respect to the

FGGA over the course of the flight. The same pattern is also

exhibited by the offset of the calibration cylinder measure-

ments from the nominal values of the cylinders (also shown),

although the absolute value of this offset clearly differs be-

tween the cylinders. Similar patterns were observed for the

cylinder measurements of N2O, and across other flights dur-

ing the two campaigns.

The fact that this variation with pressure can be observed

in both the raw sample data and the measurement of dry cal-

ibration air confirms that errors in the water vapour correc-

tion cannot be responsible. A leak (ingress) into the system

also appears implausible, as one would expect this to have

the opposite effect on the high and low cylinder measure-

ments, pulling both towards the mole fractions of CH4 and

N2O present in the aircraft cabin. Santoni et al. (2014) warn

of issues associated with fluctuations in sample cell pressure.

However, the offsets in retrieved QCLAS mole fractions ob-

served here were found to exhibit no dependence on either

sample cell pressure, sample cell temperature or the rate of

change for these variables (as recorded by the pressure and

temperature sensors within the sample flow).
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Figure 7. The offset between the raw retrieved QCLAS mole frac-

tions and the known content of a target cylinder, sampled continu-

ously during three separate deep profiles during flight B903. Panels

(a) and (b) shown the offset as a function of the pressure inside the

cabin, for CH4 and N2O respectively. Panels (c) and (d) show the

offset as a function of external static pressure (also for CH4 and

N2O respectively).

The temperature of the cabin air was also recorded as it

entered the outer enclosure of the QCLAS, but this again ex-

hibited no clear correlation with the CH4 data offset. The

pressure inside the cabin, however, was not recorded dur-

ing the 2014 campaigns. Subsequent test flights, described in

Sect. 3.2 below, suggest that it was variability in this quan-

tity that caused the large gradients in CH4 offset described

above.

3.2 Influence of cabin pressure

In April 2015 we performed a test flight (B903) designed

to further understanding of the underlying issues behind the

large gradients in QCLAS CH4 data described in Sect. 3.1

above. This time cabin pressure data were available through-

out the flight, and three deep profiles were performed whilst

the QCLAS sampled compressed air from a calibration cylin-

der. The first deep profile occurred at the beginning of the

flight, whilst the other two were performed ∼ 2.5 h later.

Figure 7 shows the offset in retrieved CH4 and N2O

mole fractions from the known composition of the cylin-

der as a function of both cabin pressure and RVSM exter-

nal static pressure. For external pressures between∼ 800 and

∼ 1000 hPa these offsets remain roughly constant; this can

be seen to correspond to the range of external pressures over

which there is no change in cabin pressure. The fact that,
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Figure 8. Time series from flight B903, showing the offset between

the raw retrieved QCLAS mole fractions and the known content

of the target cylinder being sampled. Cabin pressure and external

static pressure are also shown to illustrate the systematic nature of

the offset during two consecutive profiles.

for both CH4 and N2O, the raw QCLAS measurement offset

does not change when the cabin pressure is constant, even

when the external pressure is varying, strongly suggests that

cabin pressure variability is the primary cause of the large

gradients in this offset observed throughout the GAUGE and

MAMM campaigns in summer 2014.

A time series of the retrieved mole fraction offsets for the

final two profiles is shown in Fig. 8. The influence of chang-

ing cabin pressure on these retrieved mole fractions can be

characterised as a small-scale oscillation superimposed on

a larger-scale gradient. This large-scale gradient appears to

be very consistent across the three profiles (see also Fig. 7),

whereas the small-scale oscillations are not so repeatable.

The likely pathway through which cabin pressure can in-

fluence the retrieved mole fractions is through its effect on

baseline intensity in the spectral regions close to the absorp-

tion lines. There are two potential components to this: the

effect of changing absorption in the open path section of the

laser and the effect of changing pressure on the alignment of,

and spacing between, the instrument’s optical components.

To investigate the effect of varying the open path absorp-

tion, a further test flight was conducted whilst flowing dry

nitrogen through the laser beam enclosure. A simulation was

also performed, where open path CH4 and N2O absorption

were included in the spectral fit for the range of cabin pres-

sures encountered during flight B903, to assess the impact

on the retrieved mole fractions. Both of these tests indicated

that varying open path absorption contributed negligibly to

the observed gradients in retrieved mole fraction over the

range of cabin pressures experienced during these flights.

Hence we conclude that these gradients are more likely at-

tributable to small changes in optical alignment/spacing as-

sociated with cabin pressure variation.

3.3 Pressure-differentiated calibration procedure

As the short-term (of order minutes) instrumental drift with

pressure had a greater effect in degrading measurement pre-

cision than any longer-term (of order hours) drift with time,

the data were reanalysed using an alternative calibration pro-

cedure, designed to reduce the impact of this issue on the

overall accuracy of the calibrated measurements. As there

were no cabin pressure data available for the GAUGE and

MAMM campaigns in summer 2014, it was necessary to use

the external static pressure from the aircraft’s RVSM system

as a proxy. This approach is justified by the strong correla-

tion between cabin pressure and external pressure and by the

results in Sect. 3.4 below.

In this approach values of Mx(t) and Cx(t) for sections

of flight at broadly equivalent pressure levels (defined here

as a range of variability less than 15 hPa for a period longer

than 2 min) were interpolated between any calibrations con-

ducted at a pressure within 15 hPa of the average pres-

sure during that section. Profile data, along with all data at

pressure levels where no calibrations were performed, were

flagged as poor quality and removed from the analysis. This

pressure-differentiated calibration method has the disadvan-

tages of both reducing the amount of calibrated data for the

campaigns by 54 % and potentially inducing errors associ-

ated with long-term instrumental drift, as data can be sep-

arated from the corresponding calibration(s) by up to 5 h.

The effect on the overall data quality of using this pressure-

differentiated calibration procedure is discussed and com-

pared in Sect. 3.4.

It was also found that large roll angles (∼ 20◦ or over), as-

sociated with sharp turns of the aircraft, produced short-term

deviations in retrieved CH4 and N2O mole fractions, evident

in both the raw and calibrated data. It is likely that this ef-

fect is a consequence of slight alignment changes (similar to

Sect. 3.2 above) caused by the centrifugal force of the turn

(no relationship with cabin pressure variability was found).

Whilst this effect was clearly secondary to the pressure-

dependent variability described above, producing CH4 devi-

ations of less than 5 ppb, it was decided to flag all data asso-

ciated with roll angles of greater than 10◦ as reduced quality.

All calibrated data (using both methods) discussed here have

been filtered according to this flag, removing the reduced-
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Table 1. Mean and standard deviation of the difference between QCLAS 1 Hz target cylinder measurements and the nominal cylinder values

and the difference between the 1 Hz QCLAS and the corresponding 1 Hz FGGA sample CH4 measurements, using both the original and

pressure-differentiated calibration methods.

QCLAS–target difference (ppb) QCLAS–FGGA

difference (ppb)

N2O CH4 CH4

Calibration method Mean 1σ Mean 1σ Mean 1σ

Original 0.00319 0.960 0.253 4.78 −2.87 8.27

Pressure-differentiated 0.105 0.419 0.0668 1.71 −2.05 5.85
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Figure 9. Histograms showing the offset between the calibrated 1 Hz QCLAS measurements and both the corresponding target cylinder

values and the corresponding FGGA sample measurements. Panels (a)–(c) show histograms for data calibrated using the original method; in

comparison, panels (d)–(f) show the corresponding histograms using the pressure-differentiated calibration method. It can be seen here that

the pressure-differentiated method results in the removal of many of the outlying target cylinder measurements. In addition, the Gaussian fit

to the QCLAS–FGGA CH4 offset is also improved by the pressure-differentiated calibration method (f) relative to the original method (c).

quality data associated with high roll angles. The application

of this filter reduces the total size of the raw data set by only

7 %.

3.4 Results and discussion

The performance of the QCLAS can be assessed both by

comparing the calibrated target cylinder measurements to

their corresponding WMO-traceable values and by compar-

ing the calibrated 1 Hz CH4 sample data with the correspond-

ing measurements from the on-board FGGA. No other instru-

ments on board the FAAM aircraft measured N2O during the

GAUGE or MAMM campaigns, so a direct comparison of

sample N2O mole fractions cannot be made here. Table 1

summarises these results for both the original calibration

method described in Sect. 3.1 and the pressure-differentiated

calibration method described in Sect. 3.2.

It can be seen from the table that using the pressure-

differentiated calibration method significantly improves the

accuracy of the QCLAS, both during target cylinder mea-

surements and sample mode. In particular, the standard de-

viations in QCLAS–target and QCLAS–FGGA differences

are substantially reduced compared to the equivalent values

produced using the original calibration method. The WMO

recommends compatibility between different analyses within

2 ppb for CH4 and 0.1 ppb for N2O (WMO, 2013). The

fraction of data within these ranges for both the QCLAS–

target and QCLAS–FGGA differences using both methods is

shown in Table 2. Here again it can be seen that the pressure-

differentiated calibration method produces superior results.

Figure 9 shows the offset between the calibrated 1 Hz

QCLAS target cylinder measurements and the known content

of the cylinder, as histograms for both CH4 and N2O. It can

be seen here that the improved standard deviations obtained
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Table 2. The fraction of 1 Hz data within the WMO compatibil-

ity recommendations for QCLAS target cylinder measurement and

QCLAS–FGGA sample measurement, using both the original and

pressure-differentiated calibration methods.

QCLAS–target QCLAS–FGGA

Calibration method N2O CH4 CH4

Original 0.149 0.519 0.292

Pressure-differentiated 0.309 0.765 0.361

Table 3. Allan precision for QCLAS measurement of CH4 and

N2O, both during ambient in-flight sampling and whilst sampling a

compressed air cylinder in the laboratory, given for averaging times

of 1, 10 and 108 s.

1σ Allan precision (ppb)

1 s 10 s 108 s

Flight Lab Flight Lab Flight Lab

CH4 0.52 0.48 0.31 0.17 0.23 0.12

N2O 0.11 0.12 0.074 0.044 0.042 0.029

using the pressure-differentiated calibration method result

from the removal of outlying data associated with the pres-

sure effect discussed in the previous section. Also shown are

histograms of the QCLAS–FGGA offset for 1 Hz CH4 sam-

ple data, which provide further evidence of the superior per-

formance of the pressure-differentiated calibration method.

The data produced using the original calibration method are

clearly far less well represented by a Gaussian fit; this is to

be expected in the presence of a systematic effect such as that

described in Sect. 3 above. In contrast, the Gaussian shape of

the pressure-differentiated data is consistent with a random

error distribution for both instruments.

The instrument precision can be quantified using the Al-

lan variance technique (Werle et al., 1993). Table 3 presents

the 1σ Allan precision (over 1, 10 and 108 s) for CH4 and

N2O, both in a laboratory environment whilst sampling a

compressed air cylinder and in flight during a period of am-

bient background sampling. These results are similar to those

of Santoni et al. (2014), with in-flight 1 Hz precisions here of

0.52 ppb for CH4 and 0.11 ppb for N2O.

Finally, a nominal uncertainty for the data can be calcu-

lated using the known uncertainties from the water vapour

correction experiment, the calibration of the target cylinder

to the WMO-scale and the in-flight target measurements. Ta-

ble 4 contains these values for both CH4 and N2O using the

pressure-differentiated calibration method. The nominal to-

tal uncertainties for CH4 and N2O are ±2.47 and ±0.54 ppb

respectively.

Table 4. Known component and nominal total uncertainties for

the QCLAS measurement of CH4 and N2O, calibrated using the

pressure-differentiated method.

1σ uncertainty (ppb)

Water vapour Target standard In-flight target Total

correction calibration measurements

CH4 1.63 0.77 1.71 2.47

N2O 0.32 0.11 0.42 0.54

Figure 10. Aircraft flight track for flight B868, coloured by N2O

mole fraction. Average wind speeds and directions taken over 60 s

are shown as a wind barbs (using the convention where each full

barb represents a wind speed of 10 knots). Selected HYSPLIT back

trajectories are shown for a region of enhanced N2O (black) and

a contrasting region of lower N2O (grey). Map data: Google, SIO,

NOAA, US Navy, NGA, GEBCO, Landsat.

4 Case study

The GAUGE project aims to provide top-down greenhouse

gas emission estimates for the UK, which can be used to val-

idate the bottom-up inventory-based estimates required by

UK and international legislation. As part of this approach,

the use of aircraft data is planned in combination with mass

balance techniques (Karion et al., 2013; O’Shea et al., 2014a;

Peischl et al., 2015) to estimate regional greenhouse gas

emissions. Such analysis is beyond the scope of this tech-

nical study; however, we present QCLAS data from a single

flight here as exemplars of typical flight data, providing con-

text with regard to scientific case studies which may use this

new airborne data set.

Flight B868 was designed to incorporate upwind and

downwind sampling over north-western England to provide

a data set for a mass balance case study. This region con-

tains several large urban areas (Manchester, Liverpool, Leeds

and Sheffield) and also includes several areas of agricultural

activity, known to be an important anthropogenic source of

N2O (Syakila and Kroeze, 2011). The flight track, coloured

by N2O mole fraction, is shown in Fig. 10. The wind speed

and direction, as measured on board the aircraft and taken

as an average over 60 s, are represented by wind barbs, ac-
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cording to the standard convention where each full barb rep-

resents a wind speed of 10 knots. Selected Lagrangian back

trajectories using the HYSPLIT (Hybrid Single-Particle La-

grangian Integrated Trajectory) model (Draxler and Hess,

1998) are also shown (representing around 24 h track across

the UK mainland in the figure). These trajectories were initi-

ated using endpoints and trajectory end times selected along

the flight track and modelled with full vertical dynamics us-

ing Global Data Assimilation System 1◦ resolution data.

It can be seen that the N2O mole fractions measured in

the north-west of the domain were enhanced relative to those

in the south-east. A relatively consistent south-easterly wind

direction (both measured and seen in the trajectories) sug-

gests that this enhancement may enable the use of a mass

balance technique to estimate the N2O flux from an area be-

tween this downwind transect and the corresponding upwind

measurements using the techniques described by O’Shea et

al. (2014a). This requires suitable investigation of the neces-

sary assumptions, which is beyond the scope of this simple

example.

It is also striking that there is a relative contrast in the

south-west area of the domain, with N2O mole fractions

around 328 ppb (compared with 330 ppb in the north-west).

The potential reasons for this small contrast, in terms of air-

mass history, may be explained by considering both the tra-

jectories and the wind barbs. The trajectories from the north-

west domain show recent transport at low altitude (below

1 km) over Greater Manchester and the north-west conur-

bation, whereas south-west trajectories pass over more rural

areas. This appears counterintuitive, as we expect the agri-

cultural sector to be the primary contributor towards N2O

emissions in this region. However, the wind barbs (which

represent real measurements) show that there is a complex

divergence in the wind field in the south-west domain, per-

haps indicative of a localised sea-breeze circulation that can-

not be expected to have been captured at the resolution of

the meteorological data that were used to initialise the HYS-

PLIT trajectories. This sea-breeze circulation could suggest

recirculation of maritime air and hence dilution of any mod-

erately enhanced air arriving on the prevailing wind from the

east. The differing localised dynamics and air-mass histories

of the two domains may explain the observed contrast. Fur-

ther analysis of this may form the basis of future work and

this limited example demonstrates the utility of aircraft data

in understanding local and regional air-mass characteristics.

5 Conclusions

A quantum cascade laser absorption spectrometer was used

to measure N2O and CH4 on board the FAAM aircraft dur-

ing the GAUGE and MAMM campaigns in summer 2014. A

relationship between QCLAS measurement error and cabin

pressure was found, and a new calibration procedure was

adopted to minimise the impact of this effect on the final data.

Using this pressure-differentiated calibration method, total

uncertainties of ±2.47 ppb and ±0.54 ppb were obtained for

the measurement of CH4 and N2O respectively.

The sample air was not dried prior to measurement, so a

correction for the influence of water vapour on the retrieved

mole fractions was required. The performance of two dif-

ferent water vapour correction methods was compared using

data from four separate experiments. It was found that the

best results were obtained using the water broadening func-

tion in the TDLWintel software, which included the effects of

water broadening on the CH4 and N2O absorption lines di-

rectly in the mole fraction retrieval. Experimentally derived

coefficients for the ratio of water vapour broadening to air

broadening of 1.6 and 1.8 were found to give the best results

for CH4 and N2O respectively.

Overall instrument performance is found to be broadly

comparable with similar studies (e.g. O’Shea et al., 2013b;

Santoni et al., 2014) when the pressure-differentiated calibra-

tion procedure is used. However, this has the disadvantage

of removing 54 % of the measured sample data, including

all data during vertical profiles, which are frequently of sci-

entific interest. A priority for improvement is to prevent the

large short-term drifts in measurement error that necessitate

the removal of these data. One potential solution would be

to enclose the instrument within a pressure-sealed container.

The feasibility of practically implementing this solution on

board the FAAM aircraft is currently being studied.
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