
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genomic–based optimum contributions in conservation and
genetic improvement programmes with antagonistic fitness and
productivity traits

Citation for published version:
Sanchez Molano, E, Pong-Wong, R & Banos, G 2016, 'Genomic–based optimum contributions in
conservation and genetic improvement programmes with antagonistic fitness and productivity traits'
Frontiers in genetics, vol. 7, pp. 25. DOI: 10.3389/fgene.2016.00025

Digital Object Identifier (DOI):
10.3389/fgene.2016.00025

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Frontiers in genetics

Publisher Rights Statement:
© 2016 Sanchez-Molano, Pong-Wong and Banos. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3389/fgene.2016.00025
https://www.research.ed.ac.uk/portal/en/publications/genomicbased-optimum-contributions-in-conservation-and-genetic-improvement-programmes-with-antagonistic-fitness-and-productivity-traits(30b763c9-65a3-452d-a03a-84ec28b5652c).html


   

 

Genomic–based optimum contribution in conservation
and genetic improvement programs with antagonistic
fitness and productivity traits

  Enrique Sanchez-Molano1*, Ricardo Pong-Wong1, Georgios Banos1, 2, 3

 

1Division of Genetics and Genomics, The Roslin Institute and R(D)SVS. The University of

Edinburgh, United Kingdom, 2SRUC, United Kingdom, 3School of Veterinary Medicine,
Aristotle University of Thessaloniki, Greece

  Submitted to Journal:

  Frontiers in Genetics

  Specialty Section:

  Evolutionary and Population Genetics

  ISSN:

  1664-8021

  Article type:

  Original Research Article

  Received on:

  29 Oct 2015

  Accepted on:

  06 Feb 2016

  Provisional PDF published on:

  06 Feb 2016

  Frontiers website link:

  www.frontiersin.org

  Citation:

 

Sanchez-molano E, Pong-wong R and Banos G(2016) Genomic–based optimum contribution in
conservation and genetic improvement programs with antagonistic fitness and productivity traits.
Front. Genet. 7:25. doi:10.3389/fgene.2016.00025

  Copyright statement:

 

© 2016 Sanchez-molano, Pong-wong and Banos. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction
in other forums is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

 
This Provisional PDF corresponds to the article as it appeared upon acceptance, after peer-review. Fully formatted PDF
and full text (HTML) versions will be made available soon.

Provisional

http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/


 

Frontiers in Genetics | www.frontiersin.org

Provisional



 
1 

 

Genomic–based optimum contribution in conservation and genetic 1 

improvement programs with antagonistic fitness and productivity traits 2 

Enrique Sánchez-Molano1*, Ricardo Pong-Wong1 and Georgios Banos1, 2, 3 3 

1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, 4 
Easter Bush, Midlothian EH25 9RG, Edinburgh, UK. 5 

2 SRUC, The Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, Edinburgh, UK. 6 
3 School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece. 7 
 8 

*Correspondence: Enrique Sánchez-Molano. The Roslin Institute and Royal (Dick) School 9 
of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, 10 
Edinburgh, UK. Enrique.Sanchez-Molano@roslin.ed.ac.uk. +44(0) 131 6519221 11 
 12 

Key words: 13 
Optimum contribution, inbreeding, genomic selection, fitness, productivity 14 
 15 

Abstract 16 
 17 

Animal selection for genetic improvement of productivity may lead to an increase in 18 
inbreeding through the use of techniques that enhance the reproductive capability of selected 19 

animals. Therefore, breeding strategies aim to balance maintaining genetic variability and 20 

acceptable fitness levels with increasing productivity. The present study demonstrates the 21 
effectiveness of genomic-based optimum contribution strategies at addressing this objective 22 
when fitness and productivity are genetically antagonistic traits. Strategies are evaluated in 23 

directional selection (increasing productivity) or conservation (maintaining fitness) scenarios. 24 
In the former case, substantial rates of genetic gain can be achieved while greatly constraining 25 
the rate of increase in inbreeding. Under a conservation approach, inbreeding depression can 26 

be effectively halted while also achieving a modest rate of genetic gain for productivity. 27 
Furthermore, the use of optimum contribution strategies when combined with a simple non-28 

random mating scheme (minimum kinship method) showed an additional delay in the increase 29 
of inbreeding in the short term. In conclusion, genomic-based optimum contribution methods 30 
can be effectively used to control inbreeding and inbreeding depression, and still allow genetic 31 

gain for productivity traits even when fitness and productivity are antagonistically correlated. 32 
  33 

Provisional

mailto:Enrique.Sanchez-Molano@roslin.ed.ac.uk


 
2 

 

1. Introduction 34 

 35 
Over the past 30 years, selective breeding has mainly focused on production traits, with 36 

some of these traits being dramatically improved (Hayes et al., 2013). However, new issues 37 
and challenges have recently arisen as a consequence of increased concern for biodiversity, 38 

animal robustness, welfare, and market preferences towards product hygiene and quality 39 
(Olynk, 2012), thus requiring the re-assessment of strategies to address the new objectives. 40 

 41 
With previous selection pressure being focused mainly on production, the genetic 42 

variability of many functional traits (e.g. fertility) has been eroded as a consequence of the 43 

negative antagonistic correlation with productivity traits and the lack of selection pressure to 44 
improve them (Hoekstra et al., 1994; Pryce et al., 2002; Oltenacu and Broom, 2010). This can 45 
be sorted by constructing a selection index to allow for selection for productivity while 46 
preventing the fast reduction in fitness (van der Werf et al., 2009). However, the low heritability 47 

and lack of relevant data means that low or modest improvements can be achieved, thus 48 
rendering necessary alternative strategies such as genomic prediction to increase the accuracy 49 
of predictions. 50 

 51 
Furthermore, the widespread use of artificial insemination, multiple ovulation and 52 

embryo transfer in some species has led to selected parents of high genetic merit having 53 
hundreds to tens of thousands of progeny (Brackett, 2012). This has resulted in a high level of 54 

inbreeding, which could be related to a loss in fitness. In order to control the increase in 55 
inbreeding resulting from selection, optimum contribution strategies have been developed in 56 
livestock genetic improvement schemes to maximize the genetic gain for a pre-set level of 57 

inbreeding (Wray and Goddard, 1994; Meuwissen, 1997; Grundy et al., 1998). These methods 58 
take into consideration the genetic merit of candidates and their genetic relationships in order 59 

to determine the optimum number of progeny for each candidate. Alternative implementations 60 

of these strategies focused on conservation programs (i.e. for endangered species) aiming to 61 

minimize inbreeding and enhance fitness (Ballou and Lacy, 1995; Fernández et al., 2011). 62 
Although these dynamic methods are mainly based on the optimization of candidate selection 63 

and subsequent random mating, they can be also combined with non-random mating strategies 64 
in two-step programs to achieve a further reduction in inbreeding (Sonesson and Meuwissen, 65 
2000). 66 

 67 
Hence, to ensure that the maximum benefit is achieved, selection programs should 68 

combine strategies for (i) increasing the accuracy of EBV and (ii) optimizing the selection of 69 
candidates and their genetic contributions. Previous studies combining genomic predictions 70 
with optimized selection have shown a synergistic effect leading to greater selection response 71 

(Nielsen et al., 2011; Pryce et al., 2012; Sonesson et al., 2012; Clark et al., 2013). Furthermore, 72 

genomic estimates provide a more precise estimate of the true genetic relationships among 73 
animals than the obtained with the traditional pedigree-based relationship matrix (Sonesson et 74 
al., 2012).  However, so far, no previous study has addressed the dynamics of the above when 75 

selection considers two genetically antagonistic traits.  76 
 77 
The present study addresses genomic-based optimum contribution in the presence of 78 

genetic antagonism between key functional and production traits. Two main scenarios are 79 
tested in a simulation study focusing on (i) a genetic improvement scheme aiming at 80 

maximizing genetic gain while controlling inbreeding and (ii) a conservation program aiming 81 
at minimizing inbreeding while allowing for genetic gains. 82 

 83 
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2. Material and methods 84 

 85 
2.1. Simulation of populations 86 

 87 
A base population with a size of 2,000 animals (1,000 males and 1,000 females) was 88 

simulated with initial allelic frequencies of 0.5 for all loci and randomly mated for 50 89 
generations to allow the establishment of linkage disequilibrium between markers and the QTL 90 
following a similar process as in Behmaram et al. (2013) and in Boustan et al. (2013). After 91 
the 50th generation, 1,000 individuals (500 males and 500 females) were randomly chosen as 92 
the base generation of the simulation of the ensuing monitoring period; the latter consisted of 93 

20 generations under different selection and optimum contribution strategies described below. 94 
 95 

2.2. Simulation of genomes 96 
 97 
For each animal, the genome consisted of 20 chromosomes of equal length (140 cM), 98 

with 64,000 bi-allelic single nucleotide polymorphisms (SNPs) evenly distributed among them 99 
(3,200 nucleotides per chromosome). One thousand SNPs were considered as functional genes 100 

and randomly sampled without replacement. In addition, 10,000 SNPs were also randomly 101 
chosen without replacement and selected as genetic markers in linkage disequilibrium with the 102 

functional genes. These SNPs were used to compute identity-by-state (IBS) genomic 103 
relationships among individual animals. Mutation rate was assumed to be 2.2x10-5 per 104 

nucleotide (Brito et al., 2011) and recombination was simulated based on SNP distance using 105 
the Haldane mapping function (Haldane, 1919). 106 

  107 

2.3. Simulated traits 108 

 109 
Two main traits were considered: i) A productivity trait with a moderate-high 110 

heritability (0.30) and ii) a fitness-related trait with a low heritability (0.10), reflecting a 111 

threshold-based ability of the animal to survive and reproduce. These heritability estimates 112 
reflect estimates from studies based on real data in different livestock species (Luan et al., 113 

2009). 114 
 115 
Productivity was assumed to be a mainstream trait that will be normally selected for in 116 

a livestock genetic improvement program. Fitness was assumed to be an important trait 117 
antagonistically related with productivity, which may or may not be included in the selection 118 

program, as explained later. The antagonistic genetic correlation between the two traits was 119 
assumed to be -0.50, with half of the genes being simulated to have an equal but opposite effect 120 
on the two traits and therefore, being representative of a pessimistic scenario considering 121 

previous estimates of negative correlations between productivity and fitness (Ingvartsen et al., 122 

2003; Oltenacu and Broom, 2010). Furthermore, fitness was assumed to be affected by 123 
inbreeding depression, as explained later. 124 

 125 

The phenotypic variance of each trait was standardized to 1 and, therefore, the additive 126 

genetic variance (𝑉𝛼) was equal to the heritability of the trait. For each trait, the effects of the 127 
functional genes were assumed to follow a normal distribution with mean 0 and variance α2, α 128 

being the average effect of allelic substitution (α = / 2V npq , where n is the number of loci 129 

affecting the trait and p and q are the allelic frequencies at a starting value of 0.5 (Falconer and 130 

Mackay, 1996). 131 
 132 
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When simulating both traits, two alternatives were considered: (i) fitness phenotypes 133 

were assumed to be available (i.e. recorded) in all animals or (ii) only a proportion of animals 134 
(20%) having a relevant phenotypic record. 135 

 136 

2.4. True and predicted breeding values 137 
 138 
True breeding values (TBVs) for each animal and trait were computed from gene effects 139 

and allelic frequencies simulated for the correspondent functional genes, with phenotypic 140 
values being simulated by adding to the TBV an environmental deviation normally distributed 141 

with mean 0 and variance 𝑉𝑒. Following classic infinitesimal theory (Nadaf et al., 2012), 142 
GEBVs were simulated by adding an error term to the TBV. This error term was computed 143 
assuming a targeted accuracy r of the GEBVs (TBV-GEBV correlation) and a normal 144 

distribution N (0, (1-r2)𝑉𝛼) for the error term. The use of this approach to simulate GEBVs has 145 
been developed and used in previous studies (Dekkers, 2007; Granleese et al., 2015). 146 

 147 
 Low heritability traits are expected to have lower genomic prediction accuracies  when 148 

compared to medium-high heritability traits and, in addition, animals with genotypes and 149 
phenotypes (training population) are expected to have higher accuracies than animals with 150 
genotypes only (Daetwyler et al., 2010). Therefore, accuracies for productivity GEBVs were 151 
assumed to be always 0.70, as all animals were simulated to have phenotypic records. 152 

Accuracies for fitness were assumed to be 0.50 for animals with phenotypic records and 0.40 153 
for animals without phenotypic records. 154 

 155 

2.5. Selection index 156 

 157 
Different combinations of selection on productivity and fitness were considered: a) 158 

Index I50 was created as a 50%/50% combination of the productivity and fitness GEBVs (equal 159 
emphasis); b) index I25 was created as a 75%/25% productivity/fitness GEBV combination 160 
and c) index I0 included only productivity GEBVs. These weights were meant to reflect the 161 

relative emphasis placed on each trait, independently of the assumed heritabilities and genetic 162 
correlation. 163 

 164 

2.6. Inbreeding and inbreeding depression 165 

 166 
The genomic relationship matrix (G) based on IBS relationships among animals was 167 

computed in every generation using the method of Van Raden (2008): 168 

 169 

/G   ZZ’ k  170 
 171 

with Z being the centered matrix (subtraction of the expected genotype frequencies from the 172 
incidence matrix with genomic information) and k the scaling parameter computed as k = 2Σpq, 173 
where p and q are the allelic frequencies at the base generation of the simulation. 174 

 175 

Genomic inbreeding for each individual (i) was computed as Gii – 1, as these inbreeding 176 
coefficients represent the correlation between uniting gametes in an individual. Pedigree 177 
inbreeding based on pedigree relationships was also computed for comparison, assuming that 178 
animals in the base population were unrelated. 179 

 180 
As mentioned above, simulated fitness was assumed to be affected by inbreeding 181 

depression. Therefore, a phenotypic reduction of 5% in fitness per 0.1 (10%) increase in 182 
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inbreeding was assumed in concordance with previous studies (Theodorou and Couvet, 2006). 183 

For inbreeding depression purposes, only genomic inbreeding was considered, as differences 184 
between pedigree and genomic rates of inbreeding were expected due to selection (Sonesson 185 
et al., 2012). A threshold for fitness was also imposed, and animals whose fitness was reduced 186 
by 50% or more were considered to be dead or unable to mate. 187 

 188 

2.7. Optimum contribution strategies 189 
 190 

2.7.1. Maximize genetic gain (MGa and MGb strategies) 191 

 192 
 The optimum contribution theory described by Meuwissen (1997) was used, adapted 193 

to genomic selection. The genetic gain in generation t+1 was defined by ctGEBVt, with ct being 194 
the vector of contributions of selected candidates to generation t+1. This expression was 195 
maximized with Lagrange multipliers assuming a constraint for the average relationship of 196 

selection candidates 1   / 2 1 (1 )t

t GC F    t

,

t tc G c , where Gt was the genomic relationship 197 

matrix among selection candidates and ΔFG was the desired rate of genomic inbreeding 198 
(Sonesson et al., 2012), which was set to 0.01 or 0.005 in the present study. Once ct was 199 

calculated, the offspring was produced by sampling a male and a female with replacement 200 
under random mating. Contributions were optimized for both sexes (MGa strategy) or only for 201 
sires (MGb strategy). These two strategies are considered relevant to current livestock genetic 202 
improvement program. 203 

 204 

2.7.2. Minimize rate of inbreeding (MI strategy) 205 
 206 
The Lagrange multipliers’ approach was used to develop strategies relevant for a 207 

conservation program aiming to protect biodiversity by minimizing the rate of inbreeding for 208 

a given rate of allowed gain in the trait of interest. In this case, the constraint was set to tI I 209 

, where tI  is the average index value observed for the population in generation t and ΔI is the 210 
desired rate of gain in the index (set to 0.30 in the present study). Contributions under this 211 
scheme were optimized for both sexes. 212 

 213 
2.8. Additional considerations 214 

 215 
Main scenarios tested are summarized in Table 1. Sires and dams selected in the 216 

optimum contribution scenarios described above were mated as dictated by the respective 217 

number of expected contributions of each selected parent assuming each mating produced a 218 
single offspring. Two mating strategies were tested in these main scenarios: under random 219 
mating, selected animals were mated at random with replacement. Under non-random mating, 220 

the static minimum kinship approach, which minimizes average co-ancestry (Ivy and Lacy, 221 

(2012) was followed. In the latter, individual mean molecular relationships (average molecular 222 

relationship of an animal with the rest of the population) were computed in every generation 223 
thereby creating two sex-specific lists where animals were ranked from lowest to highest mean 224 

relationship. The sire and dam with the lowest mean relationship were mated, followed by the 225 
sire and dam with the next lowest mean relationship. This process continued until all breeding 226 
pairs were formed. Any breeding pair with a relationship greater than the average relationship 227 

in the population was rejected, and the male was then mated to the next unpaired female with 228 
the lowest mean relationship. 229 

 230 
-Table 1- 231 
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 232 

In addition to the main scenarios addressed in table 1, other scenarios were simulated 233 
to test the concordance and validity of results. These secondary scenarios corresponded to (i) 234 
different number of males and females per generation (200 males and 800 females); (ii) 235 
different number of chromosomes (30 chromosomes to mimic the bovine genome); (iii) greater 236 

population size per generation (2,000 instead of 1,000).  237 
 238 

2.9. Scenario assessment 239 
 240 
All scenarios described above were run for 50 replicates and breeding strategies were 241 

compared for rates of inbreeding (ΔF), genetic gain (ΔTBV) and phenotypic change per 242 
generation. These rates were assessed in two intervals: from generation 0 to 5 (G0-G5) and 243 
from generation 6 to 20 (G6-G20), as it is expected that drift will also contribute to reducing 244 
the genetic variance in the early generations and, therefore, it may increase the early rates of 245 

inbreeding in the truncation methods. Rates of genomic inbreeding (ΔFG) were also compared 246 
with corresponding pedigree inbreeding rates (ΔFP) and were computed only for the last 247 
interval to avoid the first generations. 248 

 249 

3. Results 250 

 251 
Table 2 shows the results obtained from optimum contribution of both sexes, 252 

maximizing genetic gain for different inbreeding constraints (MGa). Results from truncation 253 
selection are included in Table 2 for comparison. In all cases random mating among selected 254 

parents was assumed. Rates of genetic gain and genomic inbreeding under an MGa strategy 255 
with an inbreeding constraint of 0.01 (1%) were always similar to those obtained with the 256 

corresponding truncation selection scheme. However, a genomic inbreeding constraint of 0.005 257 

(0.5%) in the MGa strategy reduced ΔFG by about half and the impact of inbreeding depression 258 

on fitness by 40-60%, while yielding only slightly smaller rates of genetic gain for the two 259 
traits (Table 2). 260 

 261 
-Table 2- 262 

 263 

Table 3 shows the performance of an optimum contribution strategy to maximize the 264 
genetic gain applied only to males (MGb strategy) and considering random mating. When 265 

compared with optimum contribution of both sexes (Table 2), ΔTBV for productivity was 266 
generally reduced (30% on average) and ΔTBV for fitness was also reduced (26% on average) 267 
when productivity and fitness were equally weighted. 268 

 269 

-Table 3- 270 
 271 
The use of optimum contribution from a conservation perspective is exemplified in 272 

Table 4, which shows the results obtained under a strategy to minimize the rate of inbreeding 273 
for a given rate of genetic gain (MI strategy) under random mating. A scenario assuming 274 
absence of artificial selection is included in Table 4 for comparison. Results suggest that the 275 
use of this strategy will lead to a rate of inbreeding similar to that observed in the complete 276 
absence of selection while at the same time allowing for a modest but noteworthy increase in 277 

genetic gain for productivity and fitness. The rate of phenotypic deterioration of fitness when 278 
compared to the absence of selection was reduced and, in some cases, halted and reversed. 279 

 280 
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-Table 4- 281 

 282 
In scenarios with fitness records being available to a proportion of animals only, despite 283 

the lower accuracy, the rate of genetic gain decreased marginally (Tables 1, 2 and 3), probably 284 
due to the combined effect of fitness (lower heritability) and productivity (higher heritability) 285 

and the relatively small difference in accuracies (0.1) among animals with and without 286 
genotypes. 287 

 288 
The use of an alternative mating program, based on optimum contribution followed by 289 

a mating scheme to minimize co-ancestry according to the minimum kinship method yielded 290 

interesting results that are summarized in Figure 1. The minimum kinship scheme minimized 291 
the average co-ancestry and inbreeding in the first four generations but afterwards inbreeding 292 
rates increased to the same levels as under random mating of selected parents. This observation 293 
was independent of the genomic inbreeding constraint set for maximizing genetic gain, and 294 

applied equally to optimum contribution of both sexes and males only. No differences in the 295 
rates of genetic gain for productivity and fitness were observed when comparing minimum 296 
kinship with random mating (data not shown). 297 

 298 
-Figure 1- 299 

 300 
A comparison between genomic and pedigree inbreeding rates is shown in Figure 2. 301 

Under optimum contribution and conservation approach, ΔFP overestimated ΔFG by 5-16% 302 
(Figure 2A) or by 30-69% (Figure 2B), whereas under truncation selection ΔFP underestimated 303 
ΔFG by 17-23% (Figure 2C). In absence of selection, no difference was observed between rates 304 

of pedigree and genomic inbreeding.  305 
 306 

-Figure 2- 307 

 308 

Additional analyses (Supplementary Table 1) led to very similar results when 30 309 
chromosomes were simulated, instead of 20, in order to mimic the bovine genome. With the 310 

MGb strategy, use of a different number of males and females (200 and 800, respectively) in 311 
the population led to an approximate reduction of  16% in the rate of genetic gain for similar 312 
inbreeding levels when compared with equal number of sires and dams (500 each). In such 313 

case, the rate of increase in inbreeding with the MI strategy was nearly doubled. The effect of 314 
increasing the population size to 2,000 animals was more pronounced in the MI strategy, where 315 

the rate of inbreeding was reduced to about a third of that observed with 1,000 animals, whereas 316 
the rate of genetic gain in the MGb strategy slightly increased (~5%) due to more selection 317 
opportunities. 318 

 319 

4. Discussion 320 
 321 
The present study used a stochastic simulation to assess the performance of genomic-322 

based optimum contribution strategies in animal breeding when dealing with production traits 323 

antagonistically related with fitness. Rates of genetic gain and phenotypic change per 324 
generation were assessed in two intervals as it is expected that selection will at first reduce the 325 
genetic variance, thus constraining the rates of genetic gain in early generations. Furthermore, 326 
the increased relatedness of selected individuals across generation will also impose a reduction 327 
in the rate of genetic gain when constraining the rate of inbreeding, leading to higher rates in 328 
the early periods of selection compared to later. Therefore, scenarios where strong selection is 329 
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imposed (e.g. low restriction on genomic inbreeding) showed different rates between the two 330 

intervals, whereas scenarios with weak selection intensity (e.g. strict restriction on genomic 331 
inbreeding) led to similar rates of change in the two intervals. 332 

 333 
Our results showed that the use of optimum contribution strategies with index selection 334 

can increase genetic gain for productivity and reduce (or even halt) the expected decay in 335 
fitness despite their antagonistic correlation. Optimum contribution may also alleviate the 336 
effect of inbreeding depression, even when the majority of animals cannot provide a phenotypic 337 
record for fitness. Compared with truncation selection, the use of optimum contribution will 338 
maintain a similar rate of increase in productivity while reducing the rate of inbreeding and the 339 

effect of inbreeding depression to one half. In addition, and considering a conservation 340 
perspective, our results showed that optimum contribution-based strategies (MI) can minimize 341 
inbreeding while maintaining or even improving other valuable traits such as production. These 342 
strategies would lead to a rate of inbreeding similar to that observed in absence of any selection, 343 

while at the same time yielding small but respectable increases in productivity and halting the 344 
decrease in fitness due to inbreeding depression. 345 

 346 

The advantages of the use of genomic-based over phenotypic-based programs mainly 347 
depend on the accuracy of predicted breeding values and, therefore, the size of the training 348 

population. In our study we have assumed that the training populations (animals with 349 
phenotypes and genotypes) for both fitness and productivity are large enough to provide 350 

reasonable accuracies. Nevertheless, it is important to note that for traits with low heritability 351 
(fitness traits) the size of the training population needed to reach reasonable accuracies will be 352 
bigger than the one required for productivity traits. Daetwyler et al. (2010) showed accuracies 353 

for the validation set (animals with genotypes only) around 0.35 for traits with h2=0.1 and 354 
around 0.5 for traits with h2=0.3 when the training population had 1,000 individuals. Given 355 

these values and the extensive number of records generally available for cattle breeds, it is 356 

expected that reasonable accuracies as the ones considered in the present study would be 357 

reached. In the case of very small populations or breeds, the limited size of the training 358 
population would have an impact on the prediction accuracy, and thereby, reducing any 359 

potential benefit from combining genomic prediction with optimization of contributions. An 360 
extremely small training population may result in an accuracy too low to justify the use of 361 
genomic prediction alone and in combination with the optimization of contributions as 362 

suggested here. 363 
 364 

In our study, the lack of fitness records in the majority of animals (80%) reduced the 365 
rate of genetic gain only marginally. This observation could be the result of a combined effect 366 
of i) the drop in accuracy affecting only fitness and not productivity (as all animals have records 367 

for productivity); ii) the small difference (0.1) between the accuracies for animals with and 368 

without fitness records and iii) the combination of two traits with different heritabilities and 369 
accuracies when creating the index. In order to clarify this situation, additional simulations 370 
(data not shown) considering the I50 scenario and a greater difference between fitness 371 

accuracies (0.5 for animals with records and 0.3 for animals without records) have shown 372 
higher reductions in genetic gain (~8%), still leading to a reduced rate of inbreeding when 373 
compared with truncation selection. 374 

 375 
In concordance with previous studies (Pryce et al., 2012; Sonesson et al., 2012; Clark 376 

et al., 2013), our results have shown a disparity between the rates of genomic (ΔFG) and 377 
pedigree (ΔFP) inbreeding during the selection period. Whereas the pedigree approach provides 378 

an expectation of the proportion of homozygosity in a given system, the molecular (genomic) 379 
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approach using IBS reflects the true (realized) homozygosity. In absence of selection, both 380 

rates of inbreeding are similar, meaning that pedigree inbreeding is a good estimator of the 381 
realized inbreeding. However, the two measures of inbreeding differ when selection is applied, 382 
suggesting that the pedigree expectation may not be a good approximation of the realized 383 
genomic inbreeding. Therefore, and according to previous studies (Sonesson et al., 2012), it is 384 

recommended that a genomic-based selection scheme should consider genomic-based 385 
relationships among parents to control inbreeding, in order to derive more stable and 386 
predictable outcomes. 387 

 388 
In conservation schemes, control of inbreeding can be additionally performed through 389 

the use of non-random mating systems without affecting the rate of genetic gain achieved for 390 
the trait of interest. Our results, in concordance with previous studies (Sonesson and 391 
Meuwissen, 2000; Fernández et al., 2011), showed that the use of the simplest mating strategy 392 
to minimize co-ancestry within a genomic-based program reduced the rate of inbreeding in the 393 

short term but did not prevent its subsequent increase, leading to a final rate of inbreeding 394 
consistent with the constraint applied at the optimum contribution step. Therefore, if mating 395 
strategies are expected to be used, it would be recommended to perform optimization of 396 

contributions and mating in a single-step in order to avoid implementation problems (Klieve et 397 
al., 1994; Fernandez et al., 2001; Kinghorn, 2011). 398 

 399 
Based on our results, the use of optimum contribution strategies combined with 400 

genomic data appears to be a powerful tool to increase genetic gain while controlling 401 
inbreeding. However, before a large-scale implementation of these strategies, certain 402 
considerations need attention. Firstly, constraints in inbreeding and gain, and trait weights in 403 

the selection index have to be carefully considered. Secondly, strategies may be applied to one 404 
sex (i.e. males as in the MGb strategy in the present study) or both sexes (i.e. MGa and MI 405 

strategies). Consideration of both sexes will allow enhanced selection opportunities and thus a 406 

higher genetic gain for the same rate of inbreeding but, if the female reproductive rate is limited, 407 

the use of reproductive techniques (e.g. multiple ovulation, in-vitro fertilization) will be 408 
necessary. Thirdly, the sex ratio of potential candidates will also have an impact on results 409 

depending on the chosen strategy and parameters. Under the MGb strategies presented here, 410 
the use of 200 males and 800 females led to a slight reduction in the rate of genetic gain for 411 
similar inbreeding levels when compared with 500 males and 500 females. Under an MI 412 

strategy, the effect was much stronger, leading to a 2-fold increase in the rate of inbreeding. 413 
Therefore, when working with an MI strategy, it would be recommended to consider a similar 414 

number of males and females to try to maximize the effective size. Of course each application 415 
should be tailored to the population structure relevant to the livestock species in question. 416 

 417 

It is important to highlight two assumptions (based on the infinitesimal model) that 418 

were taken in the simulation to simplify the interpretation of results: First, inbreeding 419 
depression was simulated to be proportional to the average level of genomic inbreeding rather 420 
than as a function of the dominance effect and the loss of heterozygosity in the QTL (relative 421 

to the expected under Hardy-Weinberg equilibrium), thus making it dependent of the gene 422 
frequency. However, since our simulation assumed 1,000 QTLs with small effects, we expect 423 
that our approach would simulate comparable levels of inbreeding depression to the ones 424 
simulating dominance effects. Second, the approach used to calculate GEBVs means that 425 
accuracies were kept constant across generations, implying that the LD pattern between 426 

markers and QTLs is the same across the whole selection period. In practice, the LD patterns 427 
may change across generations and, thereby, the levels of accuracy of predicted GEBVs will 428 

also change. However, since all simulated scenarios were done using the same approach, the 429 
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changes in LD would affect all cases similarly, therefore being the comparison across scenarios 430 

still valid. 431 
 432 
Finally, and beyond the scopes of the present study, the use of genomic-based optimum 433 

contribution strategies in breeding programs has the additional advantage of measuring 434 

genomic IBS (or IBD) inbreeding only in specific chromosomal regions or genes of interest. 435 
This approach can, therefore, allow for a more precise control of homozygosity in specific 436 
regions related with fitness and/or rare alleles (Liu et al., 2014) or to minimize ROH (runs of 437 
homozygosity; regions of the genome where the copies inherited from our parents are identical) 438 
as proposed by Pryce et al. (2012). Studies are currently being performed to allow different 439 

inbreeding constraints for various chromosomal regions (Gómez-Romano et al., 2014). 440 
 441 

5. Conclusions 442 

 443 
Our study demonstrated that the use of optimum contribution strategies in a genomic 444 

context effectively reduces the rate of increase in inbreeding while ensuring genetic 445 
improvement in traits of interest in a wide range of scenarios. The inbreeding impact on fitness 446 
was clearly contained, thus allowing the maintenance of fitness levels and, therefore, genomic-447 

based optimum contribution strategies can be recommended both from conservation and animal 448 
genetic improvement perspectives. 449 
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10. Tables  567 

 568 
Table 1. Summary of factor levels considered per strategy (MGa, MGb, MI, truncation of the 569 
best 10% of the animals and absence of artificial selection). Factors considered were the 570 
proportion of fitness in the index (Index), the desired rate of genomic inbreeding (Const1) or 571 

genetic gain for fitness (Const2) and the proportion of animals with fitness phenotypic records 572 
(Propor). 573 

 574 

Strategy Index 
Const1 

(%) 
Const2 

Propor 
(%) 

MGa I0/I25/I50 0.5/1.0 - 100/20 

MGb I0/I25/I50 0.5/1.0 - 100/20 

Truncation selection I0/I25/I50 - - 100/20 

MI I0/I25/I50 - 0.3 100/20 

Absence of artificial selection - - - - 

 575 
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Table 2. Comparison of optimum contribution of both sexes for maximization of genetic gain 577 

(MGa) with the desired rate of genomic inbreeding (Const) and truncation selection 578 
(Truncation 10%) strategies under random mating: Results are the observed rate of genomic 579 
inbreeding (ΔFG), the rates of genetic improvement (ΔTBV) in productivity and fitness and the 580 
rate of phenotypic change (ΔP) in fitness after accounting for inbreeding depression, for 581 

selection indices emphasizing 0, 25 and 50% on fitness (I0, I25, I50).  582 
 583 

Trait Strategy (Const) ΔFG (%) Production (ΔTBV) Fitness (ΔTBV) Fitness (ΔP) 

  G6-G20 G0-G5 G6-G20 G0-G5 G6-G20 G0-G5 G6-G20 

 
Index = Production 

I0 MGa (0.5 %) 0.467 0.574 0.458 -0.291 -0.233 -0.410 -0.466 

I0 MGa (1.0 %) 0.896 0.662 0.478 -0.331 -0.240 -0.569 -0.693 

I0 Truncation  0.950 0.637 0.479 -0.321 -0.243 -0.618 -0.721 

 
Index = Production + Fitness; All animals with fitness phenotypic records 

I50 MGa (0.5 %) 0.462 0.293 0.228 0.103 0.086 -0.010 -0.139 

I50 MGa (1.0 %) 0.887 0.337 0.233 0.115 0.091 -0.113 -0.350 

I50 Truncation 10 % 0.884 0.344 0.238 0.112 0.101 -0.188 -0.340 

         
I25 MGa (0.5 %) 0.467 0.522 0.419 -0.180 -0.151 -0.297 -0.381 

I25 MGa (1.0 %) 0.891 0.596 0.443 -0.196 -0.160 -0.427 -0.608 

I25 Truncation 0.913 0.589 0.440 -0.200 -0.158 -0.506 -0.614 

 
Index = Production + Fitness; 20% of animals with fitness phenotypic records 

I50 MGa (0.5 %) 0.463 0.289 0.221 0.102 0.089 -0.012 -0.135 

I50 MGa (1.0 %) 0.885 0.333 0.233 0.117 0.092 -0.112 -0.350 

I50 Truncation 0.865 0.334 0.235 0.113 0.097 -0.177 -0.334 

         
I25 MGa (0.5 %) 0.465 0.519 0.413 -0.170 -0.143 -0.287 -0.372 

I25 MGa (1.0 %) 0.890 0.591 0.434 -0.194 -0.156 -0.426 -0.605 

I25 Truncation 0.908 0.588 0.439 -0.197 -0.158 -0.502 -0.613 

 
Average standard errors 

- MGa 0.002 0.005 0.003 0.004 0.002 0.004 0.003 

- Truncation 0.011 0.0048 0.0028 0.004 0.0026 0.0074 0.0062 
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Table 3. Optimum contribution of sires for maximization of genetic gain (MGb) with the 586 

desired rate of genomic inbreeding (Const): Results are the observed rate of genomic 587 
inbreeding (ΔFG), the rates of genetic improvement (ΔTBV) in productivity and fitness and the 588 
rate of phenotypic change (ΔP) in fitness after accounting for inbreeding depression, for 589 
selection indices emphasizing 0, 25 and 50% on fitness (I0, I25, I50). 590 

 591 

Trait 
Strategy 

(Const) 

ΔFG 

(%) 
Production (ΔTBV) Fitness (ΔTBV) Fitness (ΔP) 

  G6-G20 G0-G5 G6-G20 G0-G5 G6-G20 G0-G5 G6-G20 

Index = Production 

I0 MGb (0.5 %) 0.474 0.382 0.347 -0.189 -0.178 -0.329 -0.413 

I0 MGb (1.0 %) 0.901 0.441 0.371 -0.217 -0.186 -0.495 -0.640 

 
Index = Production + Fitness; all animals with fitness phenotypic records 

I50 MGb (0.5 %) 0.472 0.203 0.176 0.066 0.063 -0.072 -0.168 

I50 MGb (1.0 %) 0.902 0.230 0.183 0.076 0.069 -0.197 -0.381 

         
I25 MGb (0.5 %) 0.470 0.351 0.316 -0.115 -0.110 -0.253 -0.342 

I25 MGb (1.0 %) 0.901 0.395 0.336 -0.131 -0.117 -0.404 -0.570 

         
Index = Production + Fitness; 20% of animals with fitness phenotypic records 

I50 MGb (0.5 %) 0.471 0.201 0.171 0.066 0.067 -0.070 -0.164 

I50 MGb (1.0 %) 0.901 0.227 0.184 0.074 0.070 -0.199 -0.382 

         
I25 MGb (0.5 %) 0.473 0.351 0.315 -0.117 -0.108 -0.255 -0.341 

I25 MGb (1.0 %) 0.903 0.397 0.340 -0.135 -0.121 -0.412 -0.574 

         
Average standard errors 

 - MGb 0.002 0.004 0.003 0.003 0.002 0.004 0.003 
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Table 4. Optimum contribution of both sexes for minimization of inbreeding (MI) under 594 

random mating: Results are the observed rate of genomic inbreeding (ΔFG), the rates of genetic 595 
improvement (ΔTBV) in productivity and fitness and the rate of phenotypic change (ΔP) in 596 
fitness after accounting for inbreeding depression and for selection indices emphasizing 0, 25 597 
and 50% on fitness (I0, I25, I50); the constraint in the rate of gain for the index was 0.30. 598 

 599 

Trait 
ΔFG 

(%) 
Production (ΔTBV) Fitness (ΔTBV) Fitness (ΔP) 

 G6-G20 G0-G5 G6-G20 G0-G5 G6-G20 G0-G5 G6-G20 

Absence of artificial selection 

-  0.049 0.001 -0.001 -0.001 0 -0.022 -0.017 

 
Index = Production 

I0 0.016 0.151 0.143 -0.076 -0.072 -0.091 -0.078 

 
Index = Production + Fitness; all animals with fitness phenotypic records 

I50 0.039 0.150 0.130 0.050 0.045 0.027 0.031 

I25 0.022 0.191 0.176 -0.064 -0.061 -0.081 -0.069 

        
Index = Production + Fitness; 20% of animals with fitness phenotypic records 

I50 0.038 0.144 0.127 0.047 0.043 0.026 0.030 

I25 0.023 0.193 0.176 -0.067 -0.060 -0.084 -0.069 

        
Average standard errors 

-  0.001 0.002 0.001 0.001 0.001 0.001 0.001 

 600 
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11. Figure legends  602 

 603 
Figure 1. Effect of mating strategy. Pedigree inbreeding (A) and genomic inbreeding (B) in 604 
an optimal contribution of both sexes strategy to maximize genetic gain followed by either 605 
random mating (solid line) or mating based on the minimum kinship principle (dashed line); 606 

selection index was 50%/50% productivity/fitness; genomic inbreeding constraint was 0.01. 607 
 608 

Figure 2. Comparison between the rates of genomic (ΔFG, solid lines) and pedigree (ΔFP, 609 
dashed lines) inbreeding during the selection period. A) MGa with 50% selection emphasis 610 
on fitness assuming a constraint of 0.005 in the rate of genomic inbreeding and all animals 611 

having fitness records; B) MI with 50% selection emphasis on fitness assuming a constraint of 612 
0.30 in the rate of gain for the index and all animals having fitness records; C) truncation 613 
selection for the best 10% of animals with 50% selection emphasis on fitness.  614 
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