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Abstract
Testing if an incomplete description of an XML document is consistent, that is, if it describes a
real document conforming to the imposed schema, amounts to deciding if a given tree pattern can
be matched injectively into a tree accepted by a fixed automaton. This problem can be solved
in polynomial time for patterns that use the child relation and the sibling order, but do not use
the descendant relation. For general patterns the problem is in NP, but no lower bound has been
known so far. We show that the problem is NP-complete already for patterns using only child
and descendant relations. The source of hardness turns out to be the interplay between these
relations: for patterns using only descendant we give a polynomial algorithm. We also show that
the algorithm can be adapted to patterns using descendant and following-sibling, but combining
descendant and next-sibling leads to intractability.
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1 Introduction

It is convenient to think that a database instance is a faithful representation of a fragment
of reality; but, in fact, it almost never is. Pieces of information are not available, or
classified, or get lost on the way due to storage and transmission failures. Additional
sources of incompleteness are complex data management tasks, like data integration [11] or
data exchange [6]. Since the seminal work of Imielinski and Lipski [8], incompleteness of
information has been an important topic in relational database theory [7]. More recently, the
need to deal with incomplete information has increased dramatically, due to large amounts
of data on the Web [1]. This data tends to be more prone to errors than data stored in
traditional DBMSs, and transformation, integration, and exchange of data between different
applications is inherent to this context. Dealing with data on the Web also means facing new
data models such as XML documents or graph databases, and scenarios involving incomplete
information for such models have been considered [4, 9].

Incompleteness brings new difficulties into classical tasks such as query answering (what
does it mean to answer a query over an incomplete database?), but it also gives rise to
new tasks. One of such problems is consistency: is there a real instance that matches the
incomplete description? A systematic study of problems related to incomplete XML data
was undertaken in [2]. XML documents are modelled as unranked labelled trees. For such
a tree there are several kinds of information that can be missing in the description: nodes
can be missing, or their labels, or their relative position in the tree. Thus an incomplete
tree can be seen as a tree with some labels missing, and some edges representing descendant
relation, rather than child relation (one can also allow partial information about sibling order).
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280 Consistency of Injective Tree Patterns

Assuming the so-called DOM semantics, nodes of XML documents have their identity, which
is never lost (if it gets lost, the node is considered to be lost). On its own, such description
is always consistent: we obtain a proper document by turning all edges to child edges and
filling in the labels arbitrarily. Typically, however, the setting also involves a schema (DTD,
XSM, RelaxNG), that describes the shape of correct documents. The structural restrictions
of the schema can always be expressed by a tree automaton. Thus, the consistency problem
for a fixed schema amounts to deciding if there is a tree accepted by the automaton, that
matches the given incomplete description.

The incomplete descriptions of [2] coincide with the notion of tree patterns, originally
introduced as an elegant formalism to express acyclic conjunctive queries over trees and
extensively studied in connection with the XPath query language [3, 12, 13, 14, 15]. Our
consistency problem is a variant of the satisfiability problem for tree patterns with respect to
a fixed automaton [3]. The difference lies in the semantics. Classically, a pattern is satisfied in
a tree if its nodes can be mapped to the tree nodes in such a way that the labels and relations
are preserved. In our setting, the DOM semantics imposes an additional requirement: the
mapping has to be injective. This makes the existing results on patterns inapplicable. We
also cannot use the variant of the injective semantics considered in [5], where it is additionally
assumed that if two pattern nodes are incomparable (neither is descendant of the other),
they must be mapped to incomparable nodes in the tree.

Already in [2] it is noticed that the consistency problem is in NP, but the exact complexity
is left open. For a special case of patterns (incomplete descriptions) that do not involve
descendant edges, a polynomial algorithm is given. In a highly nontrivial extension of this
result, Kopczynski [10] gives a polynomial procedure for patterns that contain at most one
descendant edge on each branch.1

In this paper we close the gap: we show that the consistency problem is NP-complete.
In fact our result is tight with respect to Kopczynski’s polynomial algorithm: the problem
is NP-hard already for patterns with at most two descendant edges per branch. We also
investigate further the sources of hardness and find out that for descendant-only patterns
the problem can be solved in PTime. Finally, we consider possible extensions involving
the sibling order. Combining next-sibling with descendant leads to intractability, but for
patterns using only descendant and following-sibling an adaptation of our proof techniques
gives tractability.

2 Preliminaries

For an unranked Σ-labelled tree T , we write nodesT for the set of nodes, rootT for the root
of T , and labT (v) for the label of a node v in T . We also use the notation u ↓ v and u ↓+ v

to indicate that node v is, respectively, a child or a descendant of node u. We write Tv for
the subtree of tree T rooted at node v.

An antichain in a tree is any sequence of nodes such that no two of them are in the
descendant relation (they can be siblings). A frontier is a maximal antichain that does not
contain the root of the tree.

I Definition 1. A tree pattern π over the alphabet Σ is a finite unranked Σ-labelled tree,
whose edges are of one of two kinds: child edges, denoted ↓, and descendant edges, denoted

1 In fact, Kopczynski gives an algorithm for the general problem, but under his own semantics, resembling
that of [5]. For patterns with at most one descendant per branch, this semantics coincides with the
standard injective semantics.
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↓+. We write labπ(v) for the label of v in π. We also use notation u ↓ v and u ↓+ v to
indicate that the nodes are connected with a ↓-edge or ↓+-edge, respectively.

I Definition 2. A tree pattern π is satisfied in a tree T , written as T |= π, if there exists an
injective homomorphism h : π → T , that is, an injective function mapping the nodes of π to
nodes of T that preserves the labels and the relations, that is, for all nodes u, v in π

labT (h(v)) = labπ(v);
if u ↓ v in π, then h(u) ↓ h(v) in T ;
if u ↓+ v in π, then h(u) ↓+ h(v) in T .

I Definition 3. A tree automaton A = (Σ, Q, δ, F ) consists of an alphabet Σ, a finite set of
states Q, a set of final states F ⊆ Q, and a transition function δ : Σ×Q→ P(Q∗), assigning
regular languages over Q (represented as regular expressions) to each label and state.

A run of A over a tree T is a labelling ρ of the nodes of T with elements of Q such that
for each node of v, if v has children v1, v2, . . . , vk, then ρ(v1)ρ(v2) . . . ρ(vk) ∈ δ(labT (v), ρ(v)).
If v is a leaf, this amounts to ε ∈ δ(labT (v), ρ(v)).

A run ρ is accepting if the root’s label is in F . If T admits an accepting run, we say that
T is accepted by A. We write L(A) for the language recognized by A, i.e., the set of trees
accepted by A. A state q is productive if it occurs in some accepting run.

Let A be a tree automaton. We are interested in the complexity of the following problem.

Problem: ConsA

Input: Tree pattern π.
Question: Is there a tree T ∈ L(A) such that T |= π?

Note that the automaton A is not part of the input. The complexity is measured in terms
of the size of the pattern π. In the context of the incomplete information scenario, where
π represents information about an XML document, this corresponds to data complexity of
consistency.

3 NP-hardness

We first consider the problem for patterns with full vertical navigation, that is, with ↓ and
↓+ edges.

I Theorem 4. There is an automaton A such that ConsA is NP-complete. Moreover,
ConsA is NP-hard already for patterns with at most two occurrences of ↓+ per branch.

Proof. The NP upper bound can be proved by a standard guess and check technique [2].
The rest of this proof is devoted to showing that the problem is NP-hard.

Consider the language K defined in Figure 1. It is straightforward to construct an
automaton recognizing K. We claim that for any automaton A recognizing K, ConsA is
NP-hard (even for patterns with at most two occurrences of ↓+ per branch).

We reduce from CNF-Sat. Let ϕ = c1 ∧ c2 ∧ · · · ∧ cm be a conjunction of clauses over
variables x1, x2, . . . , xn. We build a pattern πϕ such that the formula ϕ is satisfiable if and
only if the pattern πϕ is satisfiable in a tree T from K.

The pattern πϕ can be decomposed in two parts. One part ensures that the tree T
represents precisely the formula ϕ. The rest of the pattern represents a valuation of the
variables x1, x2, . . . , xn and the proof that this valuation satisfies the formula ϕ. The idea of
the encoding of the formula into a tree T from K is to associate each variable xi with an

FSTTCS 2014
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xbeg

x

. . .
x

x′

x′
x

. . .
x

xend

x′
x′

x′
x′

x′
x′

cbeg

c

...
c

...
c

cend

...

...

c′

abeg

a

. . .
a

b

. . .
b

aend

a′

a′

b′

b′

xbeg has child x or xend

x has children x′, x′, and either x or xend

x′ has child cbeg

xend has no children

cbeg has child c or cend

c has children c′ and either c or cend

c′ has child abeg

cend has no children

abeg has child a or aend

a has children a′ and either a or b or aend

b has children b′ and either b or aend

a′, b′, and aend have no children

Figure 1 The tree language recognized by the automaton A used in the reduction of CNF-Sat
to ConsA.

x node and encode in the two corresponding x′-rooted subtrees two lists of clauses: those
satisfied when xi is true, and those satisfied when it is false.

The full pattern πϕ is given in Figure 2. Notice that subpattern F ij depends on whether
literal x̄i occurs in the clause cj or not; subpattern T ij is defined analogously, with literal x̄i
replaced with xi. Let π′ϕ be the pattern obtained from πϕ by removing subpatterns V i and
Cj for all i and j. In other words, we keep the blue nodes, but remove the green and red
nodes. Observe that whenever π′ϕ is matched in a tree T ∈ K, the subpatterns T i and F i
must be matched at the grandchildren of the ith x node. Indeed, for Tn and Fn there is no
choice. Consequently, since the matching must be injective, for Tn−1 and Fn−1 there is no
choice either, etc. A similar argument applies to the subpatterns T ij and F ij . This implies
that (up to the ordering of x′ siblings) there is exactly one tree in K satisfying π′ϕ: the
tree Tϕ obtained from π′ϕ by filling in the missing nodes with labels x′, c′, a′, b′. Moreover,
there is exactly one injective homomorphism from π′ϕ to Tϕ, that is the one induced by the
construction of Tϕ.

Intuitively, the subpattern T i lists the clauses of ϕ that are made true by setting xi to
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aend
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(1)
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(j)
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b

(m)
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...
c

...
c

cend

(1)

(j)

(m)

T i1

T ij

T im

c′

...
c′

...
c′

x′

V i

a′

. . .
a′

b′

. . .
b′

c′

Cj

C1 . . . . . . Cm

Figure 2 The pattern encoding a CNF formula c1 ∧ c2 ∧ · · · ∧ cm over variables x1, x2, . . . , xn.
Single and double lines represent child and descendant edges, respectively.

true, and F i lists the ones made true by setting xi to false. Whether clause cj is true or not
is encoded by subpatterns T ij and F ij : a sequence of j labels a and m− j labels b is inserted
between abeg and aend if and only if clause cj is made true.

It remains to show that this homomorphism can be extended to the full pattern πϕ if
and only if ϕ is satisfiable. There are two ways of matching V i in Tϕ: at the parent of the
image of T i or at the parent of the image of F i. In either case, the matching uses all c′
nodes in the corresponding subtree, while the nodes in the other subtree remain unused.
Thus, choosing T i should be interpreted as setting xi to false, since c′ nodes under F i remain
unused, and choosing F i as setting xi to true, since c′ nodes under Ti remain unused. When
all subpatterns V i have been matched, subpattern Cj can be matched if and only if the
associated valuation makes clause cj true.

It follows that Tϕ |= πϕ if and only if there exists a valuation of the variables x1, x2, . . . , xn
that makes true every clause of ϕ. J

FSTTCS 2014
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4 Descendant-only patterns

In the previous section we have proved that ConsA is NP-complete in general. We know
that the problem is tractable for some restricted classes of patterns such as patterns using
only child relation [2] or the class considered by Kopczynski [10]. In this section, we prove
that ConsA is also tractable for tree patterns that only use the descendant relation.

I Theorem 5. Let A be a fixed tree automaton. Then ConsA is solvable in PTime for
↓+-only tree patterns.

The key argument to prove Theorem 5 is that consistency of a descendant-only tree
pattern with respect to an automaton A can be reduced to membership of the underlying
tree of the pattern in a regular tree language that depends only on A. When the automaton
A is fixed, the latter can be checked in time polynomial in the size of π. This stronger
result is proved in Lemma 14. The remaining of the section is dedicated to a fine analysis of
descendant-only tree patterns together with a tree automaton, providing the tools needed to
state and prove this lemma.

Our goal is to build concise representations of trees in L(A) that satisfy some descendant-
only pattern π, in such a way that the size of these representations does not depend on π.
The first step is to omit nodes that are not used to satisfy π. The notion of descendant count
introduced in Definition 6 provides a concise way to represent the set of possible frontiers
that are reachable starting from a given label-state pair in a run of A.

I Definition 6. Let A = (Σ, Q, δ, F ) be a tree automaton. A count for A is a function
α : Σ×Q→ N, where N = N ∪ {∗}, with the natural order extended with i ≤ ∗ for all i ∈ N.
We say that count α is smaller than count β if α(a, q) ≤ β(a, q) for all pairs (a, q) ∈ Σ×Q.

We say that a count α is realized at (a, q) if for all n ∈ N, there exists a tree T , a run ρ
of A on T , and a frontier w in T such that

the root v of T has label a and ρ(v) = q;
for all (a′, q′) ∈ Σ×Q such that α(a′, q′) ∈ N, w contains at least α(a′, q′) nodes v with
label a′ and such that ρ(v) = q′;
for all (a′, q′) ∈ Σ×Q such that α(a′, q′) = ∗, w contains at least n nodes v with label a′
and such that ρ(v) = q′.

Finally, given (a, q) ∈ Σ × Q, the descendant count of a and q, denoted by DCA(a, q), is
defined as the set of all maximal counts for A that are realized at (a, q).

I Remark. The sets DCA(a, q) are finite and can be computed. Indeed, we can easily
compute a context-free grammar recognizing the set FrA(a, q) ⊆ (Σ × Q)∗ of sequences
of letter-state pairs yielded by the frontiers occurring in the definition of DCA(a, q). As
FrA(q, a) is closed under subsequences, its Parikh image is a (finite) union of linear sets of
the form {β ∈ NΣ×Q

∣∣ β ≤ α}, where α is a count. Since a semilinear representation of the
Parikh image of a context-free language can be computed effectively, the involved counts α
can be deduced as well. DCA(a, q) consists of the maximal ones among them.

Using descendant counts, we define the notion of skeleton for a tree automaton A which
can be seen as a sparse representation of a tree in L(A), where some nodes are omitted. We
show that if a tree pattern π is satisfied by a skeleton s for A, then it is consistent with A.

I Definition 7. Let A = (Σ, Q, δ, F ) be a tree automaton. A skeleton s for A is a tree whose
nodes carry a label from Σ×Q and can optionally be flagged as starred. Additionally, for
each node v of s with label (a, q), there exists α ∈ DCA(a, q) such that for all (a′, q′)
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if α(a′, q′) ∈ N, then v has at most α(a′, q′) children with label (a′, q′), all non-starred;
if α(a′, q′) = ∗, then v has an arbitrary number of children with label (a′, q′), all starred;
if v is the root, then v is not starred, and q is productive.

We say that s satisfies a ↓+-only tree pattern π if the underlying tree of s satisfies π.

Descendant counts are used to build skeletons and ensure that each level of the skeleton
is consistent with A and can indeed be simulated by a tree in L(A). This is more precisely
shown in the following lemma, where we prove that, starting from a skeleton s, we can build
a tree T in L(A) that features the same nodes as s, arranged in the same descendant order.

I Lemma 8. Let A = (Σ, Q, δ, F ) be a tree automaton and s be a skeleton for A. Then there
exists a tree T , a run ρ of A on T and an injective mapping i : nodess → nodesT such that,
for all nodes u, v of s,

if labs(u) = (a, q), then labT (i(u)) = a and ρ(i(u)) = q;
if u ↓ v in s, then i(u) ↓+ i(v) in T ;
if u is the root of s, then i(u) is the root of T .

Proof. We prove this by induction on the structure of s.
Assume that s consists of a single node u with label (a, q). By Definition 7, there exists

a count α ∈ DCA(a, q). Since α is realized at (a, q), the tree T of Definition 6 satisfies the
requirements of the lemma.

Assume that u is the root of s, with children s1, . . . , sn. Let (a, q) be the label of u, and
(ai, qi) be the label of the root of si. Then, by definition of s, there exists a count α that is
realized at (a, q) and fits the definition of s at u. Then, by Definition 6, there exists a tree T
and a run ρ on T such that T has root v with labT (v) = a, ρ(v) = q, and with some frontier
v1 . . . vn with labT (vi) = ai and ρ(vi) = qi. Then we can build from T the required tree
by replacing the nodes of this frontier with the trees T1, . . . , Tn produced by the induction
hypothesis applied to s1, . . . , sn. J

Since the root of a skeleton is always labeled by a productive state and our patterns only
use ↓+, Lemma 8 implies the following result.

I Corollary 9. Let A be an automaton, s a skeleton for A and π a ↓+-only pattern. If a
skeleton s satisfies π, then there exists a tree T ∈ L(A) that satisfies π.

Note that, even though skeletons can be sparser than trees, there is still an infinite
number of them. We show that we can represent all skeletons considering only the finite set
of reduced skeletons.

I Definition 10. Let A = (Σ, Q, δ, F ) be a tree automaton. A reduced skeleton s for A is a
skeleton that additionally satisfies the following two properties:

each pair label-flag appears at most once in each branch of s;
each node of s has at most one starred child of each label.

Note that the number of reduced skeletons is finite for any automaton A. Indeed, reduced
skeletons are both bounded in depth, as there are a finite number of labels and they are not
allowed to repeat along a branch, and in width, since the maximum number of non-starred
children of any given label is bounded by the largest value different from ∗ taken by any of
the counts in

⋃
(a,q)∈Σ×QDCA(a, q).

Intuitively these skeletons correspond to minimal ones and can be obtained by pruning
long branches and large siblings sets in some larger skeleton. Moreover, reduced skeletons
contain enough information to recover the whole skeletons, by means of the horizontal and
vertical pumping properties of tree automata.

FSTTCS 2014
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I Definition 11. Skeleton s reduces to skeleton s′ if s′ can be obtained from s by applying
a (possibly empty) sequence of the following reductions:

(H) Remove any starred node of s that has the same label as some of its starred siblings.
(V) Assume that a node u of s and its descendant v carry the same labels and flags.

Then reduce s to a skeleton obtained by replacing in s the subtree su with sv.

We write red(s) for the set of skeletons to which s reduces, that cannot be further reduced.

Note that the label and flag of the root of s are preserved by both reduction steps. Also,
if s reduces to s′, and s is a skeleton for A then s′ is also a skeleton for A. Moreover if s
cannot be reduced by either (H) or (V ), then s is a reduced skeleton. This implies that
red(s) is the set of all reduced skeletons s′ such that s reduces to s′.

The reductions (H) and (V) give a way to simplify a skeleton. The final ingredient we
need is a way of combining skeletons without losing information. To this end we define the
notion of injection of a skeleton into another. Intuitively an injection of s2 into s1 can be
viewed as a skeleton s expanding s1 such that s2 can be matched disjointly from s1 into s.

I Definition 12. Let s, s1 and s2 be skeletons. Then s is an injection of s2 into s1 if there
exists two injective mappings i1 : nodess1 → nodess and i2 : nodess2 → nodess such that

if u is the root of s1, then i1(u) is the root of s;
the images of i1 and i2 are disjoint;
mappings i1 and i2 preserve labels and flags as well as descendant relation.

I Remark. Note that if s1 satisfies a pattern π1 and s2 satisfies a pattern π2, then any
injection of s2 into s1 satisfies π1 and π2 simultaneously, that is, we can match π1 and π2 in
such a way that their images are disjoint.

We are now ready to define the tree automaton AΠ and prove that it recognizes the set
of all descendant-only tree patterns that are consistent with a given tree automaton A. As
explained in the beginning of the section Theorem 5 follows directly from this result.

I Definition 13. Let A = (Σ, Q, δ, F ) be a tree automaton. Then we define the pattern
automaton AΠ = (Σ, QΠ, δΠ, FΠ) of A as follows.

QΠ = FΠ is the set of all reduced skeletons for A.
Let s be a reduced skeleton for A and a ∈ Σ, then s1 . . . sn ∈ δ(s, a) if and only if there
exist skeletons t0, . . . , tn such that
t0 is the root of s and is labeled (a, q) for some q;
for all i > 0, there exists an injection of si into ti−1 that reduces to ti;
tn = s (or t0 = s if s1 . . . sn is ε.)

It is easy to check that AΠ is a properly defined tree automaton. Indeed, the three
properties defining δ(s, a) actually define the initial states, transitions and final states of a
finite automaton, hence δ(s, a) is regular.

I Lemma 14. Let A be a tree automaton and π be a ↓+-only tree pattern. Then π is
consistent with respect to A if and only if π ∈ L(AΠ).

Proof. (⇒) Assume that π is consistent with respect to A. We want to exhibit an accepting
run ρ of AΠ on π.

Let T ∈ L(A) such that T |= π, which means that there is an injective homomorphism h

from π to T . Let µ be an accepting run of A on T . Combining, the tree T , the run µ and
the pattern π, we build a skeleton s as follows:
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the nodes of s correspond to the nodes in h(π);
for each node v of π with label a, the corresponding node in s has label (a, µ(h(v)));
the father of a node v in s is its closest ancestor in T that also belongs to h(π);
for each node v of s of label (a, q), choose α ∈ DCA(a, q) such that the number of v’s
children of label (a′, q′) is at most α(a′, q′), and flag the children as starred accordingly.

Regardless of the choices of α, the resulting s is indeed a properly defined skeleton for A, as
T and µ witness all the required descendant counts. Note also that s satisfies π through the
same injective homomorphism h.

For all nodes v of π, we define πv as the subpattern of π rooted at v. For V , a subset of
the set of nodes of π, we deduce s0

V from s by keeping only the least common ancestor of
nodes in V as well as all the nodes of s that appear in h(πv) for all v ∈ V , and linking nodes
to their closest ancestor, as it is done for s. For s0

V to be a proper skeleton, we also unflag
its root in case it is flagged as starred. We also define sV as any skeleton arbitrarily chosen
in red(s0

V ). If V consists of a single node v, we simply write s0
v and sv.

We are now ready to exhibit an accepting run ρ of AΠ on π. For each node v of π,
we define ρ(v) = sv. It remains to show that ρ is a properly defined run of AΠ; it will
immediately be accepting, as all states of AΠ are final. We show by induction on the structure
of π that, for all nodes v of π, the partial run defined by ρ on πv is a correct run for AΠ.

Let v be a leaf node of π with label a. Then s0
v is a skeleton consisting of a single node

labeled (a, q) for some q, and is thus reduced. Hence, ρ(v) = sv = s0
v, ε ∈ δΠ(a, sv) and ρ is

a properly defined run on πv.
Let v be an internal node of π with label a. Let u1, . . . , un be the children of v. By

the induction hypothesis, we know that ρ is a properly defined run on all πui
. Let t0 be

the root of sv. As h(v) = t0, then t0 has label (a, q) for some q. For all i > 0, we define
Vi = {u1, . . . , ui} and ti = sVi

. Then, this sequence of skeletons satisfies the definition of AΠ.
The injection of sui

into ti−1 is simply s0
Vi
, which reduces to ti by definition. Hence, ρ is a

properly defined run on πv.
(⇐) Assume that π ∈ L(AΠ). Let ρ be an accepting run of AΠ on π. For each node v

of π, we define πv as the subpattern of π rooted at v. We now prove by induction on the
structure of π that, for all nodes v of π, there exists a skeleton s that satisfies πv and that
reduces to ρ(v).

Let v be a leaf node of π with label a. By definition of AΠ, the reduced skeleton ρ(v) is
a single node labeled (a, q) for some q. Then ρ(v) satisfies πv and is already reduced. Hence,
we can choose s = ρ(v).

Let v be an internal node of π labeled a. Assume that v has only two children, v1 and v2,
as other cases are similar. Let u be the root of ρ(v). By definition of AΠ, there is an injection
t of ρ(v1) and ρ(v2) into u that reduces to ρ(v). By induction, there are two skeletons s1
and s2 that respectively reduce to ρ(v1) and ρ(v2) and respectively satisfy πv1 and πv2 .

We can build from t a skeleton s by reverting in t all the reductions steps that are used
to reduce each si to ρ(vi), as well as adding enough copies of starred nodes of t so that s is
an injection of s1 and s2 into u. Thus, s satisfies both πv1 and πv2 simultaneously without
using the root node. Moreover, it is easy to check that s reduces to ρ(v), since all new
nodes can simply be removed by reductions steps. Let h be an injective homomorphism that
witnesses the fact that s satisfies πv1 and πv2 simultaneously and without using the root
node. Then we can extend h by mapping v to u. This extended mapping witnesses the fact
that s satisfies πv, as u has label (a, q) for some q, since it is the root of ρ(v).

By applying this induction to the root v of π, we deduce that there exists a skeleton s
that reduces to ρ(v) and satisfies π. We conclude using Lemma 8 and Corollary 9. J
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5 Extending the pattern language

In this section we briefly discuss possible extensions of the pattern language. Let us first
observe that we can add wildcard to our language for free, that is, we can costlessly allow
nodes in patterns that do not have a specified label and can match a tree node with any
label. Indeed, our automaton can simply guess the label for each processed wildcard, and
then proceed as before.

A more interesting extension is to add horizontal relations. Patterns with horizontal
relations are defined just like {↓, ↓+}-patterns we have seen so far, except that they have
two additional kinds of edges, denoted by → and →+, and interpreted respectively as the
next sibling and the following sibling.

As soon as we add the next sibling relation, the consistency problem becomes NP-hard. A
reduction can be obtained via a simple modification of the one in Theorem 4. Specifically, it
suffices to modify the encoding so that the x nodes, c nodes, and a and b nodes are arranged
horizontally, rather than vertically. After this modification the pattern in Figure 2 only uses
child relation between x and x′ nodes. Given that the only descendants of any x node that
have label x′ are its children, we can replace the child relation with the descendant relation.

I Theorem 15. There is an automaton A s. t. ConsA is NP-complete for {↓+,→}-patterns.

When only the following sibling is added, we can get a polynomial algorithm.

I Theorem 16. For each automaton A, ConsA is in PTime for {↓+,→+}-patterns.

In fact, we can again construct a tree automaton recognizing {↓+,→+}-patterns consistent
with an automaton A. In the following, we explain the main ideas of this construction.

We first explain how to extend the notion of skeleton. Let A = (Σ, Q, δ, F ) be a tree
automaton. We assume that horizontal languages in the automaton are given in disjunctive
normal form, that is, for each (a, q) ∈ Σ×Q, the language δ(a, q) is given by a disjunction
of disjunction-free regular expressions. We shall refer to these disjunction-free expressions as
clauses of δ(a, q). Note that turning a regular expression into this form usually involves an
exponential blow-up, but since the automaton is considered to be fixed, this does not change
the complexity bound. In the definition below, a letter-state pair (a, q) is reachable if there
exists a tree T with label a in the root and a run over T that assigns state q to the root. A
state q is reachable if there exists a run on any tree that assigns q to the root. Without loss
of generality we can assume that all states of A are reachable.

I Definition 17. A {↓+,→+}-skeleton (in this section, just skeleton) for an automaton
A = (Σ, Q, δ, F ) is a forest labelled with disjunction-free regular expressions over reachable
letter-state pairs from Σ×Q such that

each label is either a single letter-state pair (non-starred node) or a disjunction-free
regular expression of the form e∗ (starred node);
starred nodes have no children;
for each node of label (a, q) the concatenation of the labels of its children forms a
disjunction-free regular expression w1u1(e1)∗v1w2u2(e2)∗v2 . . . wnun(en)∗vnwn+1 such
that ui, vi are generated by ei and the projection overQ of w1(e1)∗w2(e2)∗ . . . wn(en)∗wn+1
is a clause of δ(a, q);
similarly for the concatenation of labels of the roots, except that the projection over Q of
w1(e1)∗w2(e2)∗ . . . wn(en)∗wn+1 is a suffix of a clause of δ(a′, q′) for some productive q′.

Additionally, non-starred nodes can be flagged as used.
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A skeleton is reduced if no letter-state pair repeats on a branch, and the words ui and
vi in the definition above are all empty. A reduced skeleton has its branching bounded by
the size of the clauses of the horizontal languages (which are polynomial in the original
representation of the languages), and its height bounded by the number of states of the
automaton A. Hence, the set of reduced skeletons is finite and each of them is of size at
most exponential in the size of A.

Like for ↓+-skeletons, we can reduce skeleton s by repeatedly applying the following rules

(H) remove any non-starred node (together with its subtree) whose label occurs in the
regular expression e∗ labelling its next or previous sibling;

(V) if u and its descendant v are non-starred and carry the same label, then the subtree
rooted at u (excluding u) can be replaced by the subtree rooted at v (excluding v).

The automaton recognizing consistent patterns essentially proceeds like before: it assigns
reduced skeletons to nodes of the pattern π in a bottom-up fashion, ensuring that they are
consistent with each other. More precisely, a node v gets a skeleton that summarizes a way
to satisfy the subpattern of π rooted at v. Note that in this subpattern some nodes are
connected to v via ↓+-edges, and others via →+-edges. Thus, the subpattern talks about a
certain subforest, which explains why our skeletons are forests. We always assume that v is
mapped to the first root of the skeleton.

Suppose that we want to assign a reduced skeleton to a node v. First, we guess a reduced
skeleton for a single-node pattern consisting of v alone. This skeleton has at most one
used node. Next, we aggregate it with the skeletons assigned to v’s children, one by one,
using appropriately adjusted injections. Since v’s children are now connected to v via ↓+ or
→+, we need two variants of the notion. In both variants, we add to Definition 12 an item
guaranteeing preservation of the sibling order: if v →+ v′ in sk, then ik(v)→+ ik(v′) in s.
In the variant for ↓+, we require that the first root of the second skeleton is mapped to a
descendant of the first root of s, and in the variant for →+, it is mapped into a following
sibling of the first root of s.

We close this section by commenting that the reasoning above could be extended to
cover limited use of child and next-sibling relations: it can be done for patterns, where the
maximal length of paths that do not use ↓+-edge is bounded.

6 Conclusions

We have shown that under injective semantics, the consistency problem for tree patterns
with respect to a fixed automaton is NP-complete by showing the problem to be NP-hard
already for child/descendant patterns with at most two descendant edges per branch. This
closes an open problem from [2]. Moreover our result is tight with respect to the result of
Kopczynski [10], showing tractability for patterns with at most one descendant per branch.

On the positive side, we have provided a polynomial time algorithm in the case of
descendant-only tree patterns. The key ingredient is to show that the set of all patterns that
are consistent with a given tree automaton A is a regular tree language. This language only
depends on A and we can effectively construct a tree automaton AΠ recognizing it. Hence,
consistency is equivalent to testing whether the pattern belongs to this language, which can
be done in polynomial time. Thus, our algorithm is not only polynomial for fixed A, but
also fixed-parameter tractable with the size of A as the parameter.

The involved constant is essentially the size of the automaton AΠ, which is double
exponential in the size of A. This may seem suboptimal, since the problem is known to be in
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NP even when A is a part of the input. However, while we are guaranteed to find a witness
polynomial in the size of the pattern and the automaton, it may be arbitrarily large with
respect to the automaton itself. It happens so that these witnesses can be summarized as
objects exponential in the size of the automaton (double exponential complexity comes from
handling sets of such summaries), but we can see no way to do better than exponential.

We have also examined patterns with additional features: wildcard can be added effort-
lessly, but horizontal relations pose more problems. We adapted our techniques to show that
one can combine descendant and following-sibling without losing tractability, but combining
descendant with next-sibling makes the problem NP-complete (for some automata).

Given that without descendant the problem is known to be tractable [2], this charts out
completely the tractability frontier for the consistency of injective tree patterns. A question
we find interesting and challenging is which of the tractability results can be extended to
patterns that are DAGs, rather then trees. For instance, what is the complexity of the
consistency problem for descendant-only DAG patterns?
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