
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identification of novel pathways linking epithelial-to-
mesenchymal transition with resistance to HER2-targeted
therapy

Citation for published version:
Creedon, H, Gomez-cuadrado, L, Tarnauskaite, Z, Balla, J, Canel, M, Macleod, K, Serrels, B, Fraser, C,
Unciti-Broceta, A, Tracey, N, Le Bihan, T, Klinowska, T, Sims, A, Byron, A & Brunton, V 2016, 'Identification
of novel pathways linking epithelial-to-mesenchymal transition with resistance to HER2-targeted therapy'
Oncotarget, vol. 7, no. 10, pp. 11539-52. DOI: 10.18632/oncotarget.7317

Digital Object Identifier (DOI):
10.18632/oncotarget.7317

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Oncotarget

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.18632/oncotarget.7317
https://www.research.ed.ac.uk/portal/en/publications/identification-of-novel-pathways-linking-epithelialtomesenchymal-transition-with-resistance-to-her2targeted-therapy(c8e6416d-9d1c-4754-819b-47190bbc590a).html


1 

Identification of novel pathways linking epithelial-to-mesenchymal transition with 

resistance to HER2-targeted therapy 

 

Helen Creedon1, Laura Gómez-Cuadrado1, Žygimantė Tarnauskaitė1, Jozef Balla1, Marta 

Canel1, Kenneth G. MacLeod1, Bryan Serrels1, Craig Fraser1, Asier Unciti-Broceta1, 

Natasha Tracey1, Thierry Le Bihan2, Teresa Klinowska3, Andrew H. Sims1, Adam 

Byron1*, Valerie G. Brunton1* 

 

1Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, 

University of Edinburgh, Edinburgh EH4 2XR, UK; 2SynthSys, The Kings Buildings, 

University of Edinburgh, Edinburgh EH9 3BF, UK; and 3AstraZeneca Oncology iMed, 

Alderley Park, Macclesfield SK10 4TG, UK. 

 

*Correspondence:  Valerie G. Brunton (email: v.brunton@ed.ac.uk; tel.: +44 (0) 131 

651 8580; fax: +44 (0) 131 651 8800). 

Adam Byron (email: adam.byron@igmm.ed.ac.uk; tel.: +44 (0) 

131 651 8575; fax: +44 (0) 131 651 8800). 

Edinburgh Cancer Research Centre, Institute of Genetics and 

Molecular Medicine, University of Edinburgh, Western General 

Hospital, Crewe Road South, Edinburgh EH4 2XR, UK. 

 

Keywords:  resistance, breast cancer, EMT, HER2, proteomics 

Display items:  6 figures, 3 tables  



2 

ABSTRACT 

Resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapies in 

the treatment of HER2-positive breast cancer is a major clinical problem. To identify 

pathways linked to resistance, we generated HER2-positive breast cancer cell lines which 

are resistant to either lapatinib or AZD8931, two pan-HER family kinase inhibitors. 

Resistance was HER2 independent and was associated with epithelial-to-mesenchymal 

transition (EMT), resulting in increased proliferation and migration of the resistant cells. 

Using a global proteomics approach, we identified a novel set of EMT-associated 

proteins linked to HER2-independent resistance. We demonstrate that a subset of these 

EMT-associated genes is predictive of prognosis within the ERBB2 subtype of human 

breast cancers. Furthermore, targeting the EMT-associated kinases Src and Axl potently 

inhibited proliferation of the resistant cells, and inhibitors to these kinases may provide 

additional options for the treatment of HER2-independent resistance in tumors. 
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INTRODUCTION 

The outlook for HER2-positive breast cancer patients has been revolutionized by the 

introduction of HER2-targeted agents, such as trastuzumab, pertuzumab and lapatinib [1]. 

However, both inherent and acquired resistance to these agents is a major clinical 

problem [2, 3]. Evidence from the Neo-ALLTO trial suggests that combined trastuzumab 

and lapatinib treatment is superior to use of either drug alone [4], and this, coupled with 

the almost universal development of acquired resistance, has driven efforts to develop 

novel therapies targeting this pathway. One approach has been the development of 

tyrosine kinase inhibitors that provide more effective inhibition of HER family signaling. 

One such drug is AZD8931, which is an equipotent, reversible inhibitor of signaling by 

EGFR, HER2 and HER3, having a unique and more potent profile of activity than 

lapatinib [5]. 

Numerous different mechanisms of acquired resistance to HER2-directed therapy have 

been identified. They frequently involve changes in HER2 expression or structure, but the 

development of HER2-independent strategies for activating survival pathways have also 

been widely reported [2, 3]. These pathways likely represent clinically relevant resistance 

mechanisms and suggest that novel methods of targeting the HER receptor family alone 

may not be sufficient to overcome resistance.  

Using AZD8931- and lapatinib-resistant HER2-over-expressing breast cancer cell 

lines, we have identified that an epithelial-to-mesenchymal transition (EMT) is 

commonly associated with resistance. EMT is the name given to an evolutionarily 

conserved process in which epithelial cells lose cell-cell contacts and acquire a migratory 

mesenchymal phenotype accompanied by distinct changes in gene expression [6]. EMT 
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has been linked to both chemo- and radio-resistance and resistance to targeted agents [7, 

8]. In this study, we identified a common set of EMT-associated proteins that were linked 

to HER2-independent mechanisms of resistance to the HER2-directed drugs, and we 

provide evidence that targeting EMT-associated kinases Src and Axl may provide 

additional options for the treatment of resistant tumors. 

 

RESULTS 

Generation of AZD8931- and lapatinib-resistant breast cancer cell lines 

We generated SKBR3 and BT474 cell lines that were resistant to AZD8931 or 

lapatinib by maintenance in increasing concentrations of either drug. Three AZD8931-

resistant SKBR3 clones (SKBR3-AZDRa, SKBR3-AZDRb and SKBR3-AZDRc), two 

lapatinib-resistant SKBR3 clones (SKBR3-LAPRa and SKBR3-LAPRb) and two 

lapatinib-resistant BT474 clones (BT474-LAPRa and BT474-LAPRb) were selected. 

Despite increasing the maximum concentration of AZD8931 or lapatinib to 20 µM, the 

IC50 of the drugs in the respective resistant cell lines was not reached (Table 1). In 

addition, short-term treatment of the lapatinib-resistant cell lines with AZD8931 had no 

effect on their proliferation, and short-term treatment of the AZD8931-resistant cell lines 

with lapatinib had no effect on their proliferation, demonstrating cross-resistance between 

the two drugs (Table 1). 

Resistance to both lapatinib and AZD8931 was associated with reduced expression 

and phosphorylation of HER2 and HER3 (Fig. 1A). Both parental cell lines expressed 

very low levels of EGFR, and resistance to AZD8931 was associated with increased 

EGFR expression, which was not observed in the lapatinib-resistant cell lines. 
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Furthermore, increased expression of EGFR in the AZD8931-resistant cell lines was not 

associated with increased phosphorylation on Tyr992, a recognized autophosphorylation 

site (Fig. 1A). 

Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated 

protein kinase (MAPK) pathways are major downstream read-outs of HER family 

activity. Although HER family signaling was compromised in the resistant cell lines, 

there was a marked increase in Akt signaling in the AZD8931- and lapatinib-resistant cell 

lines, while more modest and varied effects were seen on MAPK signaling in the 

different cell lines (Fig. 1B). Treatment with AZD8931 or lapatinib inhibited the 

activation of Akt in the parental cells, but sustained activation of the pathway was seen in 

the respective resistant cell lines, even at high concentrations of either AZD8931 or 

lapatinib (Fig. 1C). Thus, the resistant cells have acquired the ability to activate the 

PI3K/Akt pathway in a HER family-independent manner.  

 

Multiple signaling pathways are altered in HER2-targeted drug-resistant cells 

To explore further the signaling changes associated with the development of 

resistance, we carried out reverse phase protein array (RPPA) analysis on the parental and 

resistant cells using a panel of antibodies covering a number of signaling pathways linked 

to cancer phenotypes (Supplementary Table S1). This revealed several changes in protein 

expression and phosphorylation in the resistant cell lines (Fig. 2). Most notably, there was 

a striking reduction in expression of PTEN, Stat3 and survivin in all the resistant cell 

lines, with more modest and varied reductions in PLC-γ1 Tyr783 phosphorylation and 

Cdc25c Ser216 phosphorylation. There were also both cell line-specific and drug-specific 
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changes in the resistant cells. For example, a reduction in phosphorylation of GSK3-β, 

p70 S6 kinase and S6 ribosomal protein was only seen in the lapatinib-resistant BT474 

lines and not the lapatinib-resistant SKBR3 lines. In contrast, lapatinib resistance was 

associated with decreased expression of Bim and Met, while moderate increases in both 

these proteins were observed in the AZD8931-resistant cells. In addition, up-regulation of 

Stat5 and PKC Ser660 phosphorylation in the lapatinib-resistant cells was accompanied 

by slight down-regulation in the AZD8931-resistant cells. Such analysis provides insights 

into the complexities of signaling pathway deregulation in the resistant cells but also 

highlights common changes such as loss of PTEN, indicating that, as previously 

described, the PI3K/Akt pathway may be a common driver in resistance to HER2-

targeted therapies. 

 

Resistance to AZD8931 and lapatinib is associated with an epithelial-to-

mesenchymal transition 

One striking feature of both the AZD8931- and lapatinib-resistant cells was their 

distinctive mesenchymal appearance. The resistant cells had lost cell-cell contacts and 

acquired a spindle-like morphology (Fig. 3A). In support of the resistant cells having 

undergone an EMT, we saw expression of the mesenchymal markers N-cadherin and 

vimentin in the AZD8931- and lapatinib-resistant SKBR3 cells but not the parental 

SKBR3 cells (Fig. 3B). Loss of E-cadherin is also considered a hallmark of EMT, but 

SKBR3 cells contain a genetic deletion in CDH1, the E-cadherin-encoding gene, 

resulting in absent expression. In the BT474 cells, however, lapatinib resistance was 

associated with a loss of E-cadherin and concomitant expression of both N-cadherin and 
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vimentin (Fig. 3B). To understand potential drivers of the EMT phenotype, we analyzed 

the expression of key transcriptional regulators of EMT: Snail, Slug, Twist and Zeb1. 

Slug was over-expressed only in the AZD8931-resistant SKBR3 cells, whereas Zeb1 was 

expressed in all the AZD8931- and lapatinib-resistant BT474 and SKBR3 cells (Fig. 3C). 

Snail and Twist were not expressed in the parental or resistant cell lines. Thus, increased 

expression of Zeb1 provides a potential common mechanism whereby EMT is induced in 

the resistant cells. 

The phenotypic change in the resistant cells was accompanied by a dramatic 

acceleration in the growth rate of the resistant cell lines compared to the parental line. 

The cell doubling time was significantly longer in the parental SKBR3 cell line compared 

to all three AZD8931-resistant cell lines. A similar reduction in doubling time was seen 

in the lapatinib-resistant SKBR3 and BT474 lines (Fig. 3D). 

Induction of EMT is associated with a more motile phenotype, and cell migration 

assays revealed that the distance travelled by individual cells was increased in all three 

AZD8931-resistant cell lines, with SKBR3-AZDRa being the most motile of the resistant 

cell lines (Figs. 3E, 3F). Persistence of cell migration was reduced in the resistant cell 

lines, although this only reached statistical significance for SKBR3-AZDRb cells, 

suggesting a less directional mode of migration than the parental cells (Fig. 3F). 

 

Global proteomic analysis identifies regulators of EMT in AZD8931-resistant cells 

To identify possible regulators and markers of EMT that may be linked to resistance, 

we carried out label-free quantitative mass spectrometry (MS) analysis of parental and 

AZD8931-resistant SKBR3 cell lysates. We quantified 615 proteins (with at least two 
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peptides) that were significantly differentially regulated between cell lines (p < 0.05) 

(Supplementary Table S2). Comparisons of the measured protein abundances showed a 

high positive correlation between all three biological replicates (ρ ≥ 0.99), indicating 

reproducible protein quantification by MS (Supplementary Fig. S1). To interrogate the 

functional landscape of protein expression in parental and resistant cells, we analyzed the 

enrichment of cellular functions associated with the differentially regulated proteins 

(Supplementary Table S3). Over-represented gene ontology (GO) terms describing 

biological processes were mapped onto a functional network that connected and clustered 

biological processes associated with shared proteins (Fig. 4). The network revealed 

several clusters of GO terms over-represented in the set of proteins up-regulated in 

resistant cells. A proteolysis-related cluster contained a number of resistant-enriched 

terms and included sequestersome 1 (SQSTM1) and the E3 ubiquitin ligase NEDD4 (Fig. 

4, Supplementary Table S3), proteins that are known to play roles in EMT [9, 10]. A 

large number of clusters contained parental-enriched terms, such as an actin 

polymerization cluster, which included LIM domain and actin binding 1 (LIMA1; 

EPLIN), whose down-regulation leads to EMT [11] (Fig. 4, Supplementary Table S3). 

Of the identified actin polymerization-associated proteins, 17 (59%) have been 

previously implicated in EMT (Fig. 5A). Seven out of the eight proteins reported to be 

down-regulated in EMT were enriched in parental cells, whereas eight out of the nine 

proteins reported to be up-regulated in EMT were enriched in resistant cells, suggesting a 

link between EMT and AZD8931 resistance. Further analysis of the proteins most 

enriched in resistant cells showed that many of these (56% of proteins up-regulated by at 

least four-fold; p < 0.05) have previously been linked to EMT (Fig. 5B). Interaction 
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network analysis revealed that, of these resistant-enriched proteins, a highly 

interconnected core subnetwork was composed predominantly of EMT-associated 

proteins (Fig. 5C). Importantly, western blotting confirmed up-regulation of a number of 

these proteins in both the AZD8931- and lapatinib-resistant SKBR3 and BT474 cell lines, 

including vimentin (VIM; Fig. 3B), BAG3, YAP1, galectin-1 (LGALS1), fascin-1 

(FSCN1), fibronectin (FN1) and CLIC4 (Fig. 5D). 

 

Expression of EMT markers is associated with poor prognosis in HER2-positive 

tumors 

Although we were not able to assess whether the EMT-associated proteins over-

expressed in the resistant cells represent markers of resistance for patients, we found that 

high gene expression of BAG3 and YAP1, but not LGALS1, were significantly associated 

with poor prognosis in ERBB2-subtype tumors (Fig. 6A). The expression of these genes 

was correlated across samples, and we found the sum of the three genes to be a predictor 

(Fig. 6B). These samples were collected at diagnosis, so it seems that these EMT markers 

may identify a subset of patients whose tumors have de novo resistance to HER2-targeted 

therapy. Although LGALS1 gene expression alone was not significantly associated with 

prognosis, immunohistochemical analysis of galectin-1 expression in human breast 

cancer has shown that it is expressed in both tumor cells and tumor-associated fibroblasts 

[12]. Further analysis of tumor cell-associated galectin-1 expression in ERBB2 tumors is 

therefore required to determine whether this is associated with poor prognosis. 

 

Targeting EMT-associated drug resistance 
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Although our proteomic analysis identified potential markers of resistance, it did not 

identify actionable kinases that could provide potential treatment options for the resistant 

cells. However, we have previously reported increased expression and/or activity of a 

number of EMT-associated tyrosine kinases, including Src and Axl, in both lapatinib- and 

AZD8931-resistant cells [2]. As both Src and Axl inhibitors are under clinical 

development, we asked whether these kinases were important for the EMT-associated 

drug resistance. Treatment with the Src family kinase inhibitor dasatinib potently 

inhibited the proliferation of the AZD8931-resistant but not the parental SKBR3 cells 

(Table 2). We also used eCF506, which is a highly selective Src family inhibitor with 

selectivity over other kinases such as c-Abl, PDGFRα and c-Kit (Footnote 1). eCF506 

inhibited the growth of the resistant but not the parental SKBR3 cells (Table 2). 

Treatment with the Axl inhibitor foretinib also potently inhibited the proliferation of the 

resistant but not the parental SKBR3 cells (Table 3). Thus, both Src and Axl kinase 

activities are important for the EMT-associated drug resistance, and inhibitors to these 

kinases may provide alternative treatment options in tumors that are resistant to HER2-

targeted therapies that have undergone EMT.  

 

DISCUSSION 

Resistance to HER2-targeted therapies is a major clinical problem, and understanding 

the mechanism driving resistance is required to provide new treatment options. In our 

models of acquired resistance to both lapatinib and AZD8931, we found reduced HER2 

signaling accompanied by activation of Akt. However, other studies have shown 

persistent HER2 signaling following the development of HER2-targeted therapy 
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resistance, with activation of PI3K signaling, loss of PTEN, increased IGF1R expression 

and enhanced Src activity all having been linked to resistance. These same pathways are 

active in our resistant cell lines [2], suggesting that certain signaling pathways are 

activated following the development of resistance, irrespective of the primary effects on 

HER2 signaling. To date, clinical approaches to overcome resistance have predominantly 

focused on utilizing different strategies to target HER2 signaling, yet this overlap of 

HER2-dependent and HER2-independent resistance mechanisms may explain why, 

although frequently initially effective, novel methods of targeting HER2 have had limited 

longer-term efficacy, with the development of resistance still remaining inevitable.  

We also identified several potential novel markers of AZD8931 and lapatinib 

resistance, including reduced phosphorylation of PLCɣ. The SH2 domain of PLCɣ is 

phosphorylated on Tyr783 by EGFR [13], and therefore phosphorylation of PLCɣ at this 

site can be used as a biological readout of EGFR activity. This is consistent with the 

reduction in EGFR autophosphorylation in the resistant cells identified by western 

blotting. We also observed a significant reduction in STAT3 expression in our AZD8931- 

and lapatinib-resistant cell lines, although previous reports have suggested that an active 

STAT3 feedback loop is important for driving drug resistance [14]. The activation status 

of STAT3 was not determined in our analysis.  

Cells which have undergone EMT are widely reported to be resistant to conventional 

anti-cancer therapies, including chemotherapy, radiotherapy and targeted therapies 

including HER2-targeted therapies [15]. In preclinical in vitro models, genetic 

modulation of transcriptional EMT drivers and the reversion to an epithelial phenotype 

can restore sensitivity to HER2-targeted agents [16-18]. Here, we show that expression of 
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a transcriptional regulator of EMT, Zeb1, is substantially increased in all the resistant cell 

lines, consistent with a Zeb1-mediated induction of EMT in the resistant cells. Induction 

of EMT is also linked to the acquisition of stem cell properties [19], and resistance to 

trastuzumab has been associated with expansion of a cancer stem cell population with 

EMT properties [18, 20]. Moreover, induction of EMT in HER2-driven tumors via 

expression of an activating PI3K mutation has been associated with increased expression 

of cancer stem cell markers and resistance to trastuzumab and lapatinib [21]. 

We have identified that over-expression of BAG3, YAP1 and LGALS1 was associated 

with poor prognosis in HER2-positive breast cancers. However, further work is required 

to identify whether such EMT gene signatures in clinical samples associate with 

resistance to HER2-targeted therapies. Induction of EMT in both in vitro and in vivo 

models is also associated with de novo resistance to HER2-targeted therapies [18, 21], 

and it is possible that these EMT gene signatures may also provide potential prognostic 

biomarkers to aid the stratification of patient treatment. 

Targeting EMT-associated resistance may also be a useful therapeutic approach. For 

example, small molecule inhibitors of Axl have activity in lapatinib-resistant breast 

cancer models [22], and our data show that both AZD8931- and lapatinib-resistant cells 

are more sensitive than the parental cells to foretinib, which inhibits Axl tyrosine kinase 

activity. We also show that the resistant cells are more sensitive to Src kinase inhibitors, 

which suggests that Axl and Src inhibitors, both of which are in clinical development, 

may have utility in the treatment of resistant tumors in which the Axl and Src signaling 

pathways are up-regulated. Importantly, this provides further treatment options for 

tumors that have developed HER2-independent mechanisms of resistance that would not 
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benefit from further HER2-directed therapies, as is current clinical practice. As it is rarely 

mandatory to re-biopsy tumors at the time of entry into clinical trials, patients who have 

developed resistance and whose tumors no longer express HER2 risk being exposed to 

the toxicity of treatments that might not be anticipated to be effective. Moving forward, it 

will be important to identify the most clinically relevant markers linked with EMT-

associated resistance and determine their expression upon relapse to HER2-targeted 

therapies to guide future treatment. 

 

MATERIALS AND METHODS 

Cell culture 

Human breast cancer cell lines SKBR3 and BT474 were purchased from the American 

Type Culture Collection. SKBR3 cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin 

and 10% FCS (all Thermo Fisher Scientific). BT474 cells were grown in RPMI-1640 

supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin and 20% FCS. Cells 

were maintained at 37°C in a humidified atmosphere containing 5% CO2. A Leica DM IL 

LED microscope in conjunction with a QImaging Retiga EXi Fast 1394 camera was used 

to capture phase-contrast images of cells. 

 

Generation of resistant cell lines 

Lapatinib-resistant cells were established by culturing cells in complete medium 

supplemented with escalating concentrations of lapatinib (0.04–5 µM; SelleckChem). 

Cells were then maintained in 5 µM lapatinib. AZD8931-resistant cells were established 
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by culturing cells in complete medium supplemented with escalating concentrations of 

AZD8931 (0.0067–0.67 µM; provided by AstraZeneca) and maintained in 0.67 µM 

AZD8931. Prior to drug treatment studies, the cells were grown for one week in the 

absence of drug. 

 

Cell viability assays 

Cells were seeded in 96-well plates and allowed to attach for 24 hours. Escalating 

doses of lapatinib, AZD8931, dasatinib (Synkinase), foretinib (SelleckChem) or eCF506 

(Footnote 1) prepared in DMSO were then added. After 72 hours, alamarBlue or 

PrestoBlue (Thermo Fisher Scientific) cell viability reagent was added and fluorescence 

measured after a further 60 minutes. Mean values were calculated from six replicate wells 

and normalized against the mean value of the vehicle (DMSO)-treated wells, and IC50 

values were generated using Prism (GraphPad). 

 

Western blotting 

Cells were washed with PBS and then lysed in RIPA buffer supplemented with 

cOmplete ULTRA protease inhibitor and PhosSTOP phosphatase inhibitor cocktails 

(Roche). Cleared lysates were resolved by SDS-PAGE. Primary antibodies used for 

western blotting were as follows: phospho-HER2/EGFR (phospho-tyrosine (pTyr)-

1248/1273), phospho-HER2 (pTyr1221/1222), HER2, phospho-HER3 (pTyr1289), 

HER3, phospho-EGFR (pTyr992), EGFR, phospho-Akt (phospho-serine (pSer)-473), 

Akt, phospho-p44/42 MAPK (phospho-threonine (pThr)-202, pTyr204), p44/42 MAPK, 

E-cadherin, Slug, vimentin, YAP1 (all 1:1000; Cell Signaling Technologies), BAG3, 
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CLIC4, fibronectin (all 1:1000; Abcam), Zeb1 (1:2000; Abcam), galectin-1, N-cadherin 

(all 1:1000; BD Biosciences), fascin-1 (1:1000; Santa Cruz Biotechnology), α-tubulin 

(1:3000; Sigma-Aldrich), GAPDH (1:2500; Thermo Fisher Scientific). 

 

RPPA analysis 

Cells, in biological triplicate, were washed with PBS and lysed in 1% Triton X-100, 

50 mM HEPES (pH 7.4), 150 mM sodium chloride, 1.5 mM magnesium chloride, 1 mM 

EGTA, 100 mM sodium fluoride, 10 mM sodium pyrophosphate, 1 mM sodium 

vanadate, 10% glycerol, supplemented with cOmplete ULTRA protease inhibitor and 

PhosSTOP phosphatase inhibitor cocktails. Cleared lysates were serially diluted to 

produce a dilution series comprising four serial two-fold dilutions of each sample, which 

were spotted onto nitrocellulose-coated slides (Grace Bio-Labs) in technical triplicate 

under conditions of constant 70% humidity using the Aushon 2470 array platform 

(Aushon Biosystems). Slides were hydrated in blocking buffer (Thermo Fisher Scientific) 

and then incubated with validated primary antibodies (all 1:250; Supplementary Table 

S1). Bound antibodies were detected by incubation with anti-rabbit DyLight 800-

conjugated secondary antibody (New England BioLabs). An InnoScan 710-IR scanner 

(Innopsys) was used to read the slides, and images were acquired at the highest gain 

without saturation of the fluorescence signal. The relative fluorescence intensity of each 

sample spot was quantified using Mapix software (Innopsys). 

The linear fit of the dilution series of each sample was determined for each primary 

antibody, from which median relative fluorescence intensities were calculated. Signal 

intensities were normalized by global sample median normalization [23]. Only primary 
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antibodies with normalized signal intensities at least 1.5 times the value of the secondary 

antibody alone in at least one sample were included in the analysis to exclude data 

derived from weak or non-specific signals. 

 

MS analysis 

Parental SKBR3 and AZ8931-resistant SKBR3-AZDRc cell pellets (1 mg protein 

equivalent), in biological triplicate, were reconstituted in 8 M urea, 25 mM ammonium 

bicarbonate, 20 mM dithiothreitol to denature and reduce the samples (30 minutes), 

followed by alkylation with 50 mM iodoacetamide (1 hour). Samples were digested with 

10 µg trypsin overnight at room temperature. Peptide extracts were then cleaned on an 

SPE reverse-phase Bond Elut LMS cartridge (Agilent) and evaporated to dryness. 

Peptides were re-suspended in 2.5% acetonitrile, 0.1% formic acid in water to give a final 

concentration of 1 µg/µL. 

Peptides (4 µg) were subjected to nano-scale high-performance liquid chromatography 

(HPLC)-MS using a nano-pump (Dionex Ultimate 3000; Thermo Fisher Scientific) with 

a 300 µm × 5 mm pre-column (5 µm particle size, Acclaim PepMap; Thermo Fisher 

Scientific) connected to a 75 µm × 50 cm column (3 µm particle size, Acclaim PepMap; 

Thermo Fisher Scientific). HPLC was coupled on-line to a Q Exactive instrument 

(Thermo Fisher Scientific) controlled by Xcalibur (Thermo Fisher Scientific; version 

3.0.63) using Tune (version 2.3, build 1765). Samples were analyzed on a two-hour 

gradient using data-dependent analysis with one 70k-resolution survey scan followed by 

the top five MS/MS scans at 17.5k resolution. 
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Peak lists were generated using MSConvert (ProteoWizard; version 3.0.4462). MS 

data were searched against the National Center for Biotechnology Information (NCBI) 

protein database (Homo sapiens; 34,284 sequences; downloaded 12 January 2011) using 

Mascot software (version 2.4; Matrix Science). Up to two missed tryptic cleavage sites 

per peptide were permitted. Variable methionine oxidation and fixed cysteine 

carbamidomethylation modifications were allowed. Precursor and product ion mass 

tolerances were set to 10 ppm and 0.05 amu, respectively. A final peptide score of at least 

20 and p < 0.05 (MudPIT scoring) were required, which resulted in a global false 

discovery rate of less than 1%. 

Label-free quantification was performed using Progenesis LC-MS (version 4.1; 

Nonlinear Dynamics). Only MS peaks with a charge of 2+, 3+ or 4+ and the five most 

intense spectra within each feature were extracted from each LC-MS run for analysis. 

Normalization was first performed based on the sum of the ion intensities of these sets of 

multi-charged ions (2+, 3+, 4+). The associated unique peptide ion intensities for a 

specific protein were then summed to generate an abundance value, which was 

transformed using an ArcSinH function. The within-group means were calculated to 

determine the fold change between conditions, and the transformed data were used to 

calculate the p-values using one-way analysis of variance (ANOVA). 

MS data were deposited in ProteomeXchange (http://www.proteomexchange.org) via 

the PRIDE partner repository (http://www.ebi.ac.uk/pride) with the dataset identifier 

PXD002057 (DOI: 10.6019/PXD002057). 

 

Hierarchical clustering analysis 
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Unsupervised hierarchical clustering analysis of normalized protein expression was 

performed on the basis of Pearson correlation using Cluster 3.0 (C Clustering Library, 

version 1.37) [24], computing distances using a complete-linkage matrix. Clustering 

results were visualized using Java TreeView (version 1.1.1) [25] and MultiExperiment 

Viewer (version 4.1.01) [26]. 

 

Network analyses 

Functional enrichment analysis was performed using BiNGO, assessing over-

representation of GO terms describing biological processes using a hypergeometric test 

with Benjamini–Hochberg post hoc correction. Network clusters were generated from 

over-represented GO terms using Enrichment Map in Cytoscape (version 3.0.2) [27], 

with a Jaccard coefficient cutoff of 0.25, and manually annotated. Interaction networks 

were constructed using GeneMania, clustered using the yFiles Organic algorithm in 

Cytoscape, and network topology was analyzed from undirected graphs using 

NetworkAnalyzer [28]. 

 

Cell migration assay 

Cells were plated in duplicate at 3 × 103 cells per well in a 12-well plate in DMEM 

containing 10% FCS and 10 mM HEPES. Random migration was monitored by time-

lapse video microscopy over 16 hours on an Olympus scan^R screening station. Total 

path length (accumulated distance) and net displacement (Euclidean distance) of 

individual cells were calculated using ImageJ software (National Institutes of Health). 
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Directional persistence of cell migration was calculated by dividing net displacement by 

total path length. 

 

Survival analysis of gene expression data   

Gene expression levels of the EMT-associated proteins that were over-expressed in the 

resistant cells were assessed in 289 ERBB2-subtype primary breast tumors from a 

compendium of 2999 tumors integrated from 17 studies, as previously described [29]. 
Briefly, raw Affymetrix U133A/plus 2 .cel files were downloaded from the NCBI Gene 

Expression Omnibus (GSE12276, GSE21653, GSE3744, GSE5460, GSE2109, 

GSE1561, GSE17907, GSE2990, GSE7390, GSE11121, GSE16716, GSE2034, 

GSE1456, GSE6532, GSE3494, GSE19615) and cancer Biomedical Informatics Grid 

(geral-00143) repositories, summarized with Ensembl alternative CDF [30], normalized 

with RMA [31] and integrated using ComBat [32] to remove dataset-specific bias, as 

previously described [33]. The intrinsic molecular subtypes were assigned based upon the 

highest correlation to the intrinsic subtype centroids [34]. Survival analysis was 

performed using the survival R package [35]. 
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Table 1: Generation of AZD8931- and lapatinib-resistant SKBR3 and BT474 cell 

lines 

Cell line 

IC50 (μM) 

AZD8931 Lapatinib 

SKBR3 0.46 0.07 

SKBR3-AZDRa >20 >20 

SKBR3-AZDRb >20 >20 

SKBR3-AZDRc >20 >20 

SKBR3-LAPRa >20 >20 

SKBR3-LAPRb >20 >20 

BT474 0.36 0.06 

BT474-LAPRa >20 >20 

BT474-LAPRb >20 >20 

 

 

Table 2: Increased sensitivity of resistant cells to Src inhibitors 

Cell line 

IC50 (μM) 

Dasatinib eCF506 

SKBR3 >20 >20 

SKBR3-AZDRa 0.042 0.212 

SKBR3-AZDRb 0.062 0.799 

SKBR3-AZDRc 0.029 0.639 
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Table 3: Increased sensitivity of resistant cells to Axl inhibitors 

Cell line 

IC50 (μM) 

Foretinib 

SKBR3 >20 

SKBR3-AZDRc 2.01 

BT474 >20 

BT474-LAPRb 0.43 

 

 

TABLE LEGENDS 

 

Table 1: Generation of AZD8931- and lapatinib-resistant SKBR3 and BT474 cell 

lines. AlamarBlue cell viability assays were used to generate IC50 values for AZD8931 

and lapatinib following treatment of cells with escalating drug concentrations for 72 

hours. 

 

Table 2: Increased sensitivity of resistant cells to Src inhibitors. PrestoBlue cell 

viability assays were used to generate IC50 values for dasatinib and eCF506 following 

treatment of cells with escalating drug concentrations for 72 hours. 

 

Table 3: Increased sensitivity of resistant cells to Axl inhibitors. AlamarBlue cell 

viability assays were used to generate IC50 values for foretinib following treatment of 

cells with escalating drug concentrations for 72 hours. 
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FIGURE LEGENDS 

 

Figure 1: Loss of HER family signaling in AZD8931- and lapatinib-resistant cell 

lines. A. and B. Whole cell lysates from untreated SKBR3 and BT474 parental and 

resistant cells were immunoblotted as indicated. Tubulin was used as a loading control. 

C. Parental and resistant cells were treated for 12 hours with increasing concentrations of 

lapatinib or AZD8931 and then whole cell lysates were prepared and immunoblotted for 

phospho-Akt and Akt. 

 

Figure 2: Signaling changes in AZD8931- and lapatinib-resistant cell lines. Levels of 

signaling proteins and phosphoproteins in whole cell lysates from SKBR3 and BT474 

parental and resistant cells were determined by RPPA. Normalized intensity values were 

scaled to respective parental intensity values and subjected to hierarchical clustering 

analysis. Heat map displays the protein or phosphoprotein enrichment in each resistant 

cell line relative to the respective parental cell line (red, up-regulated in parental cells; 

blue, up-regulated in resistant cells; log2 transformed). Relevant signaling pathways are 

annotated with a color bar (right).  
Figure 3: Resistance to AZD8931 is associated with an epithelial-to-mesenchymal 

transition. A. Phase-contrast images of parental and resistant SKBR3 and BT474 cell 

lines. Scale bar, 50 µm. B. Whole cell lysates from parental and resistant SKBR3 and 

BT474 cell lines were immunoblotted for E-cadherin, N-cadherin and vimentin. Tubulin 

was used as a loading control. C. Whole cell lysates from parental and resistant SKBR3 
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and BT474 cell lines were immunoblotted for Slug and Zeb1. GAPDH was used as a 

loading control. D. Cell doubling times for the parental and resistant SKBR3 and BT474 

cell lines. Results are mean ± s.d. (n = 3). E. and F. SKBR3 cells were seeded into six-

well plates and, 24 hours later, images were recorded every 15 minutes for 16 hours. 

Representative images of individual tracks of parental (SKBR3; left) and AZD8931-

resistant (SKBR3-AZDRa; right) cells are plotted (E.). Total path length (accumulated 

distance; left), net displacement (Euclidean distance; middle) and directional persistence 

of migration (net displacement/total path length; right) were determined for parental and 

AZD8931-resistant SKBR3 cell lines (F.). Box-and-whisker plots show the median 

(line), 25th and 75th percentiles (box) and 5th and 95th percentiles (whiskers) (n = 9) and 

are representative of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001; one-way ANOVA with Tukey’s post hoc correction (D.), Kruskal–

Wallis test with Dunn’s post hoc correction versus parental cells (F.). 

 

Figure 4: Proteomic analysis of parental and AZD8931-resistant SKBR3 cells. 

Functional enrichment network analysis of proteins significantly differentially expressed 

between parental SKBR3 and AZD8931-resistant SKBR3-AZDRc cells (p < 0.05, one-

way ANOVA), as determined by label-free quantitative MS. Nodes (circles) represent 

over-represented functional categories (GO biological processes; p < 0.05, 

hypergeometric test with Benjamini–Hochberg post hoc correction). Node border color 

intensity (blue) indicates significance of over-representation in resistant cells; node center 

color intensity (red) indicates significance of over-representation in parental cells. Nodes 

with blue borders and red centers represent functional categories over-represented in both 
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parental and resistant cells. Node size indicates the number of differentially expressed 

proteins assigned to a given functional category. Edges (gray lines) connect GO 

biological processes with proteins in common; edge weight indicates degree of overlap 

between functional categories. 

 

Figure 5: Changes in expression of EMT-associated proteins in AZD8931- and 

lapatinib-resistant cells. A. Interaction network analysis of proteins associated with 

over-represented actin polymerization-related functional categories (actin polymerization 

cluster, Fig. 4). Nodes (circles) represent proteins; thick black node border indicates 

proteins reported to be up-regulated in EMT; thick gray node border indicates proteins 

reported to be down-regulated in EMT. Node color indicates log2-transformed protein 

fold enrichment (parental/resistant). Edges (lines) indicate various types of reported 

interactions. The network was clustered on the basis of the connectivity of the nodes. B. 

Heat map generated from proteomic data from parental SKBR3 and AZD8931-resistant 

SKBR3-AZDRc cell lines, displaying proteins most up-regulated in resistant cells (at 

least four-fold; blue) alongside the significance of their enrichment (all p < 0.05, one-way 

ANOVA; rainbow). Gray boxes indicate proteins reported to be up-regulated during 

EMT; light gray box indicates a paralog associated with EMT. C. Interaction network 

analysis of proteins enriched in AZD8931-resistant cells by at least four-fold. Nodes 

represent proteins; thick black node borders indicate proteins associated with EMT; thick 

gray node border indicates a paralog associated with EMT. Edges indicate various types 

of reported interactions. Node color indicates number of interactions (degree) within the 

network; the network was clustered on the basis of the connectivity of the nodes. D. 
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Whole cell lysates from parental and resistant SKBR3 and BT474 cells were 

immunoblotted as indicated. GAPDH was used as a loading control. 

 

Figure 6: Expression of BAG3, YAP1 and galectin-1 is associated with poor 

prognosis. A. and B. Kaplan–Meier analyses of 289 human breast cancers of the ERBB2 

subtype. Time to recurrence is plotted in tertiles for high (purple, n = 96), intermediate 

(intermed.; black, n = 97) and low (gold, n = 96) expressors of BAG3 (left), YAP1 

(middle) and LGALS1 (right) (A.). Patients with the highest (purple) and lowest (gold) 

sum of mean-centered gene expression of BAG3, YAP1 and LGALS1 have the worst and 

best prognosis, respectively (B.). Significance was determined by log-rank test. 
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