

Edinburgh Research Explorer

Two-Restricted One Context Unification is in Polynomial Time

Citation for published version:
Gascon, A, Schmidt-Schauß, M & Tiwari, A 2015, Two-Restricted One Context Unification is in Polynomial
Time. in 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 41, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
pp. 405-422. DOI: 10.4230/LIPIcs.CSL.2015.405

Digital Object Identifier (DOI):
10.4230/LIPIcs.CSL.2015.405

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
24th EACSL Annual Conference on Computer Science Logic (CSL 2015)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.CSL.2015.405
https://www.research.ed.ac.uk/portal/en/publications/tworestricted-one-context-unification-is-in-polynomial-time(301dfb68-3645-426d-9d8c-6d8ca2774a50).html

Two-Restricted One Context Unification is in
Polynomial Time∗

Adrià Gascón1, Manfred Schmidt-Schauß2, and Ashish Tiwari1

1 SRI International, Menlo Park, CA, USA
adriagascon@gmail.com,tiwari@csl.sri.com

2 Goethe-Universität, Frankfurt, Germany
schauss@ki.informatik.uni-frankfurt.de

Abstract
One Context Unification (1CU) extends first-order unification by introducing a single context
variable. This problem was recently shown to be in NP, but it is not known to be solvable in
polynomial time. We show that the case of 1CU where the context variable occurs at most twice
in the input (1CU2r) is solvable in polynomial time. Moreover, a polynomial representation of all
solutions can be computed also in polynomial time. The 1CU2r problem is used as a subroutine
in polynomial time algorithms for several more general classes of 1CU. Our algorithm can be
seen as an extension of the usual rules of first-order unification and can be used to solve related
problems in polynomial time, such as first-order unification of two terms that tolerates one clash,
and several interesting classes of the general 1CU problem. All our results assume that the input
terms are represented as Directed Acyclic Graphs.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathe-
matical Logic, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases context unification, first-order unification, deduction, type checking

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.405

1 Introduction

The well-known first-order unification problem consists of solving equations between terms
with leaf variables ranging over terms. Context unification (CU) extends first-order unification
by introducing context variables of arity one standing for contexts. Hence, the CU equations
may contain subterms of the form F (s), where F is a context variable that may be instantiated
by a context. For example, the equation F (a) .= f(a, a) has two solutions, since applying either
substitution {F → f(a, •)} or {F → f(•, a)}, gives the trivial equation f(a, a) .= f(a, a).

Context unification falls in between first-order unification, which is solvable in linear
time [19], and higher-order unification, which is undecidable [10]. The best known upper
bound for the complexity of context unification is PSPACE [12]. Moreover, several variants
and specializations of context unification have also been studied [16, 20, 15, 14, 6, 17, 7].
This paper is concerned with a particular case of CU called the One Context Unification
(1CU) problem. In 1CU, only one context variable occurs in the input terms, possibly with

∗ This work was sponsored, in part, by National Science Foundation under grants CCF-1423296 and
CNS-1423298, and ONR under subaward 60106452-107484-C under prime grant N00014-12-1-0914. The
views, opinions, and/or findings contained in this report are those of the authors and should not be
interpreted as representing the official views or policies, either expressed or implied, of the funding
agencies.

© Adrià Gascón, Manfred Schmidt-Schauß, and Ashish Tiwari;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 405–422

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.405
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

406 Two-Restricted One Context Unification is in Polynomial Time

many occurrences. This problem was recently proved to be in NP [8], but whether it is
NP-hard or solvable in polynomial time is still open. That also holds for the case where the
input terms are represented with Singleton Tree Grammars [4], a compression mechanism for
terms that is more general than Directed Acyclic Graphs (DAGs). The initial interest in
one context unification comes from interprocedural program analysis [11, 5], where context
variables are used to represent (the yet unknown) summaries of procedures. In particular,
one context unification problems (over uninterpreted terms) arise when analyzing programs
using an abstract domain consisting of (uninterpreted) terms.

An interesting simple variant of the 1CU problem is term unification up to one clash, or
fault tolerant unification. For example, while f(x, f(a, y)) unifies with f(f(a, b), x), changing
an a into a b in one of these two terms makes them non-unifiable. The terms f(x, f(a, y))
and f(f(b, b), x) are, however, almost unifiable: if we are willing to accept disagreement
at one position, namely position 2.1, the rest of the terms unify. The position 2.1 is a
distinguishing position of these two terms. Note that two first-order terms s, t almost unify if
the restricted 1CU instance F (z1) = s, F (z2) = t has a solution, where z1, z2 do not occur in
s, t. Intuitively, the position of the hole of Fσ in the solution indicates the distinguishing
position in fault tolerant unification. A particular application of fault tolerant unification is
Milner-polymorphic type checking, where in case the type check/computation fails, a most
probable reason for the fail can be computed and presented to the programmer.

In this paper, we consider the special case of the one context unification problem consisting
of only two equations F (r1) .= s1, F (r2) .= s2, where r1, r2, s1, s2 are first-order terms without
occurrences of F , which we call 2-restricted 1CU (1CU2r). We present a polynomial time
algorithm for deciding 1CU2r. We also show that a representation of all solutions can be
constructed in polynomial time, which can be used to effectively enumerate all unifiers of the
problem. All our results hold also when the input terms are represented as DAGs.

The restriction to two equations (1CU2r) is motivated by two facts. First, the solution
to the 1CU2r problem also solves the problem of finding (all) distinguishing positions for
two given first-order terms. Second, in a recent paper [9], we presented polynomial time
algorithms for several classes of 1CU problem (that have more than 2 equations, but have
other restrictions on the terms), but the algorithm in [9] assumes that 1CU2r can be efficiently
solved. The result in [9] can be interpreted as showing that the 1CU2r problem is the “hard”
part in solving the general 1CU problem, and it possibly exhibits several of the intricacies
that make 1CU challenging. Our results, combined with [9], may open a way to construct a
polynomial time algorithm for the unrestricted one context unification problem.

2 Preliminaries

We assume knowledge of first order terms, substitutions, and first-order unification (see [3,
1, 2]), and use the following notation: F denotes a fixed finite ranked alphabet, X is a set
containing first-order variables and exactly one context variable F , f, g denote function
symbols, a, b denote constant symbols, x, y, z denote (first-order) variables, and p, q denote
positions (sequences of positive integers) in terms. Our algorithm introduces fresh first-order
variables from a set Y , which we denote by y with possible subindexes. We denote X ∪ Y as
V. Hence, we will argue about terms in T (F ,X), T (F ,V) and T (F ,X) ∪ Y.

The set of positions of a term t, denoted by pos(t), is defined recursively as pos(f(t1, . . . ,
tm)) = {λ} ∪ {i.p | i ∈ {1, . . . ,m} ∧ p ∈ pos(ti)}. The length of a position is denoted by
|p|. The subterm of a term t at a position p ∈ pos(t), denoted t|p, is defined recursively as
t|λ = t and f(t1, . . . , tm)|i.p = ti|p. With < we denote the prefix relation among positions

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 407

and with ≺ the subterm relation among terms. We say that two positions are parallel if they
are incomparable by the prefix relation. We also define topsymbol(f(t1, . . . , tn) = f , and
topsymbol(x) = x, and vars(t) = {x ∈ V | t|p = x}.

By maxarity, we denote the maximum arity of the symbols in F , and by pos(F), we
denote the set of positions {λ} ∪ {1, . . . , maxarity}+. We also use contexts C,D, where
hp(C) is the notation for the position of the hole, denoted •. Analogously as for terms,
we refer to contexts in C(F ,X) and C(F ,V). In the notation that mixes first-order terms,
contexts and plugging terms into holes, we write C[s] for the term where s is plugged into
the hole of C, and CD for the context C[D]. Similarly, we write F (s) for the application of
the context variable F to the term s. Sometimes we will omit brackets, if this does not lead
to confusion. Also, we denote by t[s]p, the term obtained from t by replacing its subterm
at position p by s. The exponentiation of a position p to a natural number n, denoted pn,
is the position recursively defined as pn = p.pn−|p| if n > |p| > 0, and as pn = p1 if n ≤ |p|,
p = p1.p2, and |p1| = n. Note that p0 = λ. The exponentiation of a context C to a natural
number n, denoted Cn, is defined analogously to pn.

In this work, we deal with equations on terms, denoted by e with possible subindexes.
Given an equation e = (s .= t), we call the set {s, t} the topterms of e, denoted topterms(e).
Similarly, for a set ∆ of equations, topterms(∆) denotes

⋃
e∈∆(topterms(e)). Similarly,

topvars(e) = topterms(e) ∩ V. By |∆| we denote the number of equations in ∆.
A substitution, denoted by σ, θ, η, is a total function σ : V → T (F ,V) ∪ C(F ,V) such

that ασ ∈ T (F ,V) if α is a first-order variable and ασ ∈ C(F ,V) if α is a context variable.
Substitutions are extended, in the usual way, to be mappings from terms to terms and
contexts to contexts. We also extend the notion of application of a substitution to equations as
(s .= t)σ = (sσ .= tσ) , to sets as ∆σ =

⊎
e∈∆{eσ}, and to pairs as 〈r1, r2〉σ = 〈r1σ, r2σ〉. The

domain of a substitution σ, denoted dom(σ), is defined as usual, i.e. dom(σ) = {z ∈ V | zσ 6= z}.
The composition of σ and θ, denoted θ ◦ σ, is defined as {α 7→ ασθ | α ∈ dom(σ) ∪ dom(θ)}.
For substitutions σ, θ, σ = θ holds if ∀z ∈ V : zσ = zθ. Moreover, σ is more general than θ,
denoted σ ≤ θ, if there exists η such that θ = η ◦ σ.

A unifier of two terms s, t is a substitution σ such that sσ = tσ. A unifier does not
always exist. We capture that situation by simply saying that the unifier of s and t is ⊥. We
define the most general unifier of two first-order terms s and t, denoted mgu(s = t), as any
unifier σ of s and t such that, for every unifier θ of s and t, σ ≤ θ holds. If such substitution
does not exist we say that mgu(s = t) is not defined, denoted mgu(s = t) = ⊥. In an abuse
of notation, we assume that tσ = ⊥ for every term t if σ = ⊥ and extend the definitions
for the application of a substitution on a term, equation, set of equations, and list of terms
accordingly.

First-order unification can be performed in polynomial time, if the algorithm works
on a shared term representation. We assume that terms are represented as DAGs, which
allows sharing of common subterms. When using DAGs, performing unification and applying
substitutions takes polynomial time. However, for example visiting all positions in term may
take worst-case exponential time.

3 One Context Unification

The One Context Unification Problem (1CU) consists on finding a unifier for a set of equations
over first-order terms that are extended with a single context variable F . It is known that
the problem is in NP. It is also known that, if the set of equations contains an equation of the
form F (r1) .= CF (r2) where C is not the empty context, then unification can be performed

CSL 2015

408 Two-Restricted One Context Unification is in Polynomial Time

in polynomial time. Thus, without loss of generality, we can focus on 1CU instances of the
form

{ F (r1) .= s1, . . . , F (rn) .= sn }

where si and ri do not contain occurrences of F , for all i ∈ {1, . . . , n}.

I Definition 3.1. A 2-restricted 1CU instance I (referred to by 1CU2r) consists of two
equations of the form

F (r1) .= s, F (r2) .= t

where F is a context variable and s, t, r1, r2 are terms that may contain first-order variables
but not the context variable.

The size of I, denoted ||I||, is the size of the DAG representing all the terms (including
subterms) in I. In other words, ||I|| = |subterms(I)|. From now on, when we refer to a
polynomial time algorithm for 1CU2r, we implicitly assume this measure.

A solution, or unifier, σ of a 1CU2r instance can be characterized by hp(Fσ) – the position
of the hole in Fσ.

I Example 3.2. The instance I = {F (a) .= f(x0, x0), F (b) .= f(f(x1, x1), f(a, b))} has a
solution σ = {x0 7→ f(a, a), x1 7→ a, F 7→ f(f(a, a), f(a, •))}. Here, hp(Fσ) = 2.2. There is
another solution with hole position 1.1.

In the first part of this paper we solve the decision version of the 1CU2r problem and
later we show how to compute a representation for all unifiers.

4 The Decision Version of 1CU2r

We present a polynomial time algorithm that decides the 1CU2r unification problem. We
describe our algorithm using inference rules that operate on states. Starting from an initial
state that describes the input 1CU2r instance, the algorithm works by repeatedly applying
the inference rules until a final state (where no rule is applicable) is reached. The final state
will be a special fail state if the input problem has no unifiers.

4.1 Defining the state
Our inference rules operate on states (configurations), which are tuples of the form (R,∆),
where R is a pair of terms and ∆ is a set of equations s1

.= t1, . . . , sn
.= tn, where each

equation can be asymmetric (unmarked) or symmetric (marked with a superscript S).

I Definition 4.1 (Initial state). For a given instance I = {F (r1) .= s, F (r2) .= t} of the
1CU2r problem, the initial state of our algorithm is S0 = (〈r1, r2〉, {s

.= t}).

All terms in a state are first-order terms. The terms in R are the left-hand side terms
and the equations in ∆ are (different possible) right-hand side terms. While u .= v and v .= u

are different equations, we do not distinguish between u .=S
v and v .=S

u. If we write x = s

without a dot, then this is only a notation for “either x .= s or x .=S
s”.

The reason for keeping the right-hand side terms s, t as an equation s .= t is that our
inference rules will be trying to (almost) first-order unify s and t, but for one position (which
will be the hole position of F in the solution).

The mapping from a state to 1CU2r instances is defined as follows.

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 409

I Definition 4.2. Let S = (〈r1, r2〉,∆) be a state, and let e = (s =S t) ∈ ∆ be a symmetric
equation. Let θ = mgu(∆\{e}). We define the two 1CU instances spanned by e in S, denoted
P (e,S, 1) and P (e,S, 2) (or simply P (e, i) if S is clear from the context), as

P (e,S, 1) = {F (r1θ)
.= sθ, F (r2θ)

.= tθ} if θ 6= ⊥
P (e,S, 2) = {F (r2θ)

.= sθ, F (r1θ)
.= tθ} if θ 6= ⊥

P (e,S, i) = ⊥ if θ = ⊥, for i = 1, 2

For an asymmetric equation e ∈ ∆, P (e,S, 1) is defined as it is defined for symmetric
equations, but P (e,S, 2) = ⊥ always. Given a state S = (L,∆) and a subset Γ ⊆ ∆, by
instances(Γ) we denote the set

⋃
e∈Γ({P (e,S, 1), P (e,S, 2)}).

Note that every equation e in the set ∆ of a state spans zero, one or two 1CU2r instances,
depending on whether θ = ⊥ and whether e is symmetric. Note that the initial state for a
1CU2r instance spans that 1CU2r instance. We say that a state has a solution if one of the
instances that it spans is unifiable.

4.2 An Illustrative Example
We illustrate our procedure on a simple example before presenting it formally. Consider the
instance I from Example 3.2. The corresponding initial state is

S0 = (〈a, b〉, {f(x0, x0) .= f(f(x1, x1), f(a, b))})

The idea behind our procedure is that it searches for a solution σ by searching for hp(Fσ)
– call it p. For this example, the value p = λ (i.e., F 7→ •) does not work, and hence, we need
to find if p = 1.p′ or p = 2.p′ for some p′. So, we “decompose” (as in first-order unification)
the equation in ∆ to get a new state

S1 = (〈a, b〉, {x0
.= f(x1, x1), x0

.= f(a, b)})

Let us construct the two instances I1, I2 corresponding to the state S1.

I1 = P (x0
.= f(x1, x1), 1) = {F (a) .= f(a, b), F (b) .= f(x1, x1)}

I2 = P (x0
.= f(a, b), 1) = {F (a) .= f(x1, x1), F (b) .= f(a, b)}

Note that I has a solution iff I1 or I2 has a solution.
A natural way to proceed would be to solve I1 and I2 recursively. However, that

approach may perform an exponential number of steps since it is visiting all positions in a
term that is represented as a DAG. Instead, our algorithm, roughly speaking, solves I1 and
I2 simultaneously using a “Merge rule”, which generates state S2 from the state S1.

S2 = (〈a, b〉, {f(x1, x1) .=S
f(a, b)}).

Note that, again by Definition 4.2, S2 spans I1 and I2, since P (f(x1, x1) .=S
f(a, b),S2, 1) =

I2 and P (f(x1, x1) .=S
f(a, b),S2, 2) = I1, and hence we have not lost any solutions. Note

that the symmetric mark indicates that we need to try both orientations of the equation.
We can continue by applying “decompose” to S2 to get S3:

S3 = (〈a, b〉, {x1
.=S

a, x1
.=S

b}).

And we can again use the “Merge rule” to get S4:

S4 = (〈a, b〉, {a .=S
b}).

CSL 2015

410 Two-Restricted One Context Unification is in Polynomial Time

Decompose: 〈R,∆ = Γ ∪∆′〉
SolveFO(I1σ) | . . . | SolveFO(I2|Γ|σ) | Decompose(〈R,∆〉,Γ,Y)
where

⋃
Ii = instances(Γ), σ = {F → •}, |topsymbols(Γ)| = 1,

and Γ ⊂ ∆ is a root class.

Easy: 〈R,∆ ∪ {e}〉
SolvEz(P (e, 1)) | SolvEz(P (e, 2)) | 〈R mgu(e),∆ mgu(e)〉 if P (e, 1) is easy

InvEq: 〈R,∆〉
〈Rσ,∆σ〉 if ∆ |= (s = t) and σ = mgu(s .= t)

DiscardEq: 〈R,∆ ∪ {e}〉
〈R mgu(e),∆ mgu(e)〉 if mgu(∆) = ⊥

Merge:
〈R,∆ ∪ {x = s, x = t}〉
〈R,∆ ∪ {s .=S

t}〉
if x 6∈ vars(∆) and x 6∈ vars(R)

Merge:
〈R,∆ ∪ {x = s, t = x}〉
〈R,∆ ∪ {t .=?

s}〉
if x 6∈ vars(∆) and x 6∈ vars(R)

where ? is S iff x = s or t = x is symmetric.

Fail: 〈⊥,⊥〉
fail

Figure 1 Inference rules for deciding 2-restricted one context unification.

We observe that the instance P (a .=S
b,S4, 1) has a unifier that maps the context variable to

•, and we can terminate declaring that the original problem I has a unifier.
Instead of I, if we start with the instance I ′ = {F (a) .= f(x0, f(a, b)), F (b) .= f(f(x1, x1),

x0)}, then after decomposing the initial state S′0 we would get the state S ′1 containing the
equations x0

.= f(x1, x1), f(a, b) .= x0 in its ∆ component. Now, the two instances I ′1, I ′2
corresponding to this new state would be

I ′1 = P (x0
.= f(x1, x1),S ′1, 1) = {F (a) .= f(a, b), F (b) .= f(x1, x1)}

I ′2 = P (f(a, b) .= x0,S ′1, 1) = {F (a) .= f(a, b), F (b) .= f(x1, x1)}

These two instances are identical! In this case, we again apply “merge” on S ′1, but we now
get a new state S ′2 with an asymmetric equation:

S ′2 = (〈a, b〉, {f(a, b) .= f(x1, x1)}).

We “decompose” S ′2 to get S ′3 with equations a .= x1, b
.= x1 (both asymmetric this time),

but when we then apply “merge” on S ′3, since x1 is on the same side of the two equations,
we generate a symmetric equation in S ′4:

S ′4 = (〈a, b〉, {a .=S
b})

Since one of the instances spanned by S ′4 has a unifier, we know I ′ too has a unifier.

4.3 Inference Rules for Deciding 1CU2r
The inference rules for solving the decision version of 1CU2r are presented in Figure 1. The
rule Decompose and the rule Easy generate more than one state (separated by |). However,
all but one of the child states is immediately evaluated to > or ⊥, and there is only one main
child (shown last) along which the search proceeds (if all others evaluate to ⊥).

Since we are working on a DAG representation for ∆, it is useful to keep in mind the
graph representing the set ∆.

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 411

I Definition 4.3. Let S = (R,∆) be a state. Let V be the nodes of the DAG representing the
terms (and subterms) in ∆. By ≡ we denote the set of undirected edges {(u, v) | ∃u = v ∈ ∆}.
By → we denote the set of subterm edges {(u, v) | u = f(. . . , v, . . .) for some f}. By G(∆)
we denote the graph with nodes V and the two kinds of edges ≡ and →.

We describe the individual inference rules below.

4.3.1 The Decompose rule
As mentioned above, the Decompose rule generates several states. However, all of them but
one correspond to first-order unification instances that are solved immediately in polynomial
time using a procedure SolveFO.

As in the Paterson and Wegman linear unification [19] algorithm, the Decompose rule
first finds a root class Γ ⊆ ∆ in the graph G(∆) (Definition 4.3). A root class is a
maximum cardinality subset Γ of ∆ such that if t is a topterm in Γ, then (a) t is not
a proper subterm of any term in ∆, and (b) t is not a topterm in ∆ − Γ. If such a
nonempty Γ = {e1, . . . , e|Γ|} exists, and if all non-variable terms in Γ have top symbol
f , then the Decompose rule can be applied. First, we instantiate the variables in Γ. Let
θ = {x → f(yx1 , . . . , yxar(f)) | x ∈ topvars(Γ), yxi are fresh variables from Y}. Note that all
terms in Γθ will have f as their top symbol.

I Definition 4.4 (Decompose). Given a state S = (R,∆), we define Decompose(S,Γ,Y) as
the state S ′ = (Rθ,∆′) where ∆′ = (∆− Γ) ∪ Γ′ and Γ′ is obtained from Γθ as follows:
1. If there is an asymmetric equation e = (f(u1, . . . , uk) .= f(v1, . . . , vk)) in Γθ, then replace

e by several equations u1
.= v1, . . . , uk

.= vk.
2. If there is a symmetric equation e = (f(u1, . . . , uk) .=S

f(v1, . . . , vk)) in Γθ, then replace
e by several equations u1

.=S
v1, . . . , uk

.=S
vk.

Note the differences with the decompose rule in classical first-order unification: in first-
order unification, decomposition is not performed when there are variables in an equivalence
class. Moreover, we restrict our application of the rule to a root class as in Paterson and
Wegman [19]. Conditions (a) and (b) above ensure the invariant that variables from Y
occur only as topterms in the equations ∆. This fact will be crucial to prove termination in
polynomial time.

4.3.2 The Shrink rules
The rules Easy, InvEq, and DiscardEq remove at least one equation from the set ∆ and help
in guaranteeing that the size of ∆ stays polynomial w.r.t. the input size.

4.3.2.1 The Easy rule

We first enumerate some easily solvable instances of 1CU2r.

I Definition 4.5 (Easy). A 1CU2r instance {F (r1) .= s, F (r2) .= t} is easy if either one of
the following condition holds: (a) t = C[s] (or s = C[t]) for some non-empty context C, or
(b) topsymbol(s) 6= topsymbol(t), or (c) s = t, or (d) s ∈ X or t ∈ X , or (e) s (or t) occurs
(as a subterm) in r1 or r2.

I Lemma 4.6 (Easy). There is a polynomial time procedure SolvEz that returns > (denoting
True) iff a given easy instance I is unifiable.

CSL 2015

412 Two-Restricted One Context Unification is in Polynomial Time

We will discuss easy instances in more detail in Section 6. For a symmetric equation e, note
that P (e, 1) is easy iff P (e, 2) is easy. The rule Easy checks if P (e, 1) is easy for some e ∈ ∆
and solves it immediately. If both P (e, i) are found to be non-unifiable, then the search
proceeds with the new state obtained by removing e from ∆. Note that e is removed by
applying mgu(e) to the rest of ∆ and R, and recall that if mgu(e) = ⊥ then ∆ mgu(e) = ⊥.

4.3.2.2 The InvEq rule

If there are terms s and t that are made equal by every unifier of a 1CU2r instance, then
we can as well unify s and t and apply the unifier to the 1CU2r instance. The rule InvEq
performs this step. Let S = (R,∆) be a state. We write ∆ |= (s = t) if s and t are distinct
terms that lie in an ≡-cycle of G(∆) (cycle consisting solely of ≡ edges). It should be evident
that if ∆ |= (s = t), then for all e ∈ ∆, sσ = tσ holds for mgu σ of ∆ \ {e}; that is, s and t
are made equal by every unifier of any instance spanned by the state S.

4.3.2.3 The DiscardEq rule

The rule DiscardEq removes an equation e from ∆ if the problems P (e,S, i) spanned by e
have no solutions. This happens, for example, when mgu(∆ \ {e}) = ⊥, by Definition 4.2.

4.4 The Merge rule
Recall that the Decompose rule instantiates variables in the root class to enable the decom-
position. In one special case, we prefer to apply the Merge rule rather than the Decompose
rule. Specifically, the Merge rule is applicable to state (R,∆) if the root class Γ ⊂ ∆ contains
a variable x such that (a) x occurs exactly twice in topterms(Γ) and (b) x does not occur in
the terms of R.

In such a case, ∆ = ∆′ ∪ {e1, e2}, where e1, e2 might be of the form:
1. e1 = (x = s1) and e2 = (x = s2), or e1 = (s1 = x) and e2 = (s2 = x): In these cases, the

two equations e1, e2 are replaced by a single symmetric equation s1
.=S

s2.
2. e1 = (s1 = x) and e2 = (x = s2): In this case, e1, e2 are replaced by s1

.= s2 if both e1
and e2 are asymmetric, and by s1

.=S
s2 otherwise.

The Merge rule captures one of the key insights in our procedure: we can simultaneously
search for solutions for {F (r1) .= s, F (r2) .= t} and {F (r1) .= t, F (r2) .= s}, and this
commutativity is the only source of blowup for 1CU2r (see also the example in 4.2). While
most of the rules presented so far have some similarity to the rules for more general 1CU
problems that we presented in [9], there is no analogue of the merge rule in [9].

4.5 Correctness
We fix a strategy for applying the rules. Specifically, we apply the shrink rules and the Merge
rules exhaustively (denoted by “!”), and apply Decompose only when none of the other rules
are applicable.

((Shrink | Merge)!(Decompose))!

To provide intuition for the working of our procedure, consider the graph G(∆) with
≡ and → edges (Definition 4.3). Either there is a cycle in this graph or there is none. If
there is an ≡-cycle, then we can apply InvEq rule to eliminate it. If there is a cycle that
goes through an → (subterm) edge, (which corresponds to an occurs-check violation in
first-order unification), then the inference rule Easy will be applicable (since for some edge

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 413

s
.= t in the cycle, we will have s = C[t] or t = C[s] for some nonempty context C, which is

Case (a) in Definition 4.5). We exhaustively apply shrink rules, and since they reduce |∆| or
|topterms(∆)|, we will eventually stop. When none of the shrink rules are applicable, then
it means there are no cycles in G(∆). This implies that there will be a root class Γ. If there
are two different top symbols, say f and g, among the terms in Γ, then we would apply the
Easy rule first (some instance spanned by the state will satisfy Case (b) of Definition 4.5). If
Γ contains only equations between variables, then these variables can not occur anywhere
else in ∆ (because Γ is the root class), and hence, again Easy would be applicable (some
instance spanned by the state will satisfy Case (d) of Definition 4.5). Hence, we conclude
that Γ contains at least one non-variable term and all non-variable terms will have the same
function symbol at the top. As a result, the Decompose rule will be applicable. If Merge is
applicable, we first apply that rule and finally, when no more Merge applications are possible,
we apply Decompose, and repeat.

We say that a state has a solution if one of its spanned instances (Definition 4.2) has a
solution. It is easily verified that each inference rule preserves the existence of a solution, and
it does not introduce any new solutions. Furthermore, since the above argument guarantees
progress (stated in Lemma 4.7), correctness follows.

I Lemma 4.7. Let S = (R,∆) be a valid state of our algorithm. If ∆ 6= ∅, then a rule can
be applied to S.

4.6 Termination
Without loss of generality, we assume that the DAG D representing all the terms (and
subterms) in any state are minimal in size, and hence the correspondence between terms
and nodes is bijective. Hence, we can then refer to nodes of D and subterms of the problem
as if they were the same thing. In the rest of this section, when we obtain a bound w.r.t.
subterms(topterms(∆)), for some set of equations ∆, the bound directly translates to the
size of the DAG D representing the terms in ∆. A crucial observation is that the number of
terms represented in a DAG is preserved by the application of substitutions resulting from
the unification of terms of the DAG. This is because application of such substitutions can be
achieved by manipulating only the edges of the DAG, leaving its nodes untouched.

Our algorithm reduces deciding solvability of a 1CU2r instance I to solving instances
I1, . . . , In where each Ii is either an easy instance (generated by rule Easy) or a first-order
unification instance (generated by rule Decompose). Hence, to prove that our algorithm
terminates in polynomial time we have to argue that (A) Ii has polynomial size, for all i,
and that (B) n is polynomial.

One of the main difficulties in the proof is due to the fact our inference system introduces
fresh variables from Y. We first show that the rule applications do not increase the total
number of subterms in the equations of ∆ that are not variables from Y. Moreover, such a
measure decreases with every application of Decompose.

I Lemma 4.8. Let (R,∆0) →∗ (Rk,∆k) be a derivation starting from a valid initial
state. Then, |subterms(topterms(∆k) \ Y)| ≤ |subterms(topterms(∆0)|. Moreover, if
(R,∆0) →∗ (Rk,∆k) →Decompose (Rk+1,∆k+1) then |subterms(topterms(∆k+1)) \ V| <
|subterms(topterms(∆k)) \ V|.

Proof. The lemma follows by inspecting the rules, the observation above that the total
number of subterms from T (F ,X) in every ∆i is preserved by the application of substitutions
resulting from the unification of terms from T (F ,X), and the assumption, w.l.o.g., that

CSL 2015

414 Two-Restricted One Context Unification is in Polynomial Time

variables from Y are always instantiated in terms of variables from X . The second part of
the lemma follows from the maximality of Γ in the Decompose rule. J

Let us call a state minimized if the shrink and merge rules are not applicable. We now
prove a bound on the cardinality of ∆ in minimized states that is independent of the number
of (old and new) variables in the equations.

I Lemma 4.9. Let (R,∆) be a minimized state. Then, |∆| ≤ 2|topterms(∆) \ V|.

Proof. Consider the subgraph G′ of G(∆) (Definition 4.3) defined by only the ≡ edges.
Nodes of G′ in V are called v-nodes, while the rest are called f -nodes. Note that, since
∆ is minimized, the following holds: (i) G′ is acyclic (by non-applicability of Easy), (ii)
Every v-node in G′ has degree at least 3 and each subtree hanging off v has at least one
f -node (by non-applicability of Easy and Merge). We prove that for any forest that satisfies
(i) and (ii), n ≤ 2m − 2, where n is the number of nodes the forest and m is the number
of f -nodes in it. For simplicity, and w.l.o.g., assume that G′ only has one connected
component and hence it is a tree. We use induction on m. (Base case) If m = 2, then
n = 2 and the claim holds. (Induction step) Let m > 2. If there are no v-nodes in G′, then
n = m > 2 and the claim holds. So, let v be a v-node in G′ connected to the disjoint subtrees
{t1, . . . , tl}. Note that l ≥ 3. Let ni and mi be the number of nodes and f -nodes in tree
ti, respectively, for all i. Note that mi > 0. Consider tree ti with node v attached to it.
Call it t′i. If we treat v as an f -node in t′i, then it satisfies (i) and (ii) and we can apply
induction hypothesis to get ni + 1 ≤ 2(mi + 1)− 2; that is, ni ≤ 2mi − 1. Hence we have
n =

∑l
i=1(ni) + 1 ≤

∑l
i=1(2mi − 1) + 1 = 2m− l + 1 ≤ 2m− 2, where the last step holds

because l ≥ 3. Hence, since the total number of nodes in G′ is less than 2|topterms(∆) \ V|,
so is its number of edges and thus |∆|. J

We can now extend the previous claim to any state. The following lemma relies on the
rule application strategy.

I Lemma 4.10. Let (R0,∆0)→∗ (Rk,∆k) be a derivation starting from a valid initial state.
Then, |∆k| ≤ 2|topterms(∆k) \ V|maxarity.

Proof. We use induction on k. The lemma trivially holds for ∆0, since it only contains
one equation and we can assume w.l.o.g. that such equation contains a non-variable term.
For the inductive step, note that the property of the lemma is trivially preserved by all the
rules but Decompose, since such rules do not increase the size of the ∆ component of the
state. For the Decompose rule, recall that this rule is only applicable to a minimized state
∆. By Lemma 4.9, ∆ satisfies |∆| ≤ 2|topterms(∆) \ V|. Hence, the lemma follows from
the fact that Decompose increases the number of equations in ∆ by a factor of, at most,
maxarity. J

We can finally prove claims (A) and (B) required for polynomial time termination.

I Lemma 4.11. Let I be a 1CU2r instance and let (R0,∆0) →∗ Sk = (Rk,∆k) be its
corresponding derivation. Then, k ≤ 4||I||2maxarity and, for every equation e ∈ ∆k,
P (e,Sk, 1) and P (e,Sk, 2) have polynomial size with respect to ||I||.

Proof. By Lemma 4.8, ∀i ∈ {1, . . . , k} : |subterms(topterms(∆i) \ Y)| ≤ |subterms(
topterms(∆0))|, i.e., the number of non-variable subterms in the ∆is in the derivation
does not increase. By Lemma 4.10, we have that every ∆i in the derivation satisfies |∆i| ≤
2|topterms(∆i)\V|maxarity. Since |topterms(∆i)\V| ≤ |subterms(topterms(∆i)\Y)|, we

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 415

have the bound |∆i| ≤ 2|subterms(topterms(∆0))|maxarity ≤ 2||I||maxarity. For the first
statement of the lemma, note that subsequences of rule applications without the Decompose
rule have length at most 2|∆i| ≤ 4||I||maxarity, since the rules in such subsequences
either reduce the cardinality of ∆ or topterms(∆). On the other hand, by Lemma 4.8,
each application of Decompose decreases the measure |subterms(topterms(∆i) \ Y)| ≤
|subterms(topterms(∆0))| ≤ ||I||. Hence, we have k ≤ 4||I||2maxarity. The second state-
ment of the lemma follows from the fact that k is polynomial and that DAGs are used for
term representation. J

5 Representing All Unifiers

We now extend the procedure for deciding 1CU2r to also output a representation for all
unifiers. The procedure works in the same way, except that now we do not terminate when
we find an instance that is unifiable (in Rules Decompose and Easy), but rather we store the
representation for all solutions returned by the subroutines and continue.

Given a 1CU2r instance I, rather than returning all possible unifiers σ of I, our algorithm
will only return the positions hp(Fσ). This is not a loss of generality, since σ can be recovered
from hp(Fσ) and I in polynomial time.

I Definition 5.1 (Sets of solutions). Let I be a 1CU2r instance. The set HP(I) of solutions
of I is the set of positions {hp(Fσ) | σ is a solution of I}.

Using HP(I) as a substitute for all unifiers simplifies presentation and notation considerably.
However, the cardinality of HP(I) may grow exponentially, or even be unbounded.

I Example 5.2. Let s be f(x0, x0) and let t0 = f(a, b), t1 = f(f(x1, x1), f(a, b)), and in
general, let tn = f(f(xn, xn), tn−1) for n ≥ 1. If I = {F (z1) .= s, F (z2) .= tn} where z1, z2
are fresh, then the set HP(I) contains all positions with length at most n + 1, and hence,
its cardinality is exponential in n. If I = {F (a) .= s, F (b) .= tn}, then HP(I) contains all
positions of length n that contain an even number of 1s. These instances have an exponential
worst-case running time for the algorithms in [8]. Our algorithm will represent the sets HP(I)
in polynomial space by means of abstract positions.

Our algorithm will construct a succinct representation, using a grammar-formalism and also
exponentiation, for HP(I), satisfying that: (1) a solution of I can be obtained in polynomial
time, (2) the number of solutions m (or whether it is infinite) of I can be found (or decided)
in polynomial time, and (3) all solutions of I can be obtained in polynomial time w.r.t. m.

To keep track of all solutions, the states over which our inference system works will be
tuples of the form (R,∆, S), where R is a pair of terms, ∆ is a set of labeled, possibly marked
(with S), equations s1

.=l1 t1, . . . , sn
.=ln tn, where no label li occurs more than once, and S

is a set of (representations for) set of positions. For an instance I = {F (r1) .= s, F (r2) .= t},
the initial state will now be (〈r1, r2〉, {s

.=λ t}, ∅).

5.1 The Labels and the Representation of Solutions
The set L of labels in the equations ∆ are terms generated using the following BNF grammar:

L ::== i | L.L | L+ L | L⊕ L

where i denotes a number in {1, . . . , maxarity}. We call elements of L abstract positions.
Note that L contains all concrete positions (that is, pos(F) ⊂ L). Each abstract position

CSL 2015

416 Two-Restricted One Context Unification is in Polynomial Time

denotes a set of concrete positions, but we delay the formal definition of the mapping until
later. Intuitively, ⊕ and + are used to distinguish applications of the Merge rule that produce
a symmetric equation from those that do not. This information is necessary to correctly
recover all solutions in our representation.

The elements of the third component of the state, which represent a set of solutions, are
strings in the set

LS = {〈l, i〉 | l ∈ L, i ∈ {1, 2}}∗.BaseCases ∪ {λ}

where the set BaseCases will be defined later (in Section 5.3 and Section 6). Since expanding
the labels may lead to exponentially large labels, the algorithm in fact uses only the
nonterminals of a dynamically extended Straight-Line Program (SLP), similarly as done
in [13] (see [18] for a survey on algorithms on SLP-compressed words), which keeps the size
polynomial by sharing common prefixes. For simplicity, we obviate this representation in the
definitions of the rules.

We assume that, for the easy instances (Definition 4.5), we have a procedure that returns
some representation of the set of all solutions, which we have denoted by BaseCases above.

5.2 Modified Inference Rules
For each inference rule in Figure 1, we have to show how we update the labels in ∆ and the
third component of the state.

5.2.1 Modification for the Third Component
The only rules that change the third component are Decompose and Easy. We just need to
compute the solutions for the easily solvable instances generated by these two rules, and add
these solutions to the third component of the main branch.

I Rule 5.3 (Decompose). When applying Decompose to a state S = (R,∆ = Γ ∪∆′, S), the
function Decompose(〈R,∆〉,Γ,Y) returns the state whose third component S′ is obtained as
follows:
S′ = S;
for (s =l t) ∈ Γ do
Compute σi = mgu(P (s =l t,S, i){F → •}), for i ∈ {1, 2};
S′ = S′ ∪ {〈l, i〉 | i ∈ {1, 2}, σi 6= ⊥});

end for
Note that σi corresponds to the mgu of the ith first-order unification problem resulting from
the application of the Decompose rule in Figure 1.

I Rule 5.4 (Easy). When applying Easy to a state S = (R,∆ ∪ {s .=l t}, S), the third
component S′ of the last state generated by Easy is computed as follows:

S′ = S ∪ {〈l, i〉.SolvEz(P (s .=l t,S, i)) | i ∈ {1, 2}}

where SolvEz is now assumed to return a representation in BaseCases.

5.2.2 Modifications for the Second Component
The only inference rules that add new equations in ∆ are Decompose and Merge, and hence
we need to specify how labels are assigned to these newly added equations. Labels on existing
equations in ∆ do not change.

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 417

The Decompose rule uses Definition 4.4 to generate the new state. In Definition 4.4, if the
equation e = (f(u1, . . . , uk) .=l f(v1, . . . , vk)) has label l, then the i-th generated equation,
namely ui

.=l.i vi is assigned label l.i. Labels on the symmetric variant in Definition 4.4 are
assigned in the same way. The Merge rule introduces + and ⊕ operators in the labels.

I Rule 5.5 (Merge). When applying Merge to a state S = (R,∆∪{e1, e2}, S), if e1 has label
l1 and e2 has label l2, then the generated equation has label l1 ⊕ l2 if it is symmetric, and it
has label l1 + l2 if it is asymmetric.

The following example, derived from the family in Example 5.2 illustrates the goal of
the Merge rule. Without it the algorithm would still be sound, but it would have worst-case
exponential running time.

I Example 5.6. Consider the 1CU2r instance I = {F (z1) .= f(x0, x0), F (z2) .= f(f(x1, x1),
f(f(x2, x2), f(a, b)))}. The corresponding initial state of our algorithm is S0 = (R =
〈z1, z2〉,∆ = {f(x0, x0) .=λ f(f(x1, x1), f(f(x2, x2), f(a, b)))}, S0 = ∅), and we have the
following derivation:
S0 →Decompose

S1 = (R, {x0
.=1 f(x1, x1), x0

.=2 f(f(x2, x2), f(a, b))}, S1 = {〈λ, 1〉}) →Merge

S2 = (R, {f(x1, x1) .=S
1⊕2 f(f(x2, x2), f(a, b))}, S1) →Decompose

S3 = (R, {x1
.=S

(1⊕2).1 f(x2, x2), x1
.=S

(1⊕2).2 f(a, b)}, S2 = S1 ∪ {〈1⊕ 2, 1〉, 〈1⊕ 2, 2〉}) →Merge

S4 = (R, {f(x2, x2) .=S
((1⊕2).1)⊕((1⊕2).2) f(a, b)}, S2) →Decompose

S5 = (R, {x2
.=S

((1⊕2).1)⊕((1⊕2).2).1 a, x2
.=S

((1⊕2).1)⊕((1⊕2).2).2 b}, S3 = S2 ∪ {〈((1 ⊕ 2).1) ⊕
((1⊕ 2).2), 1〉, 〈((1⊕ 2).1)⊕ ((1⊕ 2).2), 2〉}) →Merge

S6 = (R, {a .=S
(((1⊕2).1)⊕((1⊕2).2).1)⊕(((1⊕2).1)⊕((1⊕2).2).1) b}, S3) →Decompose

S7 = (R, ∅, S4 = S3 ∪{〈((1⊕ 2).1)⊕ ((1⊕ 2).2).1⊕ ((1⊕ 2).1)⊕ ((1⊕ 2).2).1, 1〉, 〈((1⊕ 2).1)⊕
((1⊕ 2).2).1⊕ ((1⊕ 2).1)⊕ ((1⊕ 2).2).1, 2〉})

This example also illustrates the need for a succinct representation for the elements in
the set of solutions of the state. As mentioned in Section 5.1, we use a common grammar-like
representation G that shares common prefixes for that purpose. Instead of defining such
representation formally, we just extend the previous example by showing how S4 looks like with
the suitable representation: S4 = {〈N0, 1〉, 〈N1, 1〉, 〈N1, 2〉, 〈N4, 1〉, 〈N4, 2〉, 〈N7, 1〉, 〈N7, 2〉},
where G is the set of rules {N0 → λ,N1 → (1 ⊕ 2), N2 → N1.1, N3 → N1.2, N4 → (N2 ⊕
N3), N5 → N4.1, N6 → N4.2, N7 → (N5⊕N6)}. This representation also allows us to update
the set of solutions after a rule application in polynomial time.

5.3 Correctness
The strategy for applying the inference rules is unchanged. Note that the elements of
the third component of the state are strings in the set LS (defined in Section 5.1). We
define BaseCases = {exp(p, e), exp(p, k1N + k2), hps(u, v), p.free}, for a concrete position
p ∈ pos(F), natural numbers e, k1, k2 ≤ ||I||, and an integer variable N . Note that the
elements of BaseCases are simply symbolic expressions that are succinct representations for
sets of positions (as defined in Figure 2). The concretization function α : Ls → P(pos(F)),
presented in Figure 2, maps elements in the third component of the state to a set of positions.

Before we can state the correctness claim that solutions are preserved by inference rule
applications, we need to define the set of solutions of a state.

I Definition 5.7 (Solution of a state). Let S = (R,∆, S) be a state. The set of solutions of
S, denoted HP(S), is defined as HP(S) =

⋃
(s=lt)∈∆

⋃
i∈{1,2}(α(〈l, i〉).HP(P (s =l t,S, i)))

CSL 2015

418 Two-Restricted One Context Unification is in Polynomial Time

α(〈i, 1〉) = {i}
α(〈l1.l2, 1〉) =

(
α(〈l1, 1〉).α(〈l2, 1〉)

)
∪(

α(〈l1, 2〉).α(〈l2, 2)〉
)

α(〈l1.l2, 2〉) =
(
α(〈l1, 1〉).α(〈l2, 2〉)

)
∪(

α(〈l1, 2〉).α(〈l2, 1)〉
)

α(exp(p, e)) = {pe}
α(p.free) = {q | q ≥ p}

α(〈l1 + l2, j〉) = α(〈l1, j〉) ∪ α(〈l2, j〉)
α(〈l1 ⊕ l2, 1〉) = α(〈l1, 1〉) ∪ α(〈l2, 2)〉

)
α(〈l1 ⊕ l2, 2〉) = α(〈l1, 2〉) ∪ α(〈l2, 1)〉

)
α(c1.c2) = α(c1).α(c2)
α(exp(p, k1N + k2)) = {pk1k+k2 | k ≥ ||I||2}
α(hps(u, v)) = {q | v|q = u}

Figure 2 Definition of the concretization function α.

It it easy to see that, for a 1CU2r instance I and the corresponding initial state S (Defini-
tion 4.1), HP(I) = HP(S), by Definition 4.2. Hence, to show correctness it suffices to prove that
for every rule application, S →r S ′ of a rule r on a valid state S, HP(S)∪α(S) = HP(S ′)∪α(S′)
holds.

I Lemma 5.8. Let S be a valid state, and let S = (R,∆, S)→r S ′ = (R′,∆′, S′) be a rule r
application. Then, HP(S) ∪ α(S) = HP(S ′) ∪ α(S′) holds.

Lemma 4.7 shows that our inference systems makes progress. Lemmas 5.8 and 4.7 imply
that, for a given 1CU2r instance I, when our inference system terminates, the obtained set
of solutions S ⊂ Ls satisfies that HP(I) =

⋃
l∈S α(l).

Termination follows from the termination argument for the decision version. The termi-
nation argument, together with the correctness of our algorithm and the fact that all the
rules can be checked for applicability and applied in polynomial time, gives us our main
result stated in the following theorem.

I Theorem 5.9. The 1CU2r problem can be solved in polynomial time. Moreover, a poly-
nomial size representation of all solutions can be computed in polynomial time. This result
holds also when a DAG is used for term representation.

Finally, we informally argue that our representation satisfies the requirements stated at
the beginning of Section 5. First, to extract just one solution, we can expand the definition
of the concretization function α (Figure 2) in a depth-first traversal, without backtracking,
until we get a concrete position. Second, to get the number m of all solutions, if there is a
solution containing the expressions exp(p, k1N + k2) or p.free then m is infinite, otherwise
it is at most exponential and it can be efficiently computed using a dynamic programming
scheme. Third, all solutions of I can be obtained in polynomial time w.r.t. m by a simple
(depth-first) enumeration of the positions in the solution and expansion of expressions in
BaseCases.

6 Easy Instances

Recall that our inference rules assume that easy instances of 1CU2r can be solved in
polynomial time (Lemma 4.6); and that in fact, a representation for all solutions can also be
efficiently computed. We establish those claims here, showing that Lemma 4.6 holds for all
cases of Definition 4.5.

The special case where we have one equation that contains F on both sides was solved
in polynomial time in a previous paper [8] (Theorem 5.20). That case corresponds, after

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 419

abstracting proper subterms of the form F (r) by variables, to the case where I contains
equations of the form F (u1) .= s, F (u2) .= C[s] with C 6= •. The key observation is that the
hole position of F has to be a prefix or exponentiation of hp(C). In the problem considered
in [8], the terms at the input were given explicitly. Since, we assume the DAG representation
for terms, the result from [8] needs to be extended for our setting. However, the proof ideas
are the same, and hence the proof is omitted here.

I Lemma 6.1 (cyclic). Let I be a 1-CU instance of the form I = I ′ ∪ {F (u1) .= s, F (u2) .=
C[s]}, where C is a non-empty context. Then, a polynomial time procedure SolveCyclic
returns a complete representation of HP(I) of polynomial size.

The expressions in the complete set of solutions of the previous lemma are of the forms
exp(p, e) and exp(p, k1N + k2), where p is a position, e, k1, k2 are natural numbers bounded
by ||I||2, and N is an integer variable. The expressions exp(p, e) and exp(p, k1N + k2) stand
for the result of raising p to e and k1N + k2, respectively.

Note that the fact that Lemma 4.6 holds for case (a) of Definition 4.5 follows from
Lemma 6.1. The fact that Lemma 4.6 also holds for case (b) of Definition 4.5 follows from
the following lemma.

I Lemma 6.2 (Clash). Let I be a 1CU instance of the form I = I ′∪{F (u1) .= f(s1, . . . , sm),
F (u2) .= g(t1, . . . , tm′)}, with f 6= g. Then, I can be solved by a polynomial time procedure
SolveClash and HP(I) is either empty or {λ}.

Proof. The fact that every solution σ must satisfy Fσ = • directly follows from f 6= g.
Hence, this particular case reduces to the first-order unification problem I ′ = I{F → •},
which can be solved in polynomial time w.r.t. ||I||. J

Let us now argue that Lemma 4.6 holds for cases (c) and (d) in Definition 4.5. Note
that such cases reduce to solving one equation by unifying left hand-sizes and replacing
first-order variables by their left hand-sides, respectively. Hence, these two cases follow from
the following Lemma. Its proof is included in [9] and hence omitted here.

I Lemma 6.3 (1-eqn). Let I be a 1CU2r instance consisting of the single equation F (s) .= t.
Then, a complete representation of HP(I) of polynomial size can be computed in polynomial
time.

The expressions in the complete set of solutions in the previous lemma are of the forms
hps(u, v) and p.free for terms u, v and a position p of polynomial size. These expressions
stand for the (possibly exponential and infinite) sets of positions {q ∈ pos(v) | v|q = u} and
{p.p′ | p′ ∈ pos(F)}, respectively.

Finally, we just need to show that Lemma 4.6 also holds for case (e) of Definition 4.5
to complete its proof. Note that such case reduces to solving an instance of the form
{F (r) .= s, F (C[s]) .= t}. Before we give a polynomial time algorithm for that case, we
first prove a particular case of 1CU: solving a single equation of the form F (C[F (s)]) = t.
Equations of this form have the nice property that the hole position of any context that is a
solution for F can not be an extension of a nonlinear positions in t. A position p is nonlinear
in t if there exists another position q 6= p such that t|p = t|q. We also call t|p a nonlinear
subterm of t. Note that there are only a (linear number of) linear positions in a term. In
contrast, there can be exponentially many nonlinear positions in a term. Since the following
lemma is already proved in [9], we only state it here.

CSL 2015

420 Two-Restricted One Context Unification is in Polynomial Time

I Lemma 6.4. Let I be a 1CU instance consisting of one single equation of the form
F (C[F (s)]) .= t such that F does not occur in t (but F can occur in C). Let P = {p ∈
pos(t) | t|p = v and v is a non-linear subterm of t}. Then, ∀p ∈ P : hp(Fσ) 6= p, for every
solution σ of F (C[F (s)]) .= t.

It follows from the previous Lemma that for the equation F (C[F (s)]) .= t, we only need
to test the (small number of) linear positions as possible hole positions. This implies that, as
stated in the following lemma, we can enumerate a complete set of unifiers: a set of unifiers is
complete if any other unifier (for the problem) is an instance of some unifier in the set. Here,
a unifier is allowed to instantiate a context variable F in terms of a new context variable F ′.

I Lemma 6.5. Let I be a 1CU instance consisting of one single equation of the form
F (C[F (s)]) .= t such that F does not occur in t. Then, a complete set of unifiers U of I of
polynomial size can be computed in polynomial time. Any substitution σ in U satisfies one of
the two conditions below:
1. Either Fσ = t[•]p, with p ∈ pos(t),
2. Or σ = {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(s)]q])}, where x does not occur in F (C[F (s)]),

t|q = x, and F ′ is a new context variable different from F .

Proof. We distinguish two cases. First consider solutions σ satisfying that hp(Fσ) ∈ pos(t).
By Lemma 6.4, for each of such solutions, hp(Fσ) must be in the set Q = {p ∈ pos(t) | t|p =
v and v is a linear subterm of t}. Note that {F → t[•]p} ≤ σ. Since |Q| is polynomial w.r.t.
|t| even in the DAG representation, then U has a polynomial number of solutions of this
form. Now consider solutions σ such that hp(Fσ) 6∈ pos(t). Let p = p1.p2, where p1 is the
longest prefix of p defined in t. Note that t|p1 must be a variable x linear in t by Lemma 6.4.
Moreover, since σ satisfies xσ|p2 = C[F (s)]σ, x does not occur in C[F (s)]. Hence, σ is of the
form {F 7→ t[D]p1 , x 7→ DC[t[D(s)]p1]}, for an arbitrary context D such that hp(D) = p2.
Hence, all solutions σ such that hp(Fσ) = q.q′ and q.q′ 6∈ pos(t), with q ∈ Q, can be
represented by a substitution θ = {F 7→ t[[F ′(•)]]q, x 7→ F ′(C[t[F ′(s)]q])}, where t|q = x, F ′
is a new context variable different from F , since θ ≤ σ holds. J

Finally, the fact that Lemma 4.6 holds for case (e) in Definition 4.5 follows from the
following lemma, which completes the proof of Lemma 4.6. It is easy to see that the set of
solutions of the next lemma can be represented using expressions hps(u, v) and p.free for
terms u, v and a position p of polynomial size, as in Lemma 6.3. Hence, Lemma 4.6 follows
from Lemmas 6.1, 6.2, 6.3, and 6.6. Moreover a representation for all solutions consisting of
expressions in BaseCases can always be computed for all easy instances.

I Lemma 6.6. Consider a 1CU2r instance of the form I = {F (r) .= s, F (C[s]) .= t} Then,
a complete representation of HP(I) of polynomial size can be computed in polynomial time.

Proof. First note that if either s or t is a constant, the lemma is straightforward. Also,
we can whether λ is in HP(I) by solving the first-order unification problem resulting from
applying the substitution F 7→ •. Hence, we can assume that s and t are both not constants
and Fσ 6= •, for every solution σ. By Lemma 6.5 we can compute, in polynomial time, a
complete set of unifiers U = θ1, . . . , θk of the single equation F (C[F (r)]) .= t of polynomial
size. Moreover, every substitution θ ∈ U satisfies one of the two conditions below:
1. Fθ = t[•]p, with p ∈ pos(t), or
2. θ = {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(r)]q])}, where x does not occur in F (C[F (r)]), t|q = x,

and F ′ is a new context variable different from F .

A. Gascón, M. Schmidt-Schauß, and A. Tiwari 421

Hence, to obtain a polynomial time algorithm, it is enough to check if some substitution in
U can be extended to solve also the equation F (r) .= s, and thus I. Consider the two cases
of a substitution θ ∈ U .
1. If θ is such that Fθ = t[•]p, then the check can clearly be done in polynomial time, since

F (r)θ .= sθ is a first-order unification instance of polynomial size thanks to the DAG
representation.

2. Otherwise, θ is of the form {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(r)]q])}, where tq = x, we
distinguish cases depending on whether x occurs in s, and if so, where.
(i) First assume that x occurs in s at a position p such that either p < q or p > q. Since

we are looking for solution σ where hp(Fσ) ≥ q, these cases can be rewritten into
a form that is covered by Lemma 6.1. Note that since p 6= q, C in Lemma 6.1 is
nonempty.

(ii)) Assume that, for some p, s|p = x and p is disjoint with q. In this case, every solution
σ that is an extension of θ satisfies that |Fσ| > |Fσ|qσ| = |xσ| = |F (C[F (r)])σ| >
|Fσ|, a contradiction. Hence we know that if x occurs in s at a position disjoint with
q there are no solutions that are extensions of θ and thus there is no need to test θ.

(iii) Consider now the case where s|q = x. In this case, every solution σ that is an
extension of θ will satisfy sσ = tσ, and hence, also in this case, there is no need to
test θ, since the equation F (C[s]) .= t, and our assumption that F is not • in any
solution, imply sσ 6= tσ for every solution σ.

(iv) Finally, consider the case where x does not occur in s. Note that if r contains x
then I has no solution that is an extension of θ, again because of F is not • in
any solution. Thus, neither rθ nor sθ contain F ′, F (r)θ .= sθ reduces to a single
equation F ′(r′) .= s′ after applying a few first-order decomposition steps, and the
lemma follows from Lemma 6.3 in this case. J

7 Conclusion

We have shown that the subcase of the one context unification problem of two equations
F (r1) = s1, F (r2) = s2 can be solved in polynomial time, including a polynomial size
representation of all unifiers. Our procedure led to polynomial time algorithm for several
subclasses of the general 1CU problem [9]. We leave it to future work to extend this work to
the unrestricted one context unification problem, by extending the techniques presented in
this paper and [9]. Another possible future line of research is to investigate the algorithmic
properties of fault tolerant unification with other bounds on the number of faults, and
whether our algorithm can be extended to obtain a polynomial time algorithm also for the
case where STGs are used for term representation.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

New York, NY, USA, 1998.
2 F. Baader and W. Snyder. Unification theory. In John Alan Robinson and Andrei Voronkov,

editors, Handbook of Automated Reasoning, pages 445–532. Elsevier and MIT Press, 2001.
3 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree Automata Techniques and Applications. Available on: http:
//www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

4 C. Creus, A. Gascón, and G. Godoy. One-context Unification with STG-Compressed Terms
is in NP. In RTA, pages 149–164, 2012.

CSL 2015

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

422 Two-Restricted One Context Unification is in Polynomial Time

5 S. Schulze Frielinghaus and H. Seidl M. Petter. Inter-procedural Two-variable herbrand
Equalities. In Proc. Symp. Programming, ESOP, LNCS 9032, pages 457–482, 2015.

6 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Context Matching for Compressed Terms.
In LICS, pages 93–102, 2008.

7 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and Matching on Compressed
Terms. ACM Trans. Comput. Log., 12(4):26, 2011.

8 A. Gascón, G. Godoy, M. Schmidt-Schauß, and A. Tiwari. Context Unification with One
Context Variable. J. Symb. Comput., 45(2):173–193, 2010.

9 A. Gascón, M. Schmidt-Schauß, and A. Tiwari. One Context Unification Problems Solvable
in Polynomial Time. In LICS, 2015. To appear.

10 W. D. Goldfarb. The Undecidability of the Second-Order Unification Problem. Theor.
Comput. Sci., 13:225–230, 1981.

11 S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis.
In ESOP, pages 253–267, 2007.

12 A. Jeż. Context unification is in PSPACE. In ICALP, pages 244–255, 2014.
13 J. Levy, M. Schmidt-Schauß, and M. Villaret. Monadic Second-Order Unification is NP-

Complete. In RTA, pages 55–69, 2004.
14 J. Levy, M. Schmidt-Schauß, and M. Villaret. Bounded Second-Order Unification is NP-

complete. In RTA, pages 400–414, 2006.
15 J. Levy, M. Schmidt-Schauß, and M. Villaret. Stratified Context Unification is NP-complete.

In IJCAR, pages 82–96, 2006.
16 J. Levy, M. Schmidt-Schauß, and M. Villaret. The Complexity of Monadic Second-Order

Unification. SIAM J. Comput., 38(3):1113–1140, 2008.
17 J. Levy, M. Schmidt-Schauß, and M. Villaret. On the complexity of Bounded Second-Order

Unification and Stratified Context Unification. Logic Journal (IGPL), 19(6):763–789, 2011.
18 M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryp-

tology, 4(2):241–299, 2012.
19 M. S. Paterson and M. N. Wegman. Linear unification. J. of Computer and System Sciences,

16:158–167, 1978.
20 M. Schmidt-Schauß and K. U. Schulz. Solvability of Context Equations with Two Context

Variables is Decidable. J. Symb. Comput., 33(1):77–122, 2002.

	Introduction
	Preliminaries
	One Context Unification
	The Decision Version of 1CU2r
	Defining the state
	An Illustrative Example
	Inference Rules for Deciding 1CU2r
	The Decompose rule
	The Shrink rules

	The Merge rule
	Correctness
	Termination

	Representing All Unifiers
	The Labels and the Representation of Solutions
	Modified Inference Rules
	Modification for the Third Component
	Modifications for the Second Component

	Correctness

	Easy Instances
	Conclusion

