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ABSTRACT
We present dispel4py, a novel data intensive and high per-
formance computing middleware provided as a standard Python
library for describing stream-based workflows. It allows its
users to develop their scientific applications locally and then
run them on a wide range of HPC-infrastructures without
any changes to the code. Moreover, it provides automated
and efficient parallel mappings to MPI, multiprocessing, Storm
and Spark frameworks, commonly used in big data appli-
cations. It builds on the wide availability of Python in
many environments and only requires familiarity with ba-
sic Python syntax. We will show the dispel4py advantages
by walking through an example. We will conclude demon-
strating how dispel4py can be employed as an easy-to-use
tool for designing scientific applications using real-world sce-
narios.

1. INTRODUCTION
Recent years have seen a spectacular growth in scientific

data, that must be shared, processed and managed on differ-
ent distributed computational infrastructures (DCI). Major
contributors to this phenomenal data deluge include new av-
enues of research and experiments facilitated by e-Science.
Such e-Science data emanates from different areas, such as
sensors, satellites, high-performance computer simulations
and already exceeds tens of petabytes per year. However,
success with these technologies depends on additional mech-
anisms that are not straightforward for non-experts: for ex-
ample MPI or OpenMP) should be used depending on the
memory architecture. This technical detail distracts from
the domain goals and limits progress, e.g. by requiring code
changes for each target DCI.
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This paper presents a new toolkit for scientists, called
dispel4py, to enable them to rapidly prototype their dis-
tributed data-intensive applications. It provides an enact-
ment engine that maps and deploys abstract workflows onto
multiple parallel platforms, including Apache Storm, MPI
and shared-memory multi-core architectures.
dispel4py has been primarily used in e-Science contexts,

most notably in Seismology.
This paper is structured as follows. Section 2 presents

the motivation for using the Python language. Section 3
presents the VERCE project. Section 4 defines the dis-

pel4py concepts and design. Section 5 shows how to install
and use dispel4py walking through an example workflow.
Section 6 discusses dispel4py mappings. Section 7 presents
two dispel4py workflows in the Seismology domain. Sec-
tion 8 introduces the dispel4py monitoring service. We
conclude with a summary of achievements and outline some
future work.

2. WHY PYTHON?
Python is a high-level programming language, interpreted
with capabilities for object-oriented programming. Python
has a simple, easy to learn syntax, emphasises readabil-
ity and therefore reduces the cost of program maintenance.
Python supports modules and packages, which encourages
program modularity and code reuse. Often scientists choose
this language because of the simplicity to quickly code their
scripts hence providing increased productivity. Since there
is no compilation step, the edit-test-debug cycle is incredibly
fast.

In particular, Python is very popular in the e-Science do-
main of Seismology. Moreover, Python provides a plethora
of rich scientific computing libraries such as:

• NumPy1: Python library for array processing for num-
bers, strings, records, and objects

• SciPy2: Python library of algorithms and mathemati-
cal tools

• ObsPy3: A Python framework for processing seismo-
logical data.

There are also libraries for multitasking and parallel pro-
cessing such as multiprocessing and MPI. However, these

1http://www.numpy.org/
2http://www.scipy.org/
3https://github.com/obspy/obspy/wiki



operate at a low level, depend on knowledge on the machine
architecture and require the user to be familiar with the
mechanisms. Our objective is to help scientists to write and
put together higher level functionality, using their preferred
environment for Python development, and testing it first on
their own laptop, then moving on to the department cluster
or an HPC service.

3. VERCE PROJECT
The EU VERCE project4, “Virtual Earthquake and seis-

mology Research Community in Europe e-science environ-
ment”, has developed a comprehensive and integrated virtual
research environment (VRE) for computational and data-
intensive seismology. This has been pioneered with particu-
lar simulation models and data-driven seismology examples.

The present VERCE e-Infrastructure involves major ele-
ments moving from the researchers’ point of contact to the
contextual digital resources.

The scientific gateway that is web accessible from any-
where, provides an integrated view of all available resources,
handles continuity between sessions and supports collabora-
tion with shared data and methods, and with pervasive data
access controls. For scalable data processing it leverages
the data-intensive Python framework dispel4py described
in this paper. dispel4py enables mapping to multiple Dis-
tributed Computing Infrastructures (DCIs) within the in-
frastructure.

4. DISPEL4PY CONCEPTS
It is increasingly apparent that workflow tools and lan-

guages play significant roles due to their inherent modular-
ity and intuitive visualisation properties – graphs appear to
be a natural way to visualise logical compositions of pro-
cessing steps. We are just experiencing a critical transition
from an era when performance issues dominated to an era
when these can be dealt with automatically so that domain
scientists can experiment with and take full responsibility
for the encoding of their methods. We adopt the abstract
model of data streaming between operations as it is versa-
tile and easily understood. It will have a significant impact
on the way scientists think and carry out their data-analysis
tasks. The low overhead of the interconnections make it suit-
able for immediate interpretation and for composing small
as well as large steps, yet data streams can be expanded
to arbitrary capacity and the graphs are easily parallelised.
Consequently, dispel4py allows scientists to express their
requirements in abstractions closer to their needs and fur-
ther from implementation and infrastructural details.

The Dispel language [2] had these goals. dispel4py builds
on this but aligns more closely with the requirements of sci-
entists by providing them with a toolkit in Python, a fa-
miliar programming language, to extend their existing data
processing scripts into streaming workflows easily and intu-
itively.

In the following we present a summary of the main dis-

pel4py concepts and terminology. More information is avail-
able at the dispel4py documentation5.

4.1 Processing Elements

4EU VERCE, http://www.verce-project.eu, RI 283543.
5http://dispel4py.org

A processing element (PE) is a computational activity, cor-
responding to a step in a scientific method or a data trans-
forming operator. A PE encapsulates an algorithm or a
service. PEs are the basic computational blocks of any dis-

pel4py workflow at an abstract level and form the nodes
in a workflow graph. dispel4py offers a variety of base
classes for PEs to be extended: GenericPE , IterativePE, Con-
sumerPE, SimpleFunctionPE and CompositePE. The primary
differences between them are the number of inputs that they
accept and how users express their computational activities.
GenericPE represents the basic interface and accepts a con-

figurable number of inputs and outputs, whereas IterativePE
declares exactly one input and one output and usually en-
capsulates a simple iterative computational step such as a
filter or a transformation. A ConsumerPE has one input and
no outputs, representing a leaf in the workflow tree and ac-
cordingly, a ProducerPE has no inputs and one output and
serves as a data producer or root. When extending any
of these PE classes the user overrides the _process method.
The SimpleFunctionPE behaves like an IterativePE and wraps
a function, providing an even easier way to create itera-
tive computational building blocks by simply implementing
a function (rather than creating a PE class). A CompositePE
contains a subgraph and declares inputs and outputs in the
same way as any other PE.

4.2 Instances
An instance is the executable copy of a PE that will con-

sume data units from its input ports and emit data units
from its output ports transformed by its algorithm. Dur-
ing enactment and prior to execution each PE is translated
into one or more instances. Multiple instances may occur to
parallelise execution and increase data throughput.

4.3 Connection
A connection streams data units from an output port of a

PE instance to one or more input ports of other instances.
The rate of data consumption and production depends on
the behaviour of the source and destination PEs. A PE must
declare its connections that it provides as this is required
information when the graph is translated into the enactment
process.

4.4 Composite PEs
A composite processing element is a PE that wraps a dis-

pel4py sub-workflow. Composite processing elements allow
for synthesis of increasingly complex workflows by compos-
ing previously defined sub-workflows. They present as PEs
and may be used to hide complexity from the user.

4.5 Workflow graph
A graph defines the ways in which PEs are connected and

hence the paths taken by data, i.e. the topology of the work-
flow. There are no limitations on the type of graphs that
can be designed with dispel4py. Figure 2 is an example
graph with four PEs in a simple pipeline. The “root” PE
readRaDec, or data producer, starts the pipeline by reading
input parameters and passes them to getVOTable as inputs.
This PE emits the galaxy data as a VO table whose columns
are then filtered by filterColumns and finally the internal ex-
tinction of the galaxy is computed. We explain this example
in more detail in section 5. More examples can be found in



the dispel4py documentation6.

4.6 Grouping
A grouping specifies the communication pattern between

connected PEs and specifies how the data stream is dis-
tributed to a number of parallel instances. These patterns
are relevant at the parallel enactment stage as each pat-
tern arranges the set of receiving PE instances. There are
four patterns available: shuffle, group_by, one_to_all and
all_to_one.

• The shuffle grouping randomly distributes data units
to the receiving instances and, depending on the en-
actment platform, this may be optimised according to
load.

• The group_by grouping ensures that data units with
certain features or values are received by the same in-
stance, thus enabling aggregations similarly to the re-
lational algebra context.

• In the one_to_all grouping all PE instances receive
copies of all output data from the connected instances.
This is equivalent to a broadcast in the MPI context.

• all_to_one means that all data units are received by
a single instance, for example to provide a total sum
in an aggregation.

Consider the classic WordCount workflow which counts the
words in a document. In the dispel4py workflow the Word-
Count PE applies a group_by grouping based upon the field
word to collect the number of occurrences of a word, and
the final PE applies an all_to_one grouping to collect the
output.

4.7 Partitions
A partition is a number of PEs wrapped together and is

usually executed within the same process. It may be used to
explicitly co-locate PEs that have relatively low CPU and
RAM demands, but high data-flows between them. This
corresponds to task-clustering in the task-oriented workflow
systems. Note that partitions provide an optimisation mech-
anism during enactment whereas composite PEs represent
reusable components at a logical level.

5. USING DISPEL4PY
This section describes details about the software package
dispel4py, how to install it, where to find documentation,
and we walk through an example script that constructs a
workflow.

5.1 Installation
The latest stable release of dispel4py (currently version

1.2) is available from the Python Package Index (PyPI)7.
dispel4py is pure Python and supports Python versions 2
and 3 and can be executed in any environment where Python
is available, notably recent Linux versions on which most
cloud clusters are based, and HPC services.

6http://dispel4py.org/documentation/dispel4py.
examples.graph_testing.html
7https://pypi.python.org/pypi/dispel4py

dispel4py is installed via the Python package manage-
ment system pip using a simple command:

pip install dispel4py

The documentation is available on the dispel4py web-
site8.

dispel4py project files structure

[dispel4py]

__init__.py

__main__.py

base.py

core.py

new

__init__.py

aggregate.py

mappings.py

monitoring.py

mpi_process.py

multi_process.py

processor.py

simple_process.py

spark_process.py

storm

__init__.py

client.py

storm_submission.py

storm_submission_client.py

topology.py

utils.py

Figure 1: dispel4py project files structure

5.2 Modules
The package contents of dispel4py are shown in Figure 1.

• The core module defines the base class GenericPE which
all PE implementations must extend.

• The base module makes available the utility PE classes
described in the previous section, notably IterativePE,
ConsumerPE, CompositePE.

• The module workflow_graph constructs the graph rep-
resentation, building on the Python package networkx9.
It also provides other utilities, for example visualisa-
tion of the dispel4py graph using Graphviz dot10.

• The mapping modules mpi_process (MPI), multi_process
(shared memory multi-process) and simple_process

for sequential mapping are described in the following
section. They are based on the shared processor mod-
ule containing methods applicable to all platforms.

8http://dispel4py.org/documentation/
9https://networkx.github.io/

10http://www.graphviz.org/



• The Storm mapping has its own package with vari-
ous modules that translate a dispel4py workflow to a
Storm topology and submit it to a cluster.

5.3 Building workflows
Users construct their workflows as standalone Python scripts
that describe the graph and import dependencies as required.
Note that the dependencies must be available on the target
enactment system but they may not be supported by the
client system, enabling users to submit workflows to a dif-
ferent system than their own.

When creating a dispel4py workflow graph, it is necessary
to first instantiate a WorkflowGraph object and then add
PEs to it by connecting them together (see example code
listing below). Users may use available PEs from the dis-

pel4py libraries, or implement their own PEs (in Python) if
they require new functionality.

In the interactive IPython11 shell dispel4py supports the
visualisation of a constructed workflow graph using Graphviz
dot that can be inspected by the user for correctness.

read
RaDec

getVO
Table

filter
Columns

internal
Extinction

Figure 2: Internal Extinction dispel4py workflow.

As an example, we show the code for constructing the
workflow illustrated in Figure 2. This is a workflow in the
astronomy domain that queries a Virtual Observatory (VO)
service12 for a number of galaxies and calculates their inter-
nal extinction. The PEs are connected in a pipeline. In the
code listing shown we assume that the logic within PEs is
already implemented.

1 from di spe l4py . workf low graph \
2 import WorkflowGraph
3
4 pe1 = ReadRaDec ( )
5 pe2 = GetVOTable ( )
6 pe3 = FilterColumns ( )
7 pe4 = I n t e r n a l E x t i n c t i o n ( )
8
9 graph = WorkflowGraph ( )

10 graph . connect ( pe1 , ’ data ’ , pe2 , ’ input ’ )
11 graph . connect ( pe2 , ’ votable ’ , pe3 , ’ votable ’ )
12 graph . connect ( pe3 , ’ columns ’ , pe4 , ’ input ’ )

Once the dispel4py workflow has been built, it can be
automatically executed in several distributed computing in-
frastructures leveraging the mappings that are explained in
the next section.

6. DISPEL4PY FEATURES
We will describe dispel4py’s mapping features that allow
users to automatically run their workflows with different en-
actment systems.

One of dispel4py’s strengths is that it allows the con-
struction of workflows without knowledge of the hardware

11http://ipython.org/
12http://www.ivoa.net/

or middleware context in which they will be executed. Users
focus on designing their workflows at a logical level, describ-
ing actions, input and output streams, and how they are
connected. When their Python script is run this graph is
constructed, and then it is either locally interpreted or the
dispel4py system maps the graph to a selected enactment
platform. Since the abstract workflows are independent from
the underlying communication mechanism they are portable
among different computing resources without any migration
cost imposed on users, i.e. they do not make any changes to
run in a different context.

The dispel4py system currently implements mappings for
MPI, shared memory DCIs, Apache Storm and a prototype
Apache Spark, as well as a Sequential mapping for develop-
ment and small applications.

6.1 MPI
MPI is a standard, portable message-passing system for par-
allel programming, whose goals are high performance, scal-
ability and portably [4]. For this mapping, dispel4py uses
mpi4py13, which is a full-featured Python binding for MPI
based on the MPI-2 standard. The dispel4py system maps
PEs to a collection of MPI processes. Depending on the
number of targeted processes, which the user specifies when
executing the mapping, multiple instances of each PE are
created to make use of all available processes. Input PEs,
i.e. at the root of the dispel4py graph, only ever execute
in one instance to avoid the generation of duplicate data
blocks.

Data units to be shipped along streams are converted into
pickle-based Python objects and transferred using MPI asyn-
chronous calls. Groupings are mapped to communication
patterns, which assign the destination of a stream (e.g. shuf-
fle grouping is mapped to a round-robin pattern, for group-by
the hash of the data block determines the destination). For
both MPI and multiprocessing, users can specify partitions
of the graph and the mapping distributes these across pro-
cesses in the same way as single PEs. The MPI mapping
requires mpi4py and any MPI interface, such as mpich14 or
openmpi15.

6.2 Multiprocessing
The Python library multiprocessing is a package that sup-
ports spawning subprocesses to leverage multicore shared-
memory resources. It is available as part of standard Python
distributions on many platforms without further dependen-
cies, and hence is ideal for small jobs on desktop machines,
taking full advantage of multiple cores. The Multiprocess-
ing mapping of dispel4py (also called multi) creates a pool
of processes and assigns each PE instance to its own pro-
cess. Messages are passed between PEs using multiprocess-
ing.Queue objects. As in the MPI mapping, dispel4py maps
PEs to a collection of processes. Each PE instance reads
from its own private input queues on which its input blocks
arrive. Each data block triggers the execution of the pro-
cess() method which may or may not produce output blocks.
Output from a PE is distributed to the connected PEs de-
pending on the grouping pattern that the destination PE
requests. The Communication class manages distribution

13http://mpi4py.scipy.org/
14http://www.mpich.org/
15http://www.open-mpi.org/



of data. The default is ShuffleCommunication which im-
plements a round-robin pattern; the GroupByCommunication
groups output by specified attributes. The Multiprocessing
mapping allows partitioning of the graph to colocate PEs in
one process.

6.3 Apache Storm
The dispel4py system maps to Storm by translating its
graph description to a Storm topology. As dispel4py al-
lows its users to define data types for each PE in a work-
flow graph, types are deduced and propagated from the data
sources throughout the graph when the topology is created.
Each Python PE is mapped to either a Storm bolt or spout,
depending on whether the PE has inputs (a bolt), i.e. is an
internal stage, or is a data source (a spout), i.e. is a point
where data flows into the graph from external sources. The
data streams in the dispel4py graph are mapped to Storm
streams. The dispel4py PEs may declare how a data stream
is partitioned across processing instances. By default these
instructions map directly to built-in Storm stream group-
ings. The source code of all mappings can be found at16.

There are two execution modes for Storm: a topology can
be executed locally using a multi-threaded framework (de-
velopment and testing), or it can be submitted to a produc-
tion cluster. The user chooses the mode when executing a
dispel4py graph in Storm. Both modes require the Storm
package on the client machine.

6.4 Apache Spark
Apache Spark17 is a popular platform that leverages Hadoop
YARN and HDFS taking advantage of many properties such
as dynamic scaling and fault tolerance. It has also been used
HPC platforms by distributing Spark worker nodes at run-
time to the available processors of a job in an HPC cluster
and managing Spark tasks. The Spark mapping of dis-

pel4py is a prototype and it is targeted at users that are
not familiar with the Hadoop/MapReduce environment but
would like to take advantage of the rich libraries that the
platform provides. The dispel4py system maps to Spark
by translating a graph description to PySpark actions and
transformations on Spark’s resilient distributed datasets (RDDs).
RDDs can be created from any storage source supported
by Hadoop, such as text files in HDFS, HBase tables, or
Hadoop sequence files. Root PEs in the dispel4py graph
are mapped to RDD creators, and each PE with inputs is
mapped to an action or a transformation of a RDD. At the
leaves of the dispel4py graph a call to foreach() is inserted
in order to trigger the execution of a complete pipeline of
actions. In the future we envisage mapping a set of reserved
PE names (possibly supported by the registry) to available
actions and transformations in Spark to take full advantage
of the optimisations available on the platform.

6.5 Sequential mode
The sequential mode (simple) is a standalone mode that is
ideal for testing workflows during development. In sequen-
tial mode a dispel4py graph is enacted in sequence, re-
specting dependencies, within a single process without op-
timisation. When executing a dispel4py graph in sequen-
tial mode, the dependencies of each PE are determined and
the PEs in the graph are executed in a depth-first fashion

16https://github.com/dispel4py/dispel4py/
17http://spark.apache.org/

starting from the roots of the graph (data sources). The
source PEs process a user-specified number of iterations or
are supplied with an input dataset. All data is processed,
and messages are passed between nodes, in-memory.

7. DISPEL4PY IN ACTION
The following subsections describe a dispel4py workflow

from the Seismology domain to show how dispel4py enables
scientists to describe data-intensive applications using a fa-
miliar notation, and to execute them in a scalable manner
on a variety of platforms without modifying their code.

7.1 Seismic Noise Cross Correlation
Earthquakes and volcanic eruptions are sometimes pre-

ceded or accompanied by changes in the geophysical proper-
ties of the Earth, such as wave velocities or event rates. The
development of reliable risk assessment methods for these
hazards requires real-time analysis of seismic data and truly
prospective forecasting and testing to reduce bias. How-
ever, potential techniques, including seismic interferometry
and earthquake “repeater” analysis, require a large number
of waveform cross-correlations, which is computationally in-
tensive, and is particularly challenging in real-time.

With dispel4py we have developed the Seismic Ambi-
ent Noise Cross-Correlation workflow (also called the xcorr
workflow) as part of the VERCE project [1], which prepro-
cesses and cross-correlates traces from several stations in
real-time. The xcorr workflow consists of two main phases:

• Phase 1 – Preprocess: A series of functions is applied
to each continuous time series from a given seismic
station (called a trace). The processing of each trace
is independent from other traces, making this phase
“trivially” parallel (complexity O(n), where n is the
number of stations).

• Phase 2 – Cross-Correlation: Pairs all of the stations
and calculates the cross-correlation for each pair (com-
plexity O(n2)).

read 
Trace

trace 
Prep

xCorr
write
Results

xCorr

Phase 1: composite PE
pipeline to prepare trace from a single seismometer

Phase 2

Cross Correlation

decim
de
trend

de
mean

re
move
resp

filter
calc
norm

white
calc
fft

product
Pairs

Figure 3: Cross Correlation dispel4py workflow.

Figure 3 shows the dispel4py xcorr workflow, which has five
PEs. Note that the tracePrep PE is a composite PE, where
data preparation (preprocessing) takes place. Each of those
PEs within the composite tracePrep, from decim to calc_fft,
performs processing on the data stream. The xcorr work-
flow was initially tested on a local machine using a small
number of stations as input data. Later, it was executed
and evaluated on different parallel platforms (described at
Section 7.3 and summarised in Table 2) automatically, scal-
ing up by using using the parallel mappings of dispel4py



Figure 4: Cross Correlation dispel4py workflow.

to 1000 stations as input data (150 MB) performing 499,500
cross-correlations (39GB) without modifying the code.

As an exercise to test and validate the cross-correlation re-
sults, we chose two stations, which were live and sufficiently
close together to each other to yield a coherent arrival pack-
age using just an hour of data, during three subsequent days
(from 14/04/2015 to 16/04/2015). During the experiment,
every hour the cross-correlation workflow was performed:

• downloading data from both stations,

• preprocessing the data,

• and finally cross-correlating them.

The results were gathered and visualized as shown in fig-
ure 4. The station pair was located in Southern California
(one hugging the beachfront near LA and the other on an
Island of the coast of LA). The results of this experiment
shows that the noise is very directional, and we only create
a one-sided (predominately surface wave) Green’s Function
Estimate.

Table 1: Measures (seconds) for 1000 stations on
four DCIs with the maximum number of cores avail-
able
Mode Terracorrelator Amazon

EC2
EDIM1 SuperMUC

MPI 3066.22 16862.73 38656.94 1093.16
multi 3143.77
Storm 27898.89 120077.123

The results (see Table 1) demonstrate that dispel4py can
be applied to diverse DCI targets and adapt to variations
among them. However, the xcorr performance depends on
the DCI selected. For example, the best results in terms of
performance were achieved on the SuperMUC machine with
MPI followed by the Terracorrelator machine with MPI and
multi mappings. The Storm mapping proved to be the least
suitable in this case. Yet it is the best mapping in terms
of fault-tolerance for any case and DCI, as Storm delivers
automatic fault recovery and reliability. It may be those
features that make it the slowest mapping. See [3] for further
measurements.

7.2 Misfit Calculation
As in many sciences, seismologists observe data, infer possi-
ble physical models at the origin of the data and then com-
pare the results of the modelling with the observations. For
each event in the region, the propagation of seismic waves
is simulated generating synthetic seismograms for each seis-
mometer. The observed and synthetic traces are then com-
pared in a process called misfit analysis. The detected dif-
ferences can then be back-propagated to refine the model in
a process called inversion. This can be done for all events
in the region, and as the model of the Earth’s structure im-
proves it can be extended to finer resolution.

Figure 5: Misfit calculation dispel4py workflow.

The misfit analysis is computationally intensive and we
used dispel4py to develop two scalable workflows that are
suitable for the various platforms available in the VERCE
infrastructure:

• Phase 1 – Preprocess: a preprocessing workflow that
prepares and aligns the observed traces and the syn-
thetic modelling results; as in the cross-correlation a
series of functions is applied to the traces, in a trivially
parallel computation.

• Phase 2 – Misfit Calculation: the workflow shown in
figure 5 in which the misfit is calculated using various
methods and images are created for the visual compar-
ison of the observed data and the model.

There are several methods for calculating the misfit:

• The entire dataset of the observation and the mod-
elling outputs are compared by calculating the misfit.

• A selection of windows is extracted from the input data
before computing the misfit, using Pyflex18, a Python
port of the FLEXWIN algorithm. A taper function is
then applied to the windows.

The workflow calculating the misfit of the preprocessed
real and synthetic data is shown in Figure 5. At the start of
the computation the producerPE emits preprocessed, aligned
pairs of observed and synthetic traces produced by the pre-
processing workflow. Both the window selection with subse-
quent misfit calculation and the direct misfit calculation are
applied in the same workflow. This uses the “Tee” function-
ality of dispel4py: Connecting the pyflex PE and the mis-
fit PE to the same output of the producer means that both
consumers receive copies of the same data units. The results

18http://krischer.github.io/pyflex/



from both calculations are then joined in the MatchPE using
group-by. Finally an image is created from the matched re-
sults that shows the windows as well as the time frequency
images for each component. Also the metadata of the Pyflex
and misfit calculations are available for reference along with
the images.

Figure 6: Misfit results visualisation.

An example image created from the outputs of the misfit
calculation is shown in figure 6.

This workflow was initially tested on a local machine with
a small dataset to ensure correctness. Later, it was executed
on the HPC platform via the VERCE gateway.

7.3 Evaluation Platforms: DCI features
Four platforms have been used for our experiments: Terra-
correlator, the Super-MUC cluster (LRZ), Amazon EC2, and
the Edinburgh Data-Intensive Machine (EDIM1). These are
described below and summarised in Table 2.

The Terracorrelator19 is configured for massive data in-
gest in the environmental sciences at the University of Ed-
inburgh. The machine has four nodes, each with 32 cores.
Two nodes are Dell R910 servers with 4 Intel Xeon E7-4830
8 processors, each with 2TB RAM, 12TB SAS storage and
8Gbps fibre-channel to storage arrays. We used one 32-core
node for our measurements.
Super-MUC20 is a supercomputer at the Leibniz Super-

computing Centre (LRZ) in Munich, with 155,656 processor
cores in 9,400 nodes. Super-MUC is based on the Intel Xeon
architecture consisting of 18 Thin Node Islands and one Fat
Node Island. We used 16 Thin (Sandy Bridge) Nodes, each
with 16 cores and 32 GB of memory, for the measurements.

On the Amazon EC2 the Storm deployment used an 18-
worker node setup. We chose Amazon’s T2.medium in-
stances21, provisioned with 2 vCPUs and 4GB of RAM.
Amazon instances are built on Intel Xeon processors op-
erating at 2.5GHz, with Turbo up to 3.3GHz. We used 18
VMs for our measurements.

19http://gtr.rcuk.ac.uk/project/
F8C52878-0385-42E1-820D-D0463968B3C0

20http://www.lrz.de/services/compute/supermuc/
systemdescription/

21http://aws.amazon.com/ec2/instance-types/

EDIM122 is an Open Nebula23 linux cloud designed for
data-intensive workloads. Backend nodes use mini ITX moth-
erboards with low powered Intel Atom processors with plenty
of space for hard disks. Each VM in our cluster had 4 virtual
cores – using the processor’s hyperthreading mode, 3GB of
RAM and 2.1TB of disk space on 3 local disks. We used 14
VMs for our evaluations.

Table 2: DCI features
Load Terracorrelator Super-

MUC
Amazon
EC2

EDIM1

DCI type shared-
memory

cluster cloud cloud

Enactment
systems

MPI, multi MPI,
multi

MPI,
Storm,
multi

MPI,
Storm,
multi

Nodes 1 16 18 14
Cores per
Node

32 16 2 4

Total
Cores

32 256 36 14

Memory 2TB 32GB 4GB 3GB
Workfklows xcorr,

int_ext,
sentiment

xcorr,
senti-
ment

xcorr xcorr,
int_ext,
senti-
ment

8. MONITORING FRAMEWORK
dispel4py supports automatic scaling in a parallel environ-
ment by creating multiple instances of a PE and distributing
the data flow according to load. However, it is possible to
further improve performance by optimising:

• the partitioning of the workflow graph and minimising
the number of data transfers

• the number of processes that is assigned to each PE or
graph partition

In our tests we have seen promising improvements by ap-
plying these two strategies.

In the current stable release of dispel4py, users can test
optimisations manually by creating partitions and assigning
processes to PEs or partitions explicitly. However, profiling
of applications and the subsequent analysis of collected data
is an important tool for detecting bottlenecks in an appli-
cation and diagnosing issues. To address this we created a
monitoring framework for dispel4py which collects data in
the form of timestamps from a workflow during enactment.

Collecting the raw timestamp data during the enactment
of a workflow allows to subsequently extract and analyse
performance and provide diagnostics. The timestamps are
stored in the scalable NoSQL database MongoDB24 provid-
ing high-level query functionality.

In the future, based on the monitoring framework, we plan
to explore various semi-automated and fully automated op-
timisation strategies. We will create a benchmark package
that a user can easily deploy on a new platform to help

22https://www.wiki.ed.ac.uk/display/DIRC
23http://opennebula.org
24https://www.mongodb.org/



with the collection of performance data and optimisation of
user-defined workflows.

The dispel4py monitoring service is a web service that
provides access to a number of web pages that outline pro-
filing data:

• An overview of the workflow run with information such
as the mapping, the number of processes, the assign-
ment of PEs to processes and the total runtime. It also
shows a visualisation of the workflow graph.

• Details on timings of methods, such as the total times
and average times for methods process, read and write,
broken down by PE and PE instance.

• Diagrams illustrating the times spent in each method,
for each PE and each process.

• A timeline of the processes and interactions.

• Details of communication times between processes.

Figure 7 shows the main page of the monitoring service, list-
ing the job runs for which data was collected, their mapping
and the start and end times. More details are linked from
this page. The information may be used to identify possible
bottlenecks and formulate optimisation strategies.

Figure 7: Monitoring service – main page

From the main page the job link takes the user to the
job information page, shown in figure 8, which details more
information on a job, such as the mapping, the total runtime,
and the number of processes and their assignments to PEs.
It also displays the visualised graph.

From here, further links point to pages showing:

• summary profiles of the job (the total processing time
per PE, and times for reads and writes), shown in fig-
ure 10,

• diagrams that illustrate the processing times for each
PE or process, shown in figure 9,

• a diagnostics page with details of the communication
times between PEs, allowing to detect bottlenecks.

Figure 8: Monitoring service – Detailed job infor-
mation

Figure 9: Monitoring service – method timing plot

Figure 9 shows an example diagram for the times for each
processing iteration of one PE.

Obviously performance monitoring comes at a cost and
the feature would be turned off during large-scale produc-
tion runs. The monitoring framework can be easily switched
on or off when executing a workflow. We envisage that a
user would test a workflow on a DCI platform for a short
time on a subset of the input data to collect relevant moni-
toring information. This data would feed into the selection
of optimisation strategies for the assignment of processes to
PEs and the encapsulation of PEs in partitions, resulting in
optimal use of compute resources in large-scale production
runs.

As a first step, an optimisation strategy can be inferred
and applied manually after identifying bottlenecks. How-
ever, dispel4py’s design allows to plug in optimisers that



Figure 10: Monitoring service – Profiling informa-
tion

modify and annotate workflow graphs automatically prior to
handing them over to the enactment engine. Alternatively
the user could be presented with a number of options in an
interactive session and select according to their experience
with a particular platform or workflow.

In the future, enactment platforms may also enable a user
to pause and restart a workflow during execution, allowing
to rebalance PEs and partitions according to profiling infor-
mation.

9. CONCLUSIONS AND FUTURE WORK
In this paper we presented dispel4py, a novel Python li-
brary for streaming, data-intensive processing. The novelty
of dispel4py is that it allows its users to express their com-
putational need as a fine-grained abstract workflow, taking
care of the underlying mappings to suitable resources. Sci-
entists can use it to develop their scientific methods and
applications on their laptop and then run them at scale on
a wide range of e-Infrastructures without making changes.

We demonstrate with a realistic scenarios borrowed from
the field of seismology that dispel4py can be used to design
and formalise scientific methods. dispel4py is easy to use, it
requires very few lines of Python code to define a workflow,
while the PE functionality can be re-used in a well-defined
and modular way by different users, in different workflows
and executed on different platforms via different mappings.

In the near future we envisage the addition of optimisa-
tion mechanisms based on a number of features, such as a
monitoring framework and diagnostic tools that can select
the best target DCIs and enactment modes automatically. A

type system would also be an interesting addition to prevent
users from experiencing runtime errors if the types produced
by a PE do not match the input types of the consumer PE.
Additionally, we aim to explore more mappings, such as im-
proving the existing prototype for Apache Spark.
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APPENDIX
A. DISPEL4PY MISFIT WORKFLOW

The listing below constructs the graph of the misfit work-
flow as described in section 7.2. The resulting dispel4py

graph is illustrated in figure 5. Implementation details of
the processing elements are omitted.

1 graph = WorkflowGraph ( )
2
3 producer PE = StreamProducer ( )
4 pyflex PE = PyflexPE ( )
5 mis f i t PE = MisfitPE ( )
6 match PE = MatchComponents ( )
7 extract metadata PE = ExtractMetadataPE ( )
8 window tapering PE = WindowTaperingPE ( )
9 merge images PE = MergeImagesPE ( )

10
11 graph . connect ( producer PE , ”output py f l ex ” ,
12 pyflex PE , ”input ”)
13 graph . connect ( producer PE ,
14 ”output t ime f requency ” ,
15 misf it PE , ”input ”)
16 graph . connect ( pyflex PE , ”image ” ,
17 match PE , ”input ”)
18 graph . connect ( pyflex PE , ”window tapering ” ,
19 window tapering PE , ”input ”)
20 graph . connect ( window tapering PE , ”output ” ,
21 misf it PE , ”input ”)
22 graph . connect ( misf it PE , ”image ” ,
23 match PE , ”input ”)
24 graph . connect (match PE , ”output ” ,
25 merge images PE , ”input ”)


