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Putting Hybrid Cultural Data on the Semantic

Web

Kate Byrne
School of Informatics, University of Edinburgh

k.byrne@ed.ac.uk

Abstract

A prerequisite for joining the rapidly growing Semantic Web is to ex-
pose data as RDF triples. In the cultural heritage world the data in
question is very often a mixture of structured database fields and associ-
ated textual documents. Transforming relational database (RDB) content
to RDF is not altogether straightforward and the issues are examined as a
preliminary to the much more difficult step of augmenting the RDB con-
tent by extracting structured RDF triples directly from natural language
text, using a specially designed txt2rdf process. This opens the way to a
true integration of the hybrid data so common in heritage management.
Finally we lead up to experimental results showing structured queries (us-
ing SPARQL) that cannot be answered from the RDB material alone, but
which are satisfied against the augmented graph. In this domain there
are potentially vast amounts of textual material available for linking to
structured records, so the future possibilities of the techniques described
are exciting.

Key words: Semantic Web, cultural heritage, NLP, RDF, txt2rdf, hybrid
data, semantic querying

1 Introduction

Cultural archive managers are becoming increasingly interested in the potential
of the Semantic Web [Berners-Lee et al., 2001, Feigenbaum et al., 2007] to both
open up and interconnect their rich data repositories. The Semantic Web, or
Web of Data, is steadily growing as more and more information is exposed
in the necessary format. Notable examples from the cultural world include
CultureSampo [Hyvönen et al., 2007] in Finland, the MultimediaN E-Culture
demonstrator [Schreiber et al., 2006], and the experimental “semantic search”
prototype1 within the Europeana project.

The basic principle of the Semantic Web is that if all of its data is held
in the same, simple, standardised format – as RDF triples forming a directed

1http://eculture.cs.vu.nl/europeana/session/search
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graph2 – then interconnecting distributed datasets becomes dramatically easier.
A Semantic Web “resource” is a node or arc in the graph, and can be thought
of as the smallest unit of data in the system. Each resource is identified by a
URI (such as a web address, beginning “http://...”). If my data shares at least
one resource with your data, and both are open to the Web, our datasets are
immediately linked and a query can be run over their combination. No further
steps are needed. There is huge potential for building connections between
archive collections and making them accessible to queries from the Web.

The catch, such as it is, is that transforming data into RDF is not as straight-
forward as one might hope3. In the cultural field, as in other domains such as
business and finance, structured data is still typically managed in relational
database (RDB) format. The process of converting a typical heritage database
to RDF – the RDB2RDF step as it is usually called – is looked at in Section 2
below. The data used comes from the National Monument Record of Scotland
(NMRS) maintained by RCAHMS (The Royal Commission on the Ancient and
Historical Monuments of Scotland4). Because scalability was a central goal,
the entire database was used: around 270,000 site records with about 1 million
associated archive items.

Despite its historical popularity, the relational database is by no means ideal
for managing cultural data. As well as fixed fields that can be mapped straight-
forwardly into a relational design, cultural data abounds with notes, free text
documents, associated archive items and so on, which are awkward to represent
in RDB tables. Web-based interfaces for public querying usually have to be
restricted to just a small subset of the actual RDB schema, and the rest of the
data, typically including all the free text, is inaccessible to queries (though of
course it can be included in the results). By contrast with the Semantic Web
connection principles just explained, linking separately curated RDB data – mu-
seum finds, site-based archives, library catalogues and so forth – is technically
difficult.

An RDF triple is designed to state a single fact or “relation”, such as
“Skara Brae–hasLocation–Orkney”, and the RDB2RDF process translates data
from database tables into lists of such statements. In principle there is noth-
ing to prevent the factual content of any data being expressed in exactly the
same way. A key objective in my work is to extract “fact” triples automatically
from natural language text, by means of an NLP (Natural Language Process-
ing) “pipeline” of processes I call txt2rdf. An overview of the procedure is given
in Section 3. Combining this with the RDB conversion process gives us the
potential of a truly integrated dataset for semantic searching.

In the course of this work a large RDF dataset was built, containing around
2RDF, Resource Description Framework, is a W3C Recommendation as specified in Klyne

and Carroll [2004]. An RDF graph is a network of interconnecting triples of the form
subjectNode–propertyArc–objectNode (often called SPO triples). Triples become connected
whenever the object of one is the subject of another.

3The transformation may be actual (the data is rewritten in RDF format) or virtual (the
data is not changed but is made to appear as if in RDF). The principles in each case are
identical and, for the purposes of this paper, the differences are immaterial.

4http://www.rcahms.gov.uk/

2

http://www.rcahms.gov.uk/


sfsjksjwjvssjkljljs sd’lajoen s

jjs kjdlk lksjlkj sks oihhg sk

jjlkjlj jljbjl skj ekw

txt2rdf
pipeline

database
Relational Text documents

of triples
Graph

Published domain thesauri

Figure 1: An overview of the tether system. See Fig. 4 for the txt2rdf pipeline.

22 million triples derived from the NMRS data and associated text documents.
So far only a comparatively small amount of free text has been processed but
there is enough to test the proposition that augmenting the basic RDB data with
statements derived from text will enable new queries to be answered. Section 4
describes some experiments on this theme, using the SPARQL5 query language
(the W3C recommended standard for querying RDF).

Although the work described is at the prototype stage so far, there is clear
potential for combining hybrid data using the techniques described. Section 5
discusses the implications for developing more powerful Web-based query mech-
anisms, that will further expand public access to our cultural heritage worldwide.

2 Converting Structured Data to RDF

The experiments described in this paper were part of a larger programme of work
on populating the Semantic Web by combining RDB data with text relations
and with published domain ontologies [Byrne, 2009]. Figure 1 shows the overall
layout of the system, which was named Tether. This section concentrates on
the RDB2RDF process, shown on the left side of the figure, and on RDF shema
design considerations.

Automatic conversion software is available for translating RDB data into
RDF but there are drawbacks to the basic procedure. These are discussed in
Byrne [2008] and some of the key points are summarised here. Schema design
for RDF graphs is not the same as for relational databases and it is worth
inserting a manual design step to reap benefits later. In order to produce a
compact and flexible structure one must design a schema intended for RDF,
rather than attempt to translate a relational data model unchanged. For cultural

5http://www.w3.org/TR/rdf-sparql-query/
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siteNo name
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2

4
3 Drem Airfield

parish

DirletonDirleton Cottage
Dirleton
Dirleton

classification

military
military
residential

Jamie’s Neuk

Dirleton Castle Dirleton defence1

@prefix       :    <http://www.ltg.ed.ac.uk/tether/> .

@prefix   rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

@prefix rdfs:  <http://www.w3.org/2000/01/rdf−schema#> .

rdfs:Class

:site

rdf:type

rdf:type

"Dirleton Castle"
:name

"1"

:SiteNo

"Dirleton"

:parish"defence"

:classification

Figure 2: Translation of a relational table tuple to RDF, at its simplest.

archives choosing to publish their material on the Semantic Web, there is a real
opportunity to convert to a schema that will promote integration with other
similar collections. A simple cultural data schema is proposed in Byrne [2008],
based around the “Who? What? Where? When?” or “People, Places, Things
and Events” models often used in heritage data management.

2.1 The RDB2RDF Process

The basic RDB2RDF conversion process is straightforward: take each RDB
table in turn and “walk” across each of its rows, column by column. At each
cell thus encountered we form a new RDF triple, whose property arc comes from
the RDB column name, and whose object node contains the cell value. Figure 2
illustrates the procedure using a fragment based on the RCAHMS database
SITE table.

Each database tuple (or table row) becomes a cluster of triples grouped
around a node whose type corresponds to the table name. Hence this conversion
is sometimes called “Table to Class” transformation. There are now quite a
number of automatic conversion tools that work on these general principles6

but as yet there are no definitive guidelines on best practice in RDB2RDF
conversion. The clearest exposition of the basic principles is still Berners-Lee
[2006], a design note based on one originally written in 1998.7 The W3C set
up an Incubator group which reported in early 2009, with a “state of the art”
paper [Sahoo et al., 2009] and a recommendation (now implemented) that a
Working Group be formed to standardise a mapping language. The proper way

6Examples include D2RQ [Bizer and Cyganiak, 2007], Dartgrid [Wu et al., 2006], Dan Con-
nolly’s dbview program (http://dig.csail.mit.edu/2006/dbview/dbview.py), R2O [Barrasa
et al., 2004] and DB2OWL [Cullot et al., 2007]. They have differing degrees of scope for cus-
tomisation by the user. SquirrelRDF and R2D2 (a sister project of D2RQ) construct a virtual
graph “view” of a relational database, and D2RQ and Virtuoso [Virtuoso, 2006] give the user
the choice of an instantiated graph or a virtual one.

7The version referred to here dates from 2006.
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to generate the URI labels has produced a mountain of literature in its own
right, and there is plenty of guidance available (see Sauermann and Cyganiak
[2007], Miles et al. [2008]) on how to create and serve what Berners-Lee dubbed
“cool” URIs.

2.2 Design Issues

The mechanical procedure just described is beguiling in its simplicity but a
number of drawbacks become clear when one uses it in practice. See Byrne
[2009, Chap. 5] for a full discussion but let us look briefly at the main points.
If we translate RDB cell values to literals (as in Fig. 2, where they are strings)
then we prevent them forming onwards connections, because a literal cannot be
the subject of an RDF triple. Using a bnode (or “blank node”, a special RDF
node without a label, as illustrated in the figure) for something as vital as the
central node of the cluster will make SPARQL queries unnecessarily cumbersome
– much better to move the RDB primary key into the central spot, or generate
a new surrogate if the RDB doesn’t provide something suitable (for instance if
the primary key is a concatenation of columns).

A perhaps more contentious point concerns the “column as predicate” trans-
lation that is part of the standard RDB2RDF process, where each column name
from the relational database becomes a predicate or property arc in the graph.
This leads to an enormous number of different predicates in the RDF schema,
which in turn will make SPARQL querying complex. I argue that it is better
to simplify the set of properties quite radically, reducing them to the minimum
needed to express the core relationships of the cultural domain: where a site or
object is, what kind of thing it is, who are the agents involved with it and what
are the relevant time periods. This is the same kind of argument as motivates
the adoption of schema standards like Dublin Core.8

Much of the detailed structure can be transferred from the property arcs
into the class hierarchy. For example, a simple hasLocation property may point
at a node for the value “Dirleton”. If we need to know whether “Dirleton” is the
name of a parish or of a district – and often, we will not – we can examine its
node type. (Thus we can do without properties like hasParish and hasDistrict.)
Going a step further and embedding relevant parts of the type hierarchy in the
URI9 may obviate the need even for this.

Figure 3 illustrates these points, using the same small sample of data as
Fig. 2. The bnode has been replaced by a URI based on the RDB key, the
literals are now resources that can have properties of their own, and the database
column names have migrated into the RDFS10 class hierarchy.

The standard translation procedures (at least at the time of this work) re-
produce metadata about the RDB origin which may ultimately be completely
irrelevant and, worse, they tend to duplicate this provenance information in
the URI labels of the property arcs and the resource nodes. Apart from being

8http://dublincore.org/
9This is in accordance with REST principles, defined in Fielding [2000].

10RDFS is the RDF Schema language, see http://www.w3.org/TR/rdf-schema/.
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@prefix       :    <http://www.ltg.ed.ac.uk/tether/> .

@prefix   rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

@prefix rdfs:  <http://www.w3.org/2000/01/rdf−schema#> .

rdfs:Class

:Siteid

rdf:type

rdf:type

:Siteid#site1

:Loc/Sitename "Dirleton Castle"

rdf:type rdfs:label

:Classn/Sitetype#defence

:Classn/Sitetype

rdf:type
rdfs:label
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:Loc/Sitename#dirleton+castle
:hasLocation

"defence"

:hasLocation

:Loc

rdfs:subClassOf

:Loc/Place#dirleton

"Dirleton":Loc/Place#Parish

rdfs:label
rdf:type

siteNo name

SITE

2

4
3 Drem Airfield

parish

DirletonDirleton Cottage
Dirleton
Dirleton

classification

military
military
residential

Jamie’s Neuk

Dirleton Castle Dirleton defence1

Figure 3: Part of the ether design.

more cumbersome than necessary, this approach carries the risk of obscuring
connections latent in the data, and creating multiple nodes that could in fact
be merged because they represent the same thing. For example, if the resource
URI for the Dirleton parish value includes metadata about the originating RDB
row, then every row will have a separate “Dirleton” node, which then has to be
linked to the canonical resource. There seems no possible advantage in this.

2.3 A Minimalist Schema

The conversion of an archive to RDF for publication through the Semantic Web
is an opportunity to standardise the design and hence maximise interoperability
with other cultural datasets. Using the RCAHMS dataset as a test-bed, I found
that a very simple schema design expressed the core relationships adequately
and made querying straightforward. (As a cross-check, a sample of records from
the archaeology collections of the National Museum of Scotland was translated
into the schema designed around RCAHMS data, and found to fit sufficiently
well for meaningful querying across the combined data.) For full management of
administrative details, the relational database is probably still the best option,
but the point of the Semantic Web is to facilitate interoperability, and simplicity
of design is surely the key.

The upper ontology used in tether has only 15 classes, with some 45 further
classes below that are specific to the RCAHMS collection. The set of predicates
is even smaller, as explained above. One reason was to make it easy to ask
the most common questions, about “Who? What? Where? When?”, at the
cost if necessary of blurring details. As is discussed in Section 4, even with
such a simple framework there are times when detailed schema knowledge is
needed. The ideal would be that software agents could generate sensible queries
automatically, based on a user’s expressed intention (for example by parsing a
request in natural language), without the user requiring any schema knowledge
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beyond the “common sense” world knowledge that archaeological sites have
locations and so on.

The other reason for keeping the schema as small as possible was to enable
the RDB data to be integrated with that derived from text relations, as ex-
plained in the next section. Extracting text relations using machine learning
methods (as here) boils down to a categorisation problem – and the more cate-
gories one has, the harder it is. It may well be that in the future, with virtually
limitless training data available, automatic methods can subdivide information
with a subtlety matching that of the average database analyst. But for now
the target data types need to be genuinely distinct from one another, and that
inevitably means collapsing the fine distinctions between, for example, districts
and parishes.

3 Adding Text Relations – txt2rdf

The txt2rdf pipeline is a sequence of NLP procedures in which the results of
each step are passed into the next step. This pipeline starts with plain text
documents as input and the final output is a graph of RDF triples. Since each
document is associated with an NMRS site record the text triples can be very
easily integrated with the RDB-derived triples, by tying each extracted text
relation to a unique site ID from the database. There will be other resource
nodes that are common to both the RDB and textual data, such as placenames.
The same pipeline can process documents from any source, but without the site
ID links one is relying on such shared nodes for linkage.

As illustrated in Figure 4, the pipeline starts with some standard NLP pre-
processing steps: splitting the text into “tokens” (which correspond approxi-
mately with words), finding the sentence and paragraph breaks, and then doing
shallow parsing to annotate each token with a tag indicating its part of speech
(POS). Once these basic preparatory steps have been done the key procedures
can be carried out: Named Entity Recognition (NER) followed by Relation Ex-
traction (RE). The final operation is to transform the relations into RDF triples
and anchor them to individual sites from the RDB data.

3.1 Measured NER and RE Performance

The NER step uses a machine learning approach to detect and categorise NEs
(named entities). A model of the features that characterise a typical NE is built
and then candidate terms from the text are examined, based on their features,
and each is tagged as either an NE of a particular class or as a non-entity.11 The
process for finding binary relations between pairs of NEs is similar. Candidate
pairs of NEs from a set of test data are classified as being related or not, based
on how their characteristics compare with the model built over training data.
The model is built using a list of features chosen to characterise whether a

11A “candidate term” here is a sequence of up to six adjacent tokens. The details of the
procedure are explained in Byrne [2007].
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relation exists in a particular context; for example, if the two NEs are from the
same sentence the main verb of that sentence is an important feature.

Where a relation is detected it is assigned to one of the relation types (again,
based on the features of its context), which include partOf, sameAs, seeAlso,
instanceOf, and a set of event relations: eventAgent, eventAgentRole, eventPa-
tient, eventDate and eventPlace.12

The NER and RE steps were evaluated against a hand-annotated “gold stan-
dard”, measuring precision and recall and calculating an F-score from them.13

Table 1 summarises the results for the NER step, and shows the 11 sepa-
rate NE types the system was designed to find. Similar kinds of NE classes
are grouped together – for example, ADDRESS, PLACE and SITENAME all
contain locational information. A less granular system (lumping these three to-
gether, say) would be likely to achieve higher scores. Some of the classes (such
as ROLE and PERIOD) are very sparsely populated and their results should
be treated with caution.

The EVENT class is unorthodox in NER terms because the majority of
its instances are verb phrases rather than nouns. At least in the RCAHMS
text, events in a site’s history are very commonly mentioned in verb phrases,
such as “was excavated”, “surveyed”, “visited” and so on (though of course
there are also nominal references, like “excavation by...” and “site visit at...”).
Nevertheless, the classifier was gratifyingly successful at modelling the EVENT
class, as the results show.

The large SITETYPE and much smaller ARTEFACT classes are of partic-
ular importance in this domain. These NE types are for classification terms de-
scribing archaeological sites, historic buildings, and object types. It is through
these terms that the data can be “grounded” by linking it to published tax-
onomies for the heritage domain. The principal thesauri used by RCAHMS are
for Monument and Object types, and these were converted to RDF using the
SKOS framework14 and following the principles outlined in Section 2. The the-
sauri are based on MIDAS Heritage [Lee, 2007], the UK historic environment
data standard, maintained by English Heritage. In turn, a mapping15 is avail-
able from MIDAS to the CIDOC-CRM [Crofts et al., 2003]. By this means,
resources in the tether RDF graph can be positioned in the wider Semantic
Web of published data. The classification terminology was considered the most
important element to concentrate on for this dataset, but similar grounding
against published ontologies could be done for other resource classes, such as
the GeoNames16 gazetteer of worldwide placenames.

12In a later step, explained in Section 3.2, the detected relations are linked to their parent
site – given by the document ID – with an extra relation that is generated in the “RDF
translation” step of the pipeline.

13Precision is the fraction of all output results that were correct, and recall is the proportion
of the entire correct population that was found. The F-score (sometimes “F1 score” to distin-
guish it from variants) is the harmonic mean of precision (P ) and recall (R): 2PR/(P + R).

14Simple Knowledge Organisation System, http://www.w3.org/2004/02/skos/.
15See http://cidoc.ics.forth.gr/docs/MIDAS_mapping_notes.doc and http://cidoc.

ics.forth.gr/docs/midas_map.xls.
16http://www.geonames.org/
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Precision % Recall % F-score % Count
ADDRESS 82.40 81.61 82.00 3,458
PLACE 95.00 66.80 78.44 2,503
SITENAME 64.55 61.20 62.83 2,712

DATE 95.12 82.08 88.12 3,519
PERIOD 84.02 45.54 59.07 400

EVENT 94.98 63.66 76.22 3,176

ORG 99.39 89.66 94.27 2,730
PERSNAME 96.71 74.82 84.37 2,318
ROLE 98.00 54.44 70.00 90

SITETYPE 85.24 52.39 64.89 5,668
ARTEFACT 75.83 18.06 29.17 879
Average 88.02 67.75 76.57 (27,453)

Table 1: Summary of NER results

Table 2 gives the RE results, over known or “gold” NEs. This is a measure
of the RE step in isolation, when the classifier is looking at pairs of terms whose
NE status or otherwise is known with certainty. An indication of the size of
each relation set is given in the table and, as with NE classes, the scores for the
smaller sets will be unreliable. The eventAgentRole relation set is vanishingly
small and should probably be discounted altogether. (The average score would
of course be higher if it were discounted.)

In a real situation the RE step has to be run over the results of the NER
step, which will mean that some NEs presented to the RE classifier are spurious
and some genuine NEs are missing, because of inevitable inaccuracies at the
NER stage. Results for the combined steps were calculated over a number of
small sets of data and the average scores were found to be much as one would
expect by taking the product of the component stages. The average F-score for
the entire pipeline is 57.5%, with an average precision score of 73.4%.

Both the NER and RE systems were deliberately designed to favour preci-
sion as, for this application, I considered it more important to extract correct
statements from the text than to find all the possible ones. New facts can al-
ways be added to the Semantic Web structure later, but we need to take all
reasonable measures to avoid adding incorrect statements.

There is room for improvement in these results, through better feature de-
sign – though the law of diminishing returns notoriously applies to probabilistic
modelling. The aim was to build a system capable of handling very large data
volumes and there has to be a trade-off in terms of how much feature extraction
work is realistic. For example, the option of full linguistic parsing was rejected
because of the processing overheads involved. A more promising route to im-
proving overall performance is to add new modules to the pipeline, to deal with
term normalisation and co-reference resolution, and to handle negation. This is
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Relation Precision Recall F-score Found
eventAgent 98.42 98.70 98.56 3,794
eventAgentRole 69.23 30.00 41.86 13
eventDate 98.75 98.68 98.71 3,189
eventPatient 87.77 84.61 86.16 1,553
eventPlace 83.58 72.70 77.76 341
hasLocation 83.26 83.00 83.13 5,085
hasPeriod 83.69 73.86 78.47 233
instanceOf 52.00 31.52 39.25 100
partOf 78.87 51.38 62.22 568
sameAs 68.69 44.55 54.05 6,934
seeAlso 50.00 19.68 28.24 122
Average 83.41 69.27 75.68 21,932

Table 2: Summary of RE results

discussed further in Section 4 below.

3.2 Transforming Text Relations to RDF

The formal experimental results have just been shown, but a simple concrete
example may now be helpful. Suppose the following text snippet occurs in the
text document related to site3402:

“Bea Mill dates from the 19th century.”

If the txt2rdf pipeline performs accurately, it will identify “Bea Mill” as a
SITENAME and “19th century” as a PERIOD, and find that there is a hasPe-
riod relation between them. (In this example the sentence’s verb is a key feature
for both detecting and categorising the relation, though hasPeriod is a statis-
tically good guess whenever one has found a relation where the object class is
PERIOD. It should be noted that this sentence is a very easy example for the
model!)

The procedure for mapping this relation to RDF involves generating a second
relation, to tie the extracted one to its parent site. We need a connection
between the site and the subject of the extracted triple, which is “Bea Mill”.
As this is a SITENAME, which is essentially a spatial designator, a hasLocation
predicate is used to connect “site3402” to “Bea Mill”. (In general, the NE class
of the target is used to determine the appropriate relation label for this added
triple.) The next step is to generate suitable URIs to identify each item that
is to become an RDF resource. Finally, schema relations are added, to indicate
the types of each resource node so that they can find their correct place in the
hierarchy of RDFS classes, and to give them human-readable labels.

Figure 5 shows in graphical form the complete set of triples produced from
our original text snippet. It should be noted that the type and label relations
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:Loc/Sitename#

"Bea Mill"

"19th century"

:Time/Period#

:hasLocation

:hasPeriod

rdfs:label

rdf:type

rdf:type

rdfs:label

:Siteid#site3402

:Time/Period#19th+century

:Loc/Sitename#bea+mill

Figure 5: Translation of an extracted text relation to RDF graph form

are only needed once for each unique resource node. Common nodes like “19th
century” are typed and labelled just once in the graph. When a new text relation
requires this node the relevant schema triples will already be in place and are
not added again.

4 Query Experiments

Only a small percentage17 of the available text documents could be processed
through the txt2rdf pipeline, because of time constraints. However, around a
million triples were added to the RDB-derived graph, and this is enough for
meaningful experimentation. Two sets of experiments were carried out, firstly
to assess RDF as a viable competitor to standard relational database (RDB)
systems in terms of basic query performance, and secondly to examine whether
augmenting the database with relations derived from text actually enhances
query power.

4.1 Comparing SPARQL with SQL

A series of experiments was run to verify that SPARQL queries over the RDF
graph derived from the relational database produce exactly the same results
as SQL queries over the original RDB data. From the RCAHMS database, a
set of 27 tables were converted to RDF, forming a coherent data set covering
about 270,000 site records with around one million archive items and 52,000
bibliographic references. Physically the data was held in Oracle and in MySQL.

The corresponding tether graph contained 21 million triples, created as de-
scribed in Section 2, and held in AllegroGraph18 (from Franz Inc.) and Jena19

17Just under 10%, or around 20,000, of the available site text documents were processed.
18http://agraph.franz.com/allegrograph/
19http://jena.sourceforge.net/
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(from Hewlett Packard). These two systems were chosen from the many avail-
able because they are leading examples and each has strengths in different areas.
For instance, AllegroGraph is fast, both for data loading and querying, whereas
Jena has a more transparent architecture so one can examine exactly how queries
are processed.

Clearly one cannot compare SQL and SPARQL over a dataset exhaustively,
as there is no limit to the possible queries. But there are standard kinds of
query that are very commonly run against archive collections of this kind, and
these are what the experiments concentrated on. Three very common types of
query were tried, shown below with an example of each:

1. Sitetype by location: “Show me a list of the churches in Shetland.”

2. Including archive material: “Summarise the archive material for churches
in Shetland.”

3. Restrict by archive type: “How much of the Shetland archive has been
digitally scanned?”

In each case SPARQL and SQL statements were written to extract the data
and the results compared. For comparison, here is the SQL for the first query:

select m.numlink siteid, m.nmrsname sitename

from rcmain m inner join rccouncil c on m.council = c.council

inner join rcclassification cl on m.numlink = cl.numlink

inner join rc_thesaurus_terms t on cl.the_te_uid = t.the_te_uid

where c.couname = ’SHETLAND ISLANDS’

and t.term = ’CHURCH’

order by m.nmrsname;

And this is the equivalent SPARQL query:20

select distinct ?siteid ?sitename

where {

?siteid :hasLocation place:shetland .

?siteid :hasClassn sitetype:church .

?siteid :hasLocation ?name .

?name rdf:type sitename: .

?name rdfs:label ?sitename .

}

order by ?sitename

It is worth remembering that SQL was originally intended as a “near natural”
language. Of the two, the SPARQL seems easier to follow at a glance, though it
probably depends on how familiar one is with each. (And there are many ways
of writing any given SQL query.)

20Throughout this paper I use the standard way of abbreviating RDF URIs, using “:”
prefixes. The details of the prefixes are omitted as they would clutter the examples needlessly.
A full list of them, and the whole of the tether schema, can be found in Byrne [2009, Appendix
A].
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As expected, the SPARQL and SQL queries produced identical results in
each case. Where they differ significantly is in performance time: the SQL
queries are typically sub-second, but the SPARQL ones are much slower. In
AllegroGraph the response times vary between 0.9 seconds and just over 60
seconds (on a 64-bit machine) for repeated runs of a range of typical queries
from the three categories above. In Jena typical times were over 7 minutes
(though a new version has since appeared, which may be faster).

In the case of the third query one can only frame the query – in either
language – if one knows enough detail of the schema to interrogate the prefix of
the archive number, which is “SC” for all scanned items. In the tether schema
this is modelled as :Desc/Arcdesc#Prefix – not the kind of thing that could be
guessed by a query generator. The dream of a query agent being able to fire
SPARQL queries anywhere in the world, without detailed prior knowledge of
the data, seems elusive.

4.2 New Queries Made Possible by Text Relations

We now move on to the second set of trials, where the aim was to see if the
extension with text relations makes new information available to the user.

An elementary test demonstrates immediately that the text relations provide
structured information that cannot be found from the RDB data, for the simple
reason that the RDB schema does not include data fields for it. One of the
statement types extracted from text shows the organisations that named indi-
viduals belong to – this is done by finding ORGANISATION and PERSNAME
entities and looking for relationships between them. This type of information
is not recorded in the structured RDB fields but may be mentioned as an aside
in the text notes. The following SPARQL query produces a list of people and
their associated organisations.21 The “label” patterns are not strictly necessary
but they make the results more readable for humans.22

select ?person ?organisation
where {

?pers :hasLocation ?org .
?pers rdf:type persname: .
?pers rdfs:label ?person .
?org rdf:type org: .
?org rdfs:label ?organisation .

}

Of course, the output list is not 100% accurate because the txt2rdf pipeline
is imperfect. Examination of the results also showed that some relations, whilst
“correct” in the sense that they were accurately extracted from text notes, is

21The query is reproduced rather than its results out of a, possibly excessive, concern about
publishing personal data.

22A key objective of the Semantic Web is that humans will have much less need to be
involved in reading intermediate results, as these will all be machine-processable.
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actually out of date (because individuals have moved on) – clearly the system
can only ever be as good as the source data it is based on, and dealing with
facts that are true only in a limited time period is still an open issue for the
Semantic Web. Nevertheless, this simple trial showed that a structured query
could be run to find information that was buried in database free text notes
but never collated into fixed fields. Clearly one possible application of this
technology is as a means of populating RDB fields when curating new types of
information becomes necessary. For RCAHMS, the extraction of event-related
data is just such a case. It is encouraging that, as the results in Section 3.1
show, performance on EVENT entities and event relations is especially good.

In another experiment, a SPARQL query was used to answer the request
“Show me what was found at places in Shetland, when and by whom”.
This is an example of where the RDB fields can give only a very partial answer,
but the augmented graph has the information needed. In effect, the RDB struc-
ture is used to narrow down the hit list using the location parameter (Shetland)
and the rest of the result comes from the text relations. As just mentioned,
“find” events are amongst those that RCAHMS is now starting to record for-
mally but which were not held in database fields in the past. This query cannot
be framed against the relational database.

Table 3 shows a sample of the results of this query. It illustrates the vari-
ation in formats for dates, personal names and object types, when mentioned
in free text. There is a need for much more normalisation than has so far
been attempted, and this is something that will be attempted in future work if
possible.

Once again it should be noted that, from the measured precision and recall
scores, we are not expecting complete accuracy. Some of the entries in the table
are obviously incorrect, such as the last site167 date and the second site979
object. In the first case, the error of attributing the finding of a Viking Grave
to the Viking period is an incorrect relationship. The graph should (and maybe
does in another triple) relate this period to the object, not the finding event.
Regarding the second case, entity classification errors will have knock-on effects
for relation extraction, which may be the cause of “SCALLOWAY” (a place
on Shetland) being listed as one of J W Cursiter’s finds, along with a polished
serpentine knife, at site979 – the place name may have been wrongly identified
as an object. It may instead be a relation classification error – classifying
the relationship between the find event and the place as hasPatient instead
of hasLocation but this seems less probable as the domains and ranges of the
various predicates follow a clear pattern and it was found in trials that RE
errors are more often due to the classifier failing to detect a relation than to
misclassifying correctly found ones.

Several approaches to improving the performance of the txt2rdf pipeline are
possible. The machine learning scores can probably be raised by working on the
characterisation of NEs and relations through the feature selection process, but
the penalties attached to this approach were noted at the end of Section 3.1.

Some very basic normalisation is performed on the extracted NE strings
but much more could be done. Ideally, a full co-reference resolution module
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site object date agent
:site506 “spindle whorls” “1948” “NMAS”
:site506 “bowl” “1948” “NMAS”
:site506 “bead” “1948” “NMAS”
:site1385 “human bones” “1833”
:site510 “human remains” “1858”
:site245 “urns” “1878”
:site245 “urns” “1903”
:site245 “urns” “1837”
:site1441 “coins” “1933” “W C Carson”
:site1441 “coins” “1924” “W C Carson”
:site126 “comb” “1960” “National Museum of...”
:site126 “comb” “1960” “T Cluness”
:site1006 “human remains” “1878”
:site745 “bead” “1862”
:site745 “perforated whetstone” “1862”
:site997 “rotary quern” “1933”
:site997 “urns” “1933”
:site167 “GRAVE” “1866”
:site167 “Viking Grave” “1866”
:site167 “Viking Grave” “Viking”
:site538 “hammer-stones” “1946” “RCAHMS”
:site225 “hammer-stone” “1946” “RCAHMS”
:site225 “sinker” “1946” “RCAHMS”
:site766 “pot sherds” “modern”
:site681 “Cist” “A.D. 1877” “OS”
:site979 “polished serpentine knife” “1885” “J W Cursiter”
:site979 “SCALLOWAY” “1885” “J W Cursiter”
:site415 “axe” “1933” “National Museum of...”
:site415 “axe” “1933” “NMAS”
:site1102 “polished stone knives” “28th May 1968” “Peter Moar”
:site1102 “polished stone knives” “28th May 1968” “Henderson”
:site1102 “stone adze” “May 1946” “Peter Moar”
:site1102 “stone adze” “May 1946” “Lerwick Museum”
:site1102 “polished stone knives” “May 1946” “Moar”
. . . . . . . . . . . .

Table 3: Sample results for “finds at Shetland sites” query
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should be built into the pipeline, so that different text strings referring to the
same thing can be unified. This module should also resolve pronoun anaphora,
so that all the correctly extracted but completely useless relations of the form
“it hasLocation [a PLACE]” can be assimilated (instead of being discarded as
at present). A more ambitious, but clearly useful, project would be to deal
with negation, which is not catered for so far. In one of the query experiments,
asking for sites where human bones were found, the results included a site whose
text notes described several apparent burial sites but included the phrase “no
human remains were found”. This is a notoriously difficult issue in NLP that
traditionally is dealt with by full parsing methods, rather than the deliberately
“shallow” processes that were used in tether for scalability reasons.

For all its shortcomings, the txt2rdf system does the basic job it was designed
to do: it shows the potential of the NLP approach for automatically extracting
structured data from free text on a large scale.

4.3 Limitations Imposed by the Schema

The schema for RDF triples derived from free text must, of necessity, be fairly
simple, because very detailed distinctions cannot be captured accurately enough
by computational methods. It doesn’t automatically follow that one should use
the same schema for the associated RDB data, but this is makes it easier to run
simple queries across the entire dataset. One could include the finer detail avail-
able from the RDB data by turning RDB attributes into RDFS subproperties
of the less granular text-derived properties, but I chose not to introduce this ex-
tra complexity over the predicates. (Instead, the tether design uses a hierarchy
of classes to capture the important distinctions, as explained in Section 2.2.)
There is a trade-off between query simplicity and power: more queries can be
answered if the schema is more detailed, but it becomes harder to design the
query statements.

Even though the aim in tether was for a minimal schema structure, the
“scanned archive” example used above (in Section 4.1) shows that there is al-
ready a barrier to independent query agents addressing the graph without prior
knowledge. Contrast this with existing web searching through Google, where
one expects the query term to be sent across all available data with no advance
preparation. The Semantic Web gives us the advantage (over Google) of being
able to search for a term in context (for example, “tell me about Dunbar, but
only where it’s a site location, not a person’s name”) but, as well as picking
the right term, we have to know in advance how to characterise the context (by
specifying the type of node to search for).

Several questions arise: Is it possible to publish, and maintain, schema in-
formation for the whole of the growing mass of Linked Data? If not, can agents
discover the schema for themselves? Is it essential to have a schema at all?

Manually maintaining some master catalogue of up to date schemas for every
data collection across the planet seems highly problematic. If the maintenance
is not by human intervention then we are already into the second question, of
automatic schema discovery based on approaching some new data island (where
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the “island” is perhaps a named graph – see Carroll et al. [2005] for a definition)
and interrogating it. When RDFS or OWL underlie the graph it is easy enough
to find the basic framework; for example, the following query would list all the
classes in tether.

select ?class

where {

?class rdf:type rdfs:Class .

}

With a bit more effort one could extract the hierarchy of classes and proper-
ties, with domains and ranges. Yet even if a query agent were able to do all this,
we are still a long way from making the semantics of the structure accessible, so
that the agent can deduce which fragments of the structure it needs to address.
One response (as has been proposed here) is to minimise the need for schema
maintenance, by having a simple, generic structure that can cover all cultural
domain data at a high level. The downside is that detailed knowledge remains
beyond the reach of universal query agents, because it will always require local
structure that in turn necessitates local schema knowledge.

This brings me to my third question, because an alternative response is
to wonder whether we should consider managing without a schema altogether.
Clay Shirky, for example, suggests that attempts to impose fixed categorisations
on data are simply misguided [Shirky, 2006]. Following the “50 million French-
men can’t be wrong” principle, he argues for social tagging, or folksonomies,
instead of ontologies designed by experts. As a user of machine learning tools
I believe that with a sufficient quantity of representative data one can build
a categorising tool – which is a similar kind of process. However, the sample
does have to be representative. Depending on the topic, public opinion can be
very unreliable, and very volatile. A combined approach may be the answer,
where statistical frequency can inform expert category design and, conversely,
a pre-defined schema can be used to marshall disorganised masses of data.

One can simulate queries where there is no schema or where one has minimal
schema knowledge using the DESCRIBE function in SPARQL, which simply re-
turns all nodes connected to a specified node, irrespective of what the connection
properties are. Some limited exploration of such querying was done, using query
terms to try to pick particular nodes and then gathering their local context for
post-processing. This is something to be explored in future work. It seems likely
that full knowledge of the schema will always be difficult to realise in practical
implementations, and approaches that exploit what knowledge the query agent
can acquire whilst also giving scope for free exploration, seem worth pursuing.

A final point that is worth mentioning in the context of schema limitations
is that there is, as yet, no way of ranking triples in an RDF graph. In other
fields (such as neural networks), weighted graphs – where each arc has a weight
of a particular value – have been extensively studied. Particularly where one
is adding triples derived by probabilistic methods, as in my txt2rdf process,
there are clear advantages in being able to assign weights to the links, which
could be derived straightforwardly from the confidence factor returned by the

18



statistical classifier. Similarly, if one were to combine folksonomy structures with
more formal RDF ontologies, as suggested above, a mechanism for weighting
the strength of links would be valuable, based on the number of people who
independently made that link. This is an area it would be very interesting to
explore further.

5 Conclusions

This paper has given an overview of a lengthy programme of experimental work
on practical exploitation of the Semantic Web in the cultural domain. Although
the basic techniques are as generic as possible, the particular nature of cultural
heritage material inevitably affects the design of component software.

We have seen how structured data, derived from relational databases, can be
transformed to RDF graphs and thus become part of the Semantic Web. There
is scope for grounding the data against published ontologies, a growing number
of which are now being translated to RDF. Even if the ontology required is
not yet in RDF format, the transformation of disciplined and highly structured
data of this kind is fairly straightforward. In the cases described here, the SKOS
framework was used as a basis.

However, it can be argued that the imposition of pre-defined taxonomies
restricts the freedom of the new web, and alternative models for schema design
were discussed. Future avenues to explore include methods of exploring graphs
given only partial schema knowledge and the possibility of assigning weights to
graph arcs to enable ranking of facts according to confidence in their correctness.

The central message of the paper is about augmenting the structured data
with “facts” automatically extracted from free text. A pipeline, txt2rdf, was
described which takes in plain text at one end and pumps out RDF triples at
the other. These can then be easily combined with related Semantic Web data.
The process is by no means perfect but the routes to improve it are very clear.
Even as it stands, the pipeline has been shown to produce an integrated RDF
graph structure that can answer queries for information that was impossible to
retrieve previously. Taken together with the fact that the interconnection of
datasets is a fundamental aspect of the Semantic Web, there is potential for
powerful and flexible public access systems to cultural archives everywhere.
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