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Abstract

This paper presents a novel approach for in-
ducing lexical taxonomies automatically from
text. We recast the learning problem as
that of inferring a hierarchy from a graph
whose nodes represent taxonomic terms and
edges their degree of relatedness. Our model
takes this graph representation as input and
fits a taxonomy to it via combination of a
maximum likelihood approach with a Monte
Carlo Sampling algorithm. Essentially, the
method works by sampling hierarchical struc-
tures with probability proportional to the like-
lihood with which they produce the input
graph. We use our model to infer a taxonomy
over 541 nouns and show that it outperforms
popular flat and hierarchical clustering algo-
rithms.

1 Introduction

The semantic knowledge encoded in lexical re-
sources such as WordNet (Fellbaum, 1998) has been
proven beneficial for several applications including
question answering (Harabgiu et al., 2003), doc-
ument classification (Hung et al., 2004), and tex-
tual entailment (Geffet and Dagan, 2005). As the
effort involved in creating such resources manu-
ally is prohibitive (cost, consistency and coverage
are often cited problems) and has to be repeated
for new languages or domains, recent years have
seen increased interest in automatic taxonomy in-
duction. The task has assumed several guises, such
as term extraction — finding the concepts of the
taxonomy (Kozareva et al., 2008; Navigli et al.,
2011), term relation discovery — learning whether
any two terms stand in an semantic relation such as

IS-A, or PART-OF (Hearst, 1992; Berland and Char-
niak, 1999), and taxonomy construction —- creat-
ing the taxonomy proper by organizing its terms hi-
erarchically (Kozareva and Hovy, 2010; Navigli et
al., 2011). Previous work has also focused on the
complementary task of augmenting an existing tax-
onomy with missing information (Snow et al., 2006;
Yang and Callan, 2009).

In this paper we propose an unsupervised ap-
proach to taxonomy induction. Given a corpus and
a set of terms, our algorithm jointly induces their re-
lations and their taxonomic organization. We view
taxonomy learning as an instance of the problem
of inferring a hierarchy from a network or graph.
We create this graph from unstructured text simply
by drawing an edge between distributionally sim-
ilar terms. Next, we fit a Hierarchical Random
Graph model (HRG; Clauset et al. (2008)) to the
observed graph data based on maximum likelihood
methods and Markov chain Monte Carlo sampling.
The model essentially works by sampling hierarchi-
cal structures with probability proportional to the
likelihood with which they produce the input graph.
This is advantageous as it allows us to consider the
ensemble of random graphs that are statistically sim-
ilar to the original graph, and through this to de-
rive a consensus hierarchical structure from the en-
semble of sampled models. The approach differs
crucially from hierarchical clustering in that it ex-
plicitly acknowledges that most real-world networks
have many plausible hierarchical representations of
roughly equal likelihood and does not seek a sin-
gle hierarchical representation for a given network.
This feature also bodes well with the nature of lexi-
cal taxonomies: there is no uniquely correct taxon-
omy for a set of terms, rather different taxonomies
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are likely to be appropriate for different tasks and
different taxonomization criteria.

Our contributions in this paper are three-fold: we
adapt the HRG model to the taxonomy induction
task and show that its performance is superior to al-
ternative methods based on either flat or hierarchi-
cal clustering; we analyze the requirements of the
algorithm with respect to the input graph and the
semantic representation of its nodes; and introduce
new ways of evaluating the fit of an automatically
induced taxonomy against a gold-standard. In the
following section we provide an overview of related
work. Next, we describe our HRG model in more
detail (Section 3) and present the resources and eval-
uation methodology used in our experiments (Sec-
tion 4). We conclude the paper by presenting and
discussing our results (Sections 4.1–4.4).

2 Related Work

The bulk of previous work has focused on term re-
lation discovery following essentially two method-
ological paradigms, pattern-based bootstrapping and
clustering. The former approach (Hearst, 1992;
Roark and Charniak, 1998; Berland and Charniak,
1999; Girju et al., 2003; Etzioni et al., 2005;
Kozareva et al., 2008) utilizes a few hand-crafted
seed patterns representative of taxonomic relations
(e.g., IS-A, PART-OF, SIBLING) to extract instances
from corpora. These instances are then used to ex-
tract new patterns which are in turn used to find new
instances and so on. Clustering-based approaches
have been mostly employed to discover IS-A and
SIBLING relations (Lin, 1998; Caraballo, 1999; Pan-
tel and Ravichandran, 2004). A common assump-
tion is that words are related if they occur in similar
contexts and thus clustering algorithms group words
together if they share contextual features. Most of
these algorithms aim at inducing flat clusters rather
than taxonomies, with the exception of Brown et al.
(1992) whose method induces binary trees.

Contrary to the plethora of algorithms developed
for relation discovery, methods dedicated to taxon-
omy learning have been few and far between. Cara-
ballo (1999) was the first to induce a taxonomy
from a corpus using a combination of clustering and
pattern-based methods. Specifically, nouns are orga-
nized into a tree using a bottom-up clustering algo-
rithm and internal nodes of the resulting tree are la-
beled with hypernyms from the nouns clustered un-
derneath using patterns such as “B is a kind of A”.

Kozareva et al. (2008) and Navigli et al. (2011)
both develop systems that create taxonomies end-
to-end, i.e., discover the terms, their relations, and
how these are hierarchically organized. The two ap-
proaches are conceptually similar: they both use the
web and pattern-based methods for finding domain-
specific terms. Additionally, in both approaches the
acquired knowledge is represented as a graph from
which a taxonomy is induced using task-specific al-
gorithms such as graph pruning, edge weighting,
and so on.

Our work also addresses taxonomy learning, how-
ever, without the term discovery step — we assume
we are given the terms for which to create a taxon-
omy. Similarly to Kozareva et al. (2008) and Nav-
igli et al. (2011), our model operates over a graph
whose nodes represent terms and edges their rela-
tionships. We construct this graph from a corpus
simply by taking account of the distributional sim-
ilarity of the terms in question. Our taxonomy in-
duction algorithm is conceptually simpler and more
general; it fits a taxonomy to the observed network
data using the tools of statistical inference, combin-
ing a maximum likelihood approach with a Monte
Carlo Sampling algorithm. The technique allows us
to sample hierarchical random graphs with probabil-
ity proportional to the likelihood that they generate
the observed network. The induction algorithm can
operate over any kind of (undirected) graph, and thus
does not have to be tuned specifically for different
inputs. We should also point out that our formula-
tion of the inference problem utilizes very little cor-
pus external knowledge other than the set of input
terms, and could thus be easily applied to domains
or languages where lexical resources are scarce.

The Hierarchical Random Graph model (Clauset
et al., 2008) has been applied to construct hierarchi-
cal decompositions from three sets of network data:
a bacterial metabolic network; a food-web among
grassland species; and the network of associations
among terrorist cells. The only language-related ap-
plication we are aware of concerns word sense in-
duction. Klapaftis and Manandhar (2010) create a
graph of contexts for a polysemous target word and
use the HRG to organize them hierarchically, under
the assumption that different tree heights correspond
to different levels of sense granularity.
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Figure 1: Flow of information through the Hierarchical Random Graph algorithm. From a semantic net-
work (1a), the model constructs a binary tree (1b). Edges in the semantic network are then used to compute
the θ parameters for internal nodes in the tree; the maximum-likelihood-estimated θ parameter for an internal
node indicates the density of edges between its children. This tree is then resampled using the θ parameters
(1b) until the MCMC process converges, at which point it can be collapsed into a n-ary hierarchy (1c). The
same collapsing process can be also used to identify a flat clustering (1d).
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Figure 2: Any internal node with subtrees A, B and
C can be permuted to one of two possible alter-
nate configurations. Shaded nodes represent internal
nodes which are unmodified by such permutation.

3 The Hierarchical Random Graph Model

A HRG consists of a binary tree and a set of likeli-
hood parameters, and operates on input organized
into a semantic network, an undirected graph in
which nodes represent terms and edges between
nodes indicate a relationship between pairs of terms
(Figure 1a). From this representation, the model
constructs a binary tree whose leaves correspond
to nodes in the semantic network (Figure 1b); the
model then employs a simple Markov chain Monte
Carlo (MCMC) process in order to explore the space
of possible binary trees and derives a consensus hi-
erarchical structure from the ensemble of sampled
models (Figure 1c).

3.1 Representing a Hierarchical Structure

Formally, we denote a semantic network S = (V,E),
where V = {v1,v2 . . .vn} is the set of vertices, one
per term, and E is the set of edges between terms
in which Ea,b indicates the presence of an edge be-
tween va and vb.

Given a network S, we construct a binary tree D
whose n leaves correspond to V and whose n− 1
internal nodes denote a hierarchy over V . Because
the leaves remain constant for a given S, we define
D as the set of internal nodes D = {D1,D2 . . .Dn}
and associate each edge Ea,b ∈ E with an internal
node Di being the lowest common parent of a,b∈V .
The core assumption underlying the HRG model is
that edges in S have a non-uniform and independent
probability of existing. Each possible edge Ea,b ∈ E
exists with a probability θi, where θi is associated
with the corresponding internal node Di.

For a given internal node Di, let Li and Ri be the
number of leaves in Di’s left and right subtrees, re-
spectively; let Ei be the number of edges in E asso-
ciated with Di (colloquially, the number of edges in
S between leaves in Di’s left and right subtrees). For
each Di ∈ D, we can estimate the maximum likeli-
hood for the corresponding θi as θi = Ei

LiRi
. The like-

lihood L(D,θ|S) of a HRG over a given semantic
network S is then given by:

L(D,θ|S) =
n−1

∏
i=1

(θi)
Ei(1−θi)

LiRi−Ei (1)

3.2 Markov Chain Monte Carlo Sampling
Given a representation for a HRG H (D,θ) and a
method for estimating the likelihood of a given D
and θ, we can focus on obtaining the binary tree D
which best fits (or most plausibly explains) a given
semantic network. Because the space of possible bi-
nary trees over V is super-exponential with respect
to |V |, we employ a MCMC process to sample from
the space of binary trees. During each iteration of
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Algorithm 1: MCMC Sampling
Compute the likelihood L(D,θ) of the current1
binary tree.
Pick a random internal node Di ∈ D.2
Randomly permute Di according to Figure 2.3

Compute the likelihood L̂(D,θ) of the modified4
binary tree.
if L̂(D,θ) > L(D,θ) then5

accept the transition;6
else7

accept with probability L̂(D,θ)/L(D,θ)8
(i.e., standard Metropolis acceptance).

end9
Repeat;10

this process we randomly select a node within the
tree and permute it according to Figure 2. If this
permutation improves the overall likelihood of the
dendrogram we accept it as a transition, otherwise it
is accepted with a probability proportional to the de-
gree to which it decreases the overall likelihood (i.e.
standard Metropolis acceptance). This procedure is
described in more detail in Algorithm 1.

3.3 Consensus Hierarchy
Once the MCMC process has converged, the model
is left with a binary tree over the terms from the input
semantic network. As in standard hierarchical clus-
tering, however, this imposes an arbitrary structure
which may or may not correspond to the observed
data — the tree at convergence will be similar to an
ideal tree given the graph, but may not be the most
plausible structure. Indeed, for taxonomy induction
it is quite unlikely that a binary tree will provide the
most appropriate categorization.

To avoid encoding such bias we employ a
model averaging technique to produce a consen-
sus hierarchy. For a set of binary trees sam-
pled after convergence, we first identify the set
of possible clusters encoded in the tree, e.g., the
binary tree in Figure 1b encodes the clusters
{AB,ABC,EF,D,DEF,ABCDEF}. As in Clauset et
al. (2008), each cluster instance is then weighted
according to the likelihood of the originating HRG
(Equation 1); we then sum the weights for each dis-
tinct cluster across all resampled trees and discard
those whose aggregate weight is lower than 50% of
the total observed weight. The remaining clusters
are then used to reconstruct a hierarchy in which

Algorithm 2: Flat Clusters
Let Dk be the root node of D.1

if θk > θ̄ then2
output the leaves of the subtree rooted at Dk3
as a cluster

else4
repeat 2 with left and right children of Dk.5

end6

each subtree appears in the majority of trees ob-
served after the sampling process has reached con-
vergence, hence the term consensus hierarchy.

3.4 Obtaining Flat Clusters
For evaluation purposes we may want to compare
the groupings created by the HRG to a simpler non-
hierarchical clustering algorithm (see Section 4 for
details). We thus defined a method of converting the
tree produced by the HRG into a flat (hard) clus-
tering. This can be done in a relatively straightfor-
ward, principled fashion using the HRG’s θ parame-
ters. For a given H (D,θ) we identify internal nodes
whose θk likelihood is greater than the mean likeli-
hood and who possess no parent node whose θk like-
lihood is also greater than the mean. Each such node
is the root of a densely-connected subtree; each such
subtree is then assumed to represent a single discrete
cluster of related items, where θ̄ = mean(θ) (illus-
trated in Figure 1c). This procedure is explained in
greater detail in Algorithm 2.

4 Evaluation

Data We evaluated our taxonomy induction algo-
rithm using McRae et al.’s (2005) dataset which
consists of for 541 basic level nouns (e.g., DOG
and TABLE). Each noun is associated with features
(e.g., has-legs, is-flat, and made-of-wood for TABLE)
collected from human participants in multiple stud-
ies over several years. The original norming study
does not include class labels for these nouns, how-
ever, we were able to exploit a clustering provided
by Fountain and Lapata (2010), in which a set of on-
line participants annotated each of the McRae et al.
nouns with basic category labels.

The nouns and their class labels were further tax-
onomized using WordNet (Fellbaum, 1998). Specif-
ically, we first identified the full hypernym path in
WordNet for each noun in McRae et al.’s (2005)
dataset, e.g., APPLE > PLANT STRUCTURE > NAT-
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URAL OBJECT > PHYSICAL OBJECT > ENTITY (a
total of 493 concepts appear in both). These hyper-
nym paths were then combined to yield a full tax-
onomy over McRae et al.’s nouns; internal nodes
having only a single child were recursively removed
to produce a final, compact taxonomy1 containing
186 semantic classes (e.g., ANIMALS, WEAPONS,
FRUITS) organized into varying levels of granular-
ity (e.g., SONGBIRDS > BIRDS >ANIMALS).

Evaluation measures Evaluation of taxonomi-
cally organized information is notoriously hard (see
Hovy (2002) for an extensive discussion on this
topic). This is due to the nature of the task which is
inherently subjective and application specific (e.g., a
dolphin can be a Mammal to a biologist, but a Fish
to a fisherman or someone visiting an aquarium).
Nevertheless, we assessed the taxonomies produced
by the HRG against the WordNet-like taxonomy de-
scribed above using two measures, one that sim-
ply evaluates the grouping of the nouns into classes
without taking account of their position in the taxon-
omy and one which evaluates the taxonomy directly.

To evaluate a flat clustering into classes we use
the F-score measure introduced in the SemEval 2007
task (Agirre and Soroa, 2007); it is the harmonic
mean of precision and recall defined as the number
of correct members of a cluster divided by the num-
ber of items in the cluster and the number of items
in the gold-standard class, respectively. Although
informative, evaluation based solely on F-score puts
the HRG model at a comparative disadvantage as the
task of taxonomy induction is significantly more dif-
ficult than simple clustering. To overcome this dis-
advantage we propose an automatic method of eval-
uating taxonomies directly by first computing the
walk distance between pairs of terms that share a
gold-standard category label within a gold-standard
and a candidate taxonomy, and then computing the
pairwise correlation between distances in each tree
(Lapointe, 1995). This captures the intuition that
a ‘good’ hierarchy is one in which items appearing
near one another in the gold taxonomy also appear
near one another in the induced one. It is also con-
ceptually similar to the task-based IS-A evaluation
(Snow et al., 2006) which has been traditionally used
to evaluate taxonomies.

Formally, let G = {g0,1,g0,2 . . .gn,n−1}, where ga,b
indicates the walk distance between terms a and b

1The taxonomy and flat cluster labels are available from
http://homepages.inf.ed.ac.uk/s0897549/data.

in the gold standard hierarchy. Similarly, let C =
{c0,1,c0,2 . . .cn,n−1}, where ca,b is the distance be-
tween a and b in the candidate hierarchy. The tree-
height correlation between G and C is then given
by Spearman’s ρ correlation coefficient between the
two sets. All tree-height correlations reported in
our experiments were computed using the WordNet-
based gold-standard taxonomy over McRae et al.’s
(2005) nouns.

Baselines We compared the HRG output against
three baselines. The first is Chinese Whispers (CW;
Biemann (2006)), a randomized graph-clustering al-
gorithm which like the HRG also takes as input a
graph with weighted edges. It produces a hard (flat)
clustering over the nodes in the graph, where the
number of clusters is determined automatically. Our
second baseline is Brown et al.’s (1992) agglomer-
ative clustering algorithm that induces a mapping
from word types to classes. It starts with K classes
for the K most frequent word types and then pro-
ceeds by alternately adding the next most frequent
word to the class set and merging the two classes
which result in the least decrease in the mutual in-
formation between class bigrams. The result is a
class hierarchy with word types at the leaves. Ad-
ditionally, we compare against standard agglomer-
ative clustering (Sokal and Michener, 1958) which
produces a binary dendrogram in a bottom-up fash-
ion by recursively identifying concepts or clusters
with the highest pairwise similarity.

In the following, we present our taxonomy induc-
tion experiments (Sections 4.1–4.3). Since HRGs
provide a means of inducing a hierarchy over a
graph-based representation, which may be con-
structed in an arbitrary fashion, our experiments
were designed to investigate how the topology and
quality of the input graph influences the algorithm’s
performance. We thus report results when the se-
mantic network is created from data sources of vary-
ing quality and granularity.

4.1 Experiment 1: Taxonomy Induction from
Feature Norms

Method We first considered the case where the in-
put graph is of high semantic quality and constructed
a semantic network from the feature norms collected
by McRae et al. (2005). Each noun was represented
as a vector with dimensions corresponding to the
possible features generated by participants of the
norming study; the value of a term along a dimen-
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Method F-score Tree Correlation

HRG 0.507 0.168
CW 0.464 —
Agglo 0.352 0.137

Table 1: Cluster F-score and tree-height correla-
tion evaluation; a semantic network constructed over
McRae et al.’s (2005) nouns and features is given as
input to the algorithms.

sion was taken to be the frequency with which par-
ticipants generated the corresponding feature when
given the term. For each pair of terms an edge was
added to the semantic network if the cosine similar-
ity between their vector representations exceeded a
fixed threshold T (set to 0.15).

The resulting network was then provided as in-
put to the HRG, which was resampled until con-
vergence. The binary tree at convergence was col-
lapsed into a hierarchy over clusters using the pro-
cedure described in Section 3.4; this hierarchy was
evaluated by computing the cluster F-score between
its constituent clusters and those of a gold-standard
(human-produced) clustering. The resulting consen-
sus hierarchy was evaluated by computing the tree-
height correlation between it and the gold-standard
(WordNet-derived) hierarchy.

Results Our results are summarized in Table 1.
We only give the tree correlation for the HRG and
agglomerative methods (Agglo) as CW does not in-
duce a hierarchical clustering. In addition, we do
not compare against Brown et al. (1992) as the in-
put to this algorithm is not vector-based. When
evaluated using F-score, the HRG algorithm pro-
duces better quality clusters compared to CW, in
addition to being able to organize them hierarchi-
cally. It also outperforms agglomerative clustering
by a large margin. A similar pattern emerges when
the HRG and Agglo are evaluated on tree correla-
tion. The taxonomies produced by the HRG are a
better fit against the WordNet-based gold standard;
the difference in performance is statistically signif-
icant (p < 0.01) using a t-test (Cohen and Cohen.,
1983).

4.2 Experiment 2: Taxonomy Induction from
the British National Corpus

Method The results of Experiment 1 can be con-
sidered as an upper bound of what can be achieved
by the HRG when the input graph is constructed

from highly accurate semantic information. Feature
norms provide detailed knowledge about meaning
which would be very difficult if not close to impos-
sible to obtain from a corpus. Nevertheless, it is
interesting to explore how well we can induce tax-
onomies using a lower quality semantic network.
We therefore constructed a network based on co-
occurrence statistics computed from the British Na-
tional Corpus (BNC, 2007) and provided the result-
ing semantic network as input to the HRG, CW,
and Agglo models; additionally, we employed the
algorithm of Brown et al. (1992) to induce a hier-
archy over the target terms directly from the cor-
pus. Unfortunately, this algorithm requires the num-
ber of desired output clusters to be specified in ad-
vance; in all trials this parameter was set to the num-
ber of clusters in the gold-standard clustering (41),
thus providing the Brown-induced clusterings with a
slight oracle advantage.

Again, nouns were represented as vectors in se-
mantic space. We used a context window of five
words on either side of the target word and 5,000
vector components corresponding to the most fre-
quent non-stopwords in the BNC. Raw frequency
counts were transformed using pointwise mutual in-
formation (PMI). An edge was added to the seman-
tic network between a pair of nouns if their simi-
larity exceeded a predefined threshold (the same as
in Experiment 1). The similarity of two nouns was
defined as the cosine distance between their corre-
sponding vectors.

The HRG algorithm was used to produce a tax-
onomy from this network and was also compared
against Brown et al. (1992). The latter induces a hi-
erarchy from a corpus directly, without the interme-
diate graph representation. All resulting taxonomies
were evaluated against gold standard flat and hierar-
chical clusterings, again as in Experiment 1.

Results Results are shown in Table 2. With regard
to flat clustering (the F-score column in the table),
the HRG has a slight advantage against CW, and
Brown et al.’s (1992) algorithm (Brown). However,
differences in performance are not statistically sig-
nificant. Agglomerative clustering is the worst per-
forming method leading to a decrease in F-score of
approximately 1.5. With regard to tree correlation,
the output of the HGRG is comparable to Brown
(the difference between the two is not statistically
significant). Both algorithms are significantly better
(p < 0.01) than Agglo.
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(a) s = 0.0 (b) s = 0.5 (c) s = 1.0

Figure 3: The original semantic network as derived from the BNC (a) and the same network re-weighted
using a flat clustering produced by CW (b). As s approaches 1.0 the network exhibits an increasingly strong
small-world property, eventually reconstructing the input clustering only (c).

Method F-score Tree Correlation

HRG 0.276 0.104
CW 0.274 —
Brown 0.258 0.124
Agglo 0.122 0.077

Table 2: Cluster F-score and tree-height correla-
tion evaluation for taxonomies inferred over McRae
et al.’s (2005) nouns; all algorithms are run on the
BNC.

Performance of the HRG is better when the se-
mantic network is based on feature norms (compare
Tables 1 and 2), both in terms of tree-height correla-
tion and F-score. This suggests that the algorithm is
highly dependent on the quality of the semantic net-
work used as input. In particular, HRGs are known
to be more appropriate for so-called small-world
networks, graphs composed of densely-connected
subgraphs with relatively sparse connections be-
tween (Klapaftis and Manandhar, 2010). Indeed, in-
spection of the semantic network produced from the
BNC (see Figure 3a) shows that our corpus-derived
graph is emphatically not a small-world graph, yet
the HRG is able to recover some taxonomic infor-
mation from such a densely-connected network.

In the following experiments we first assess the
difficulty of the taxonomy induction task to get a
feel of how well the algorithms are performing in
comparison to humans and then investigate ways of
rendering the BNC-based graph more similar to a
small-world network.

4.3 Experiment 3: Human Upper Bound

Method The previous experiments evaluated the
performance of the HRG against a gold-standard
hierarchy derived from WordNet. For any set of
concepts there will exist multiple valid taxonomies,
each representing an accurate if differing organiza-
tion of identical concepts using different criteria;
for the set of concepts used in Experiments 1–2 the
WordNet hierarchy represents merely one of many
valid hierarchies. Noting this, it is interesting to ex-
plore how well the hierarchies output by the model
fit within the set of possible, valid taxonomies over
a given set of concepts.

We thus conducted an experiment in which hu-
man participants were asked to organize words into
arbitrary hierarchies. To render the task feasible,
they were given a small subset of 12 words rather
than the full set of 541 nouns over which the HRG
operates. We first selected a sub-hierarchy of the
WordNet tree (‘living things’) along with its subtrees
(e.g., ‘animals’, ‘plants’), and chose target concepts
from within these trees in order to produce a tax-
onomy in which some items were differentiated at
a high level (e.g., ‘python’ vs. ‘dog’) and others at
a fine-grained level (e.g., ‘lion’ vs ‘tiger’). The ex-
periment was conducted using Amazon Mechanical
Turk2, and involved 41 participants, all self-reported
native English speakers. No guidelines as to what
features participants were to use when organizing
these concepts were provided. Participants were pre-
sented with a web-based, graphical, mouse-driven
interface for constructing a taxonomy over the cho-

2http://mturk.com
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Method Tree Correlation Min Max Std

HRG 0.412 -0.039 0.799 0.166
Brown 0.181 0.006 0.510 0.121
Agglo 0.274 -0.056 0.603 0.121
Agreement 0.511 -0.109 1.000 0.267

Table 3: Model performance on a subset of the
target words used in Experiments 1–2, applied to
a subset of the semantic network used in Experi-
ment 2. Instead of a WordNet-derived hierarchy,
models were evaluated against hierarchies manually
produced by participants in an online study. Tree
correlation values are means; we also report the min-
imum (Min), maximum (Max), and standard devia-
tion (Std) of the mean.

sen set of concepts.
To evaluate the HRG, along with the baselines

from Experiment 2, against the resulting hierarchies
we constructed a semantic network over the subset
of concepts using similarities derived from the BNC;
this network was a subgraph of that used in Exper-
iment 2. We compute inter-annotator agreement as
the mean pairwise tree-height correlation between
the hierarchies our participants produced. We also
report for each model the mean tree-height corre-
lation between the hierarchy it produced and those
created by human annotators.

Results As shown in Table 3, participants achieve
a mean pairwise tree correlation of 0.511. This in-
dicates that there is a fair amount of agreement with
respect to the taxonomic organization of the words
in question. The HRG comes close achieving a mean
tree correlation of 0.412, followed by Agglo, and
Brown. In general, we observe that the HRG man-
ages to produce hierarchies that resemble those gen-
erated by humans to a larger extent than competing
algorithms. The results in Table 3 also hint at the
fact that the taxonomy induction task is relatively
hard as participants do not achieve perfect agree-
ment despite the fact that they are asked to taxon-
omize only 12 words.

4.4 Experiment 4: Taxonomy Induction from a
Small-world Network

Method In Experiment 2 we hypothesized that a
small-world input graph would be more advanta-
geous for the HRG. In order to explore this further,
we imposed something of a small-world structure on

Method F-score Tree Correlation

HRG 0.276 0.104
HRG + CW 0.291 0.161
HRG + Brown 0.255 0.173

Table 4: Cluster F-score and tree-height correlation
evaluation for taxonomies inferred by the HRG us-
ing semantic network derived from the BNC and re-
weighted using CW and Brown.

the BNC semantic network, using a combination of
the baseline clustering methods evaluated in Exper-
iment 2. Specifically, we first obtain a (flat) cluster-
ing using either CW or Brown, which we then use
to re-weight the BNC graph given as input to the
HRG.3 Note that, as the clustering algorithms used
are unsupervised this procedure does not introduce
any outside supervision into the overall taxonomy
induction task.

The modified weight ŴA,B between a pair of
terms A,B was computed according to Equation (2),
where s indicates the proportion of edge weight
drawn from the clustering, WA,B is the edge weight
in the original (BNC) semantic network, and CA,B is
a binary value indicating that A and B belong to the
same cluster (i.e., CA,B = 1 if A and B share a cluster;
CA,B = 0 otherwise).

ŴA,B = (1− s)WA,B + sCA,B (2)

The value of the s parameter was tuned empirically
on held-out development data and set to s = 0.4 for
both CW and Brown algorithms. Each re-weighted
network was then used as input to an HRG, and
the resulting taxonomies were evaluated in the same
manner as in Experiments 1 and 2.

Results Table 4 shows results for cluster F-score
and tree-height correlation for the HRG when us-
ing a graph derived from the BNC without any
modifications, and two re-weighted versions using
the CW and Brown clustering algorithms, respec-
tively. As can been seen, re-weighting improves
tree-height correlation substantially: HRG with CW
and Brown is significantly better than HRG on its
own (p < 0.05). In the case of CW, cluster F-score
also yields a slight improvement. Interestingly,
the tree-height correlations obtained with CW and
Brown are comparable to those attained by the HRG

3We omit agglomerative clustering as it performed poorly
on the BNC, see Table 2.
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Figure 4: An excerpt from a hierarchy induced by the HRG, using the BNC semantic network with Brown
re-weighting. The HRG does not provide category labels for internal nodes of the hierarchy, but subtrees
within this excerpt correspond roughly to (0) TEXTILES, (1) CLOTHING, (2) GENDERED CLOTHING, (3)
MEN’S CLOTHING, and (4) WOMEN’S CLOTHING.

when using the human-produced feature norms (dif-
ferences in correlations are not statistically signifi-
cant). An excerpt of a HRG-induced taxonomy is
shown in Figure 4.

5 Conclusions

In this paper we have presented a novel method for
automatically inducing lexical taxonomies based on
Hierarchical Random Graphs. The approach is con-
ceptually simple, taking a graph representation as
input and fitting a taxonomy via combination of a
maximum likelihood approach with a Monte Carlo
Sampling algorithm. Importantly, the approach does
not operate on corpora directly, instead it relies on
an abstract, interim representation (a semantic net-
work) which we argue is advantageous, as it allows
to easily encode additional information in the input.
Furthermore, the model presented here is largely
parameter-free, as both the input graph and the in-
ferred taxonomy are derived empirically in an unsu-
pervised manner (minimal tuning is required when
graph re-weighting is employed, the parameter s).

Our experiments have shown that both the input
semantic network and the representation of its nodes
influence the quality of the induced taxonomy. Rep-
resenting the terms of the taxonomy as vectors in a
human-produced feature space yields more coherent
semantic classes compared to a corpus-based vector
representation (see the F-score in Tables 1 and 4).
This is not surprising, as feature norms provide
more detailed and accurate knowledge about seman-
tic representations than often noisy and approxi-
mate corpus-based distributions.4 It may be possi-

4Note that as multiple participants are required to create a
representation for each word, norming studies typically involve

ble to obtain better performance when considering
more elaborate representations. We have only ex-
perimented with a simple semantic space, however
variants that utilize syntactic information (e.g., Padó
and Lapata (2007)) may be more appropriate for the
taxonomy induction task. Our experiments have also
shown that the topology of the input semantic net-
work is critical for the success of the HRG. In partic-
ular edge re-weighting plays an important role and
generally improves performance. We have adopted
a simple method based on flat clustering; it may be
interesting to compare how this fares with more in-
volved weighting schemes such as those described
in Navigli et al. (2011). Finally, we have shown that
naive participants are able to perform the taxonomy
induction task relatively reliably and that the HRG
approximates human performance on a small-scale
experiment. We have evaluated model output using
F-score and tree-height correlation which we argue
are complementary and allow to assess hierarchical
clustering more rigorously.

Avenues for future work are many and varied. Be-
sides exploring the performance of our algorithm on
more specialized domains (e.g., mathematics or ge-
ography) we would also like to create an incremen-
tal version that augments an existing taxonomy with
missing information. Additionally, the taxonomies
inferred with the HRG do not currently admit term
ambiguity which we could remedy by modifying our
technique for constructing a consensus hierarchy to
reflect the sampled frequency of observed subtrees.

a small number of items, consequently limiting the scope of any
computational model based on normed data.
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