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Learning Motion Manifolds with Convolutional Autoencoders
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Figure 1: A set of corrupted motions (orange) fixed by projection onto the motion manifold (blue) and compared to the ground truth (green).
Motion corrupted with artificial noise that randomly sets values to zero with a probability of 0.5 (left), motion data from Kinect motion capture
system (center), and motion data with missing the wrist marker (right).

Abstract

We present a technique for learning a manifold of human motion
data using Convolutional Autoencoders. Our approach is capable
of learning a manifold on the complete CMU database of human
motion. This manifold can be treated as a prior probability distri-
bution over human motion data, which has many applications in
animation research, including projecting invalid or corrupt motion
onto the manifold for removing error, computing similarity between
motions using geodesic distance along the manifold, and interpola-
tion of motion along the manifold for avoiding blending artefacts.

Keywords: deep neural networks, convolutional neural networks,
autoencoding, machine learning, motion data, animation, character
animation, manifold learning

1 Introduction

Motion data is typically represented as a time-series where each
frame represents some pose of a character. Poses of a character
are usually parametrized by the character joint angles, or joint posi-
tions. This representation is excellent for data processing, but valid
human motion only exists in a small subspace of this representa-
tion. It is easy to find a configuration in this space which does not
represent valid human motion - either by setting the joint angles
to extreme configurations and making poses that are biologically
impossible, or by creating large differences between frames of the
time-series such that the motion is too fast for humans to achieve.

It is of great interest to researchers to find good techniques for find-
ing this subspace of valid motion, called the motion manifold. This
is because it allows for data processing tasks to be defined with re-
spect to it - such as interpolating motion only through the space of
valid motions - or taking distances which do not pass through the

space of impossible motion.

Our contribution is the following:

• Unsupervised learning of a human motion manifold by a Con-
volutional Autoencoder

• Application of our manifold in various areas of animation re-
search.

2 Related Work

In this section we will briefly discuss works aimed at learning a
manifold over the space of motion data and then works related to
Convolutional Neural Networks.

Learning the motion manifold It is of interest to researchers in
machine learning and computer graphics to produce motion man-
ifolds from human motion data. PCA is an effective approach for
modelling the manifold of human gait, although it cannot handle
many different types of motion altogether. Chai et al. [2005] apply
local PCA to produce a motion manifold that includes of various
types of human motion data, and apply it for synthesizing move-
ments from low dimensional signals. Lee et al. [2010] propose a
data structure called motion fields where the user can interactively
control the characters in the motion manifold. These methods re-
quire a lot of preprocessing, including computing the distance be-
tween frames and producing structures such as KD trees for han-
dling large amounts of data. Rose et al. map the hand position to
the full body motion using Radial Basis Functions (RBF). Mukai
and Kuriyama [2005] apply Gaussian Processes (GP) to produce a
smoother mapping. Lawrence [2003] proposes to apply Gaussian
Process Latent Variable Model (GPLVM) to produce a mapping
between low dimensional latent space and high dimensional data.
Grochow et al. [2004] apply GPLVM to human motion synthesis.
Wang et al. [2005] apply GPLVM to develop dynamic models of
human motion. Non-linear kernel based methods such as RBF/GP
cannot scale as the covariance matrix grows as the square of the
number of data points used. Additionally these works suffer from
the same issue as other works of only encoding the temporal aspect
of motion once a manifold has been built for human poses.



Neural networks and its application to motion data Convolu-
tional Neural Networks (CNNs) have been used effectively in many
machine learning tasks. They have achieved particular success in
the domain of image classification [Krizhevsky et al. 2012; Ciresan
et al. 2012] but they have additionally been used for many other
tasks including video classification[Karpathy et al. 2014], facial
recognition [Nasse et al. 2009], action recognition [Ji et al. 2013],
tracking [Fan et al. 2010] and speech recognition [Abdel-Hamid
et al. 2014; Ji et al. 2013]. Our work applies these techniques to the
domain of learning a motion manifold on human motion data.

Taylor et al. [2011] use the notion of a Conditional Restricted Boltz-
mann machine to learn a time-series predictor which can predict the
next pose of a motion given several previous frames. While this ap-
proach does not rely on clustering or processing of pose data its
capacity is still limited because with lots of data there exists large
ambiguity in generation of the next pose which can lead to either
the motion ”dying out” and reaching the average pose, or high fre-
quency noise introduced by sampling.

The difference in our approach is to use convolution to explicitly
encode the temporal aspect of motion with equal importance to the
pose subspace.

3 Notations

Given a time-series of human poses X ∈ Rnm where n is the num-
ber of frames and m is the number of degrees of freedom in the
representation of the pose, we wish to learn some manifold pro-
jection operator Y = Φ(X), Y ∈ [−1, 1]ik and some inverse
projection operator X̂ = Φ†(Y) , X̂ ∈ Rnm such that the applica-
tion of the inverse of the projection operation Φ† always produces
a X̂ which lies within the subspace of valid human motion. Here
i, k are the number of frames and degrees of freedom on the motion
manifold, respectively. The space [−1, 1]ik therefore represents the
parametrisation of the manifold. As this space is bounded by −1
and 1, so is the manifold, and in areas outside this bound the in-
verse projection operation is undefined. Additionally, the uniform
distribution of values of X̂ drawn from [−1, 1]ik represents a prior
probability distribution over the space of human motion which can
be augmented with other beliefs for use in machine learning tasks.

In this paper we learn the projection operation Φ and inverse projec-
tion operation Φ† using a Deep Convolutional Autoencoder [Vin-
cent et al. 2010]. The Visible Units correspond to X and the values
of the Hidden Units at the deepest layer corresponds to Y. Prop-
agating the input through the network is therefore the projection
operator Φ, and propagating the Hidden Units values backward to
reconstruct Visible Units is the inverse operation Φ†.

4 Data Preprocessing

In this section we explain our construction of values of X using
time-series data from the CMU motion capture database.

We use the full CMU Motion Capture Database [Cmu ] which con-
sists of 2605 recordings of roughly 10 hours of human motion, cap-
tured with an optical motion capture system. We sub-sample this
data to 30 frames per second and separate it out into overlapping
windows of 160 frames (overlapped by 80 frames). This results in
9673 windows. We choose 160 frames as it roughly covers the pe-
riod of most distinct human actions (around 5 seconds) - but in our
framework this dimension is variable in size.

We normalize the joint lengths, and use the joint positions of 20 of
the most important joints. Global translation around the XZ plane
is removed, and global rotation around the Y axis removed.

Figure 2: Structure of the Convolutional Autoencoder. Layer 1
contains 64 filters of size 15x63. Layer 2 contains 128 filters of
size 15x64. Layer 3 contains 256 filters of size 15x128. The first
dimension of the filter corresponds to a temporal window, while the
second dimension corresponds to the number of features/filters on
the layer below.

Figure 3: Units of the Convolutional Autoencoder. The input to
layer 1 is a window of 160 frames of 63 degrees of freedom. After
the first convolution and max pooling this becomes a window of 80
with 64 degrees of freedom. After layer 2 it becomes 40 by 128, and
after layer 3 it becomes 20 by 256.

The rotational velocity around the Y axis and the translational ve-
locity in the XZ plane relative to the character’s forward direction
are included in the input vector. These can be integrated over time
to recover the global position and rotation of the character in an an-
imation. Finally we subtract the mean pose from each pose vector
before input to the network. This results in a final input vector with
a window size of 160 and 63 degrees of freedom. X ∈ R160×63.

5 Convolutional Neural Networks for Learn-
ing Motion Data

In this section we will explain the structure of the Convolutional
Autoencoder. Readers are referred to tutorials such [DeepLearning
] for the basics of Convolutional Neural Networks. We construct
and train a three-layer Convolutional Autoencoder. An overview
of our network structure is given by Fig. 2 and an overview of the
transformations is given by Fig. 3.

Each layer of the CNN performs a one-dimension convolution over
the temporal domain independently for a number of filters. The
output of the convolution is called a feature map, and represents the
presence of that particular filter at a certain point in time. A filter



size of 15 is chosen as it roughly corresponds to small actions on the
lower layers (half a second), and larger actions on the deeper layers
(several seconds). Filter values W are initialised to some small ran-
dom values found using the ”fan-in” and ”fan-out” criteria [Hinton
2012], while biases b are initialised to zero.

Now we describe about the forward process in each layer. First the
input data is convolved, and then a one-dimensional max pooling
step is used to shrink the temporal domain - taking the maximum
of each consecutive pair of frames. Max pooling provides a level of
temporal invariance and encourages filters to learn separate distinct
features of the input. Finally the output is put through the tanh
function. This places it in the range [−1, 1], which compresses the
input, effectively clipping it to the subspace, as well as allowing the
neural network to construct a non-linear manifold.

For a single layer k, given the convolution operator ∗, max pool-
ing operator Ψ, filter weights Wk and biases bk, the projection
operation is given by the following.

Φk(X) = tanh(Ψ(X ∗Wk + bk)) (1)

Now we describe about the backward process in each layer. This
is done by simply inverting each component of the network, taking
special care to invert the pooling operator Ψ. In general this op-
erator is non-invertible, so instead we formulate two approximate
inverses that can be used in different cases. When training the net-
work, which we describe shortly in Section 6, a single individual
pooling location is picked randomly and the pooled value is placed
there, setting the other pooling location to zero. This is a good
approximation for the inverse of max pooling process, although it
results in some noise in the produced animation. When training
in the fine tuning stage, which is the second stage of the training
stage that we describe in Section 6, or when performing projection
to generate the animations shown in the results, the pooled value is
instead distributed evenly across both pooling locations. This is not
an accurate approximation of the inverse of the maximum opera-
tion, but it does result in smooth animation with no high frequency
noise.

The inverse projection for some layer k is then given as the fol-
lowing. Where W̃k represents the weights matrix flipped on the
temporal axis and transposed on the axes representing each filter
on this layer and the filters on the layer below. The Ψ† function
represents the inverse pooling operation described above.

Φ†k(Y) = (Ψ†(tanh−1(Y))− bk) ∗ W̃k (2)

6 Training

We train the network using Denoising Autoencoding. The input X
is corrupted to some new value Xc and the network is trained to
reproduce the original input. The corrupted input Xc is produced
by randomly setting values of the input X to zero with a probability
of 0.1.

Training is first done individually for each layer. Once each layer
is trained, the whole network is trained in a stage called fine tuning.
Training is posed as an optimisation problem. We find weights W
and biases b such that the following loss function is minimised.

Loss(X) = ‖X−Φ†(Φ(Xc))‖22 + α ‖Φ(Xc)‖1 (3)

Where ‖X−Φ†(Φ(Xc))‖22 measures the squared reproduction er-
ror and ‖Φ(Xc)‖1 represents an additional sparsity constraint that

ensures the minimum number of hidden units are active at a time, so
that independent local features are learned. This is scaled by some
small constant α which in our case is set to 0.01.

We make use of automatic derivatives calculated by Theano
[Bergstra et al. 2010] and iteratively input each data point while
updating the filters in the direction that minimises the loss function.
We use some learning rate initially set to the value of 0.5 and slowly
decayed by a factor of 0.9 at each epoch. Each layer is trained for
25 epochs.

In the fine tuning stage a different learning rate of 0.01 is used and
the constant α is set to zero. Additionally, as mentioned in Sec-
tion 5, the alternative method of max pooling is used, where values
are distributed evenly.

Once training is complete the filters express strong temporal and
inter-joint correspondences. Each filter expresses the movement of
several joints over a period of time. Each of these filters therefore
should correspond to natural, independent components of motion.
Filters on deeper layers express the presence of filters on lower lay-
ers. They therefore represent higher level combinations of the dif-
ferent components of motion.

7 Results

In this section we demonstrate some of the results of our method,
including fixing corrupted motion data, filling in missing motion
data, interpolation of two motions, and distance comparisons be-
tween motions. The readers are referred to the supplementary video
for additional results.

Fixing Corrupt Motion Data Projection and inverse projection
can be used to fix corrupted motion data. In Fig. 1, left, we arti-
ficially corrupt motion data by randomly setting values to zero with
a probability of 0.5, removing half of the information. After pro-
jection onto the manifold the motion data is effectively recovered
and matches closely to the ground truth.

We record motion data by simultaneously capturing motion with the
Microsoft Kinect and a separate inertia based motion capture sys-
tem. The Kinect capture contains many errors, but after projection
onto the motion manifold it far more closely matches the ground
truth data found from the inertia based motion capture system (see
Fig. 1, center).

Filling in Missing Data Projection can be used to fill in missing
motion data. We use our technique to automatically infer the marker
position of a character’s wrist (see Fig. 1, right). We can also pro-
duce some stepped animation data using only every 15 frames and
project this onto the manifold. Our method inserts smooth tran-
sitions between the stepped keyframes, corresponding to motion
found in the training data.

Motion Interpolation We interpolate two distinctly separate mo-
tions of doing press ups and walking forward. Compared to a linear
interpolation, which creates an impossible walk, interpolation along
the manifold creates motion which remains valid.

Motion Comparison Using Naive Euclidean distance a motion of
a confident walk with a turn is found to be similar to some odd
motions, such as a sidestepping motion and an old man’s walk.
By taking the min and max over the temporal dimension i of the
Hidden Units and consequently taking Euclidean distance, we get
a distance measure G which is temporally invariant and correctly
matches high level features. It only finds motions with confident
walks and turns to be similar.



G(X0,X1) = ‖max
i

(Φ(X0))−max
i

(Φ(X1))‖22 +

‖min
i

(Φ(X0))−min
i

(Φ(X1))‖22
(4)

Computational Time Training is done using a Quadro K2000
graphics card with 2GB of memory. Training the full network takes
5 hours and 4 minutes. Where Layer 1 takes 43 Minutes, Layer 2
takes 51 Minutes, Layer 3 takes 1 hour and 17 Minutes and fine
tuning takes 2 hours and 13 Minutes. At runtime the system only
requires the multiplication of several medium sized matrices and so
projection can be done in a fraction of a millisecond.

Comparison with Other Approaches Our method scales well
compared to other approaches. Many methods that can handle large
amounts of data require preprocessing that data using data struc-
tures such as KD trees. This is a very computationally expensive
process, especially for high dimensional data. Our approach can
handle a very large amount of data in a reasonable amount of time.
The only methods that requires little data preprocessing and are
scalable are classic methods such as PCA. Although PCA is good
in many aspects, it does not perform well when non-linearity plays
an important role such as when interpolating motions of different
style or computing distances between motion data considering syn-
chronization. The readers are referred to the supplementary video
for visual comparison.

Limitations & Future Work Currently the manifold projection
cannot guarantee constraints such as ground contact and joint
lengths. In future we wish to explicitly incorporate these into our
system using a constrained projection operator. We also wish to
thoroughly evaluate our work against alternative methods and jus-
tify the effectiveness of using a deep architecture.

8 Conclusion

Learning a motion manifold has many useful applications in char-
acter animation. We present an approach appropriate for learning a
manifold on the whole CMU motion capture database and present
a number of operations that can be performed using the manifold.

The strength of our approach is in the explicit formulation of the
temporal domain of the manifold. The position of a single joint is
not just linked to the position of other joints in the same pose - but to
the position of other joints in separate frames of the animation. This
makes our system more powerful and easier to use than approaches,
which first attempt to first learn a manifold over the pose space and
then augment it with a statistical model of transitions.
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