

Edinburgh Research Explorer

Automating reasoning support for design

Citation for published version:
Hesketh, J, Robertson, D, Fuchs, N & Bundy, A 1996 'Automating reasoning support for design' Division of
Informatics Research Papers, no. 823, School of Informatics .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://www.research.ed.ac.uk/portal/en/publications/automating-reasoning-support-for-design(355dca36-7c03-4aa0-8bd8-62480165943d).html

AUTOMATING REASONING SUPPORT
FOR DESIGN

HESKETH, J.; ROBERTSON, D.; FUCHS, N.;
BUNDY, A.

DAI Research Paper No. 823
Jul 1996

Submitted to Automated Software Engineering

Copyright @HESKETH, J.; ROBERTSON, D.; FUCHS, N.; BUNDY, A. 1996

Jane Hesketh, Dave Robertson, Norbert Fuchs, Alan Bundy

Abstract

Formalised design supported by automated reasoning can assist in the
management of requirements -a particular problem for large, detailed systems.
Designers developing an initial requirements into more detail and then producing a
system specification must show not only that all the requirements have been met
but also demonstrate how that has been achieved. This is especially important in
safety-critical systems where sections of the requirements will be regulations or
guidelines. Using real life examples from emergency shutdown systems for drilling
rigs1, we show how lightweight (and therefore less time-consuming) formalisation
supports validation in an engineering approach to requirements management.

We have developed a requirements assistant -an interactive system for
formalising and managing information about requirements including guideline
requirements. As a design proceeds, relevant requirements are found automatically
and checked before being notified to the designer with an accompanying
explanation of whether or not they are currently satisfied. Progress in satisfying
requirements is monitored automatically and contributing choices are recorded.
Such evidence of adherence to guidelines is an assurance of the validity of the
design. During any subsequent system modification, reference to this evidence can
aid designers by drawing attention to the implications changes will have on
maintaining guideline satisfaction.

This paper describes how this automated reasoning support works using the
demonstrator we have built.

Keywords: Automated Reasoning, Requirements, Design, Safety-Critical Systems

1 Introduction

We set out to devise tools in the form of a requirements assistant (RA)
which would assist designers and safety engineers in managing the process of
working with large complex collections of requirements relating to safety critical
systems. Such bodies of requirements are typical of systems which must satisfy
regulations and standards. A priority was to find ways of supporting existing
practise rather than to invent a new design methodology. However, practise does
not stand still, as emerging standards are making new demands. In particular,
designers of safety critical systems are increasingly expected to use formal
methods to increase confidence in the validity of system specifications. Formal
languages, although they place an extra demand on the designer, support the
addition of semi-automated tools using techniques from Automated Reasoning
and Knowledge Based Systems.

As our focus was on using formal language to manage requirements
rather than express a specification, we dispensed with highly detailed precise
logics, and adopted a more lightweight description. By lightweight, we mean a
logic that has a rigorous formal basis, but only incorporates simple domain

1 We gratefully acknowledge the collaboration and support of Shell Expro. This work was funded

under the Dll/SERC Safety Critical Systems Programme on grant GR/J58619.

1

modelling. The user-defined part of the language, such as predicates and atoms
may well be extensive, and responsibility for the semantics of this part of the
language lies with the design team. We claim that considerable assurance can be
gained using a limited logic which is far less time-consuming to learn and utilise
than a full formalisation. By making the formalisation more accessible than
heavyweight formal languages, it is likely that it will be used and understood
more readily. Further, having a shared formalisation language serves to bridge
the gap between engineering problem description and computer solution as
described in [Robertson 96].

Responsibility for devising and meeting requirements is shared between
the safety engineer, the designer and the RA. The RA provides tools to help
safety engineers formalise guidelines for subsequent use by designers. During
design, the RA monitors relevant requirements and assesses their satisfaction
using proofs as arguments. These arguments are evidence of requirements
satisfaction, but they lack the full force of proof in a detailed formalisation since
the formalisation is lightweight and therefore has limited semantic content.
Since the majority of designs failing to meet Shell's safety guidelines do so by
failing to observe some obscure paragraph, simply noting the requirement's
relevance is useful. The designer and safety engineer take responsibility for the
semantics, ensuring that the lightweight formalisation is being interpreted
appropriately for each aspect of the design. The RA provides a design tool for
building a design vvith constant reference to the requirements. An instance is
created of each relevant requirement as it applies to the design while under
development. Each of these instances then needs an argument that it is satisfied,
based on the design. For the finite world of an individual design many simple,
often propositional, arguments are created as the design progresses, rather than
complex proofs of general properties. The arguments record decisions, the factors
which influenced them, and the contribution of components to requirements'
satisfaction.

We used an example from the oil industry, that of designing emergency
shutdown systems for drilling rigs. This meant that the system we built was
engineered to suit that task, and tested against real problems. We did not aim for
a general solution in theoretical terms, but by limiting our assumptions and
making extensive use of modules and abstract data typing, we can make claims
for generality of the approach. An advantage of working with a real design task is
that there are standard components whose use is encouraged. Such components
contribute known properties to the design which can be compiled in advance
and used in the arguments for requirements' satisfaction.

Our demonstrator system is written in Prolog. We have encoded two
central sections of "Fire And Gas Detection and Alarm Systems for Offshore
Installations" (Shell 93) and some of "Emergency Shutdown and Process Trip
Systems" (Shell 92). The example in this paper is based on the latter. The
appendix illustrates formalised requirements from different sections of both
codes of practice.

2 The Problem
2.1 Overall Task

Shell use four increasingly detailed levels of design to develop a

2

specification of an emergency shutdown system on a drilling rig. The top level
requirements statement is a block diagram which only identifies the major
modules and the control flows between them. From this, designers must
produce a far more detailed functional block diagram, describing instruments
and equipment within the modules, and their control relationships to each other
based on the states they can be in. The third level, the cause-and-effect matrix

details physical indicators (such as buttons pushed or high level sensor readings)
of level two states, and the actions (e.g. equipment tripped) which must ensue
when combinations of these indicating conditions occur. Finally, the bottom
level specifies the functional logic to produce output signals which will effect the
actions given input signals from the indicators/causes cited in the matrix.

However, the four levels of design description are only part of the picture.
Designers must also satisfy the requirements covering all emergency shutdown
systems which are set out in legislation, by the Health and Safety Executive (e.g.
HSE 93) and in Shell's own codes of practice (e.g. Shell 92, Shell 93) which are
commonly extensive and sometimes detailed. Ensuring the satisfaction of these
general requirements is the responsibility of a safety engineer. They necessarily
affect the choices made at all stages of the design, so designers must constantly be
aware of them. For the eventual system to be certified by the regulatory
authorities, a safety case must be provided showing why the system is believed to
be safe within accepted limits. Naturally, the arguments will be closely related to
the safety requirements.

When developing the design at each level in accordance with the earlier
levels, Shell's designers must:

1. Notice when requirements apply,
2. Keep track of all the different requirements,
3. Assist with their interpretation in the current context,
4. Assess the extent to which they are currently satisfied,
5. Propose design decisions to address unsatisfied requirements,
6. Be able to provide evidence of requirements' satisfaction,
7. Be able to account for the roles played by different components,
8. Remember requirements' influence on the design decisions.

There are several reasons for remembering why decisions were made as

3

well as what they were. Recording reasons at the time as opposed to inferring
them afterwards makes validation clearer. As later design decisions should not
undo previous work, designers must be able to be explicit about just what was
being achieved, not simply how it was done. Modifications at a later date should
not lose sight of requirements which had previously been satisfied by the bit to be
altered and inadvertently cancel them. An account of all the design features
which incorporate the safety requirements in codes and regulations contributes
to the safety case.

We decided to build a tool that would help designers with these tasks,
using and adapting existing techniques. For our attempt to provide designers
with assistance for this task (the requirements assistant), we chose to focus on the
phase of requirements development which builds functional logic specifications
from a function block diagram and cause-and-effect matrix. F.unctionallogic is, as
the name suggests, a functional description of the logic circuit to be realised to
perform the function. Feedback loops, logical combinations of signals and time
delays will all appear, but without specifying how they are to be implemented.
For example if three signals are to be ANDed together, the functional logic will
not specify which two will be combined first. While the functionality may be
quite complex, it is usually regular in the sense that the same general functions
will be performed in many different circuits (e.g. all the startup bypasses) with
only minor variation. Engineering practice supports such regularity through
standardisation. For standard circuits, analysis and experience will already have
established their properties. We can exploit this, reducing the amount of run-
time inference needed. By treating whole functions as compound objects we can
avoid considering their internal implementation details, and assume that these
and their properties are known.

Conscious that designers would normally use computer tools to represent
the various parts of their work in diagrams or text, we aimed to build a reasoning
tool which could shadow the design process, supporting tasks 1-8 above. The RA
would have to be able to produce functional logic under the designer's control,
for inputs and outputs specified by the designer. It would have to advise the
designer of the relevant requirements for the components under consideration,
suggest ways to satisfy these requirements (e.g. circuitry), and construct
arguments explaining whether or not each requirement was satisfied, with
reasons.

Some preparatory steps were necessary. Reasoning would only be possible
if requirements and systems descriptions were formalised. Both safety engineers
formalising general requirements and designers would need suitable tools -to
record their formalisations, and to help them reflect on the formalisations'
meanings in the context of the original natural language: Shell's Code of Practice.
Interfaces with the formal descriptions via the RA are needed. Housekeeping
support for requirements management is also essential.

2.2 An example

The following example will be used throughout the paper, and should
help make clear what we have done. We will look at the case of applying
emergency shutdown control to a device when an error is signalled by a sensor.
We have chosen a turbo generator as the device, and a drilling warning sensor as

4

the sensor. For this example we are assuming that the context is the evolving
design of the emergency shutdown system, for which the designer knows of a
cause-and-effect matrix, either from an earlier phase or under development.

Some general requirements from Shell's code of practice for emergency
shutdown systems apply:

(Gl)All trip demands calise shlltdown of the appropriate OlltplltS.

On shutdolvn, Otltptlts shall latch in the de-energised state tlntil the
initiating condition has cleared and a mantlal reset of the logic has been

performed. (G2)

Field devices may be reset. Reset shall be achieved by the provision of
local ptlsh-btlttons incorporated into each Otltptlt control device. (G3)

From all this information, a human designer would infer that the signal
from any sensors such as the drilling warning sensor which should be able to trip
a device (the turbogenerator) should be at logic level 0 when an error occurs and
at 1 during normal operation. This is a normal practice which ensures safe
operation in the event of a power failure. Standard logic to satisfy these
requirements would have all the signals which could trip the same device
logically ANDed, so that any single error could initiate a trip. To latch the error,
the output of the AND gate would be fed back as one of its inputs, so that the
error condition persisted. A reset would then be provided to override the latch
once the problem had been fixed, and all the sensor signals had returned to logic
value 1. In order to achieve the override, the reset value would also have to be 1
(when applied), and to cancel the 0 persisting from the error state, the reset and
the latch should be ORed. Diagrammatically:

TurbogeneratorReset

Drilling Warning Sensor

Although in this example only a single input sensor signal appears as an
input to the AND gate here, there would usually be more.

Producing a specification like that above is only part of the designer's task.
As discussed in 2.1, we need to offer the designer help to chose it and explain
why it satisfied the requirements. A considerable amount of work is involved in
typical design which will contain well over a thousand input and output signals.
These may be combined in various ways, requiring different kinds of reset,
startup, operator information and control, and maintenance override facilities,
as determined by the Code of Practice.

3 Formalisation and Support Tools

5

3.1 Purposes of Formalisation

Employing formal languages makes it possible to provide the support
facilities outlined in 2.1 because they enable automated reasoning and accurate
information accessing. There are other compelling reasons for using formal
languages. Formal languages are now commonly mandated by regulations. A
significant contribution of formal methods is that the stage of expressing the
specification in a formal language forces people to be explicit. The very process of
doing this can make them appreciate aspects of the specification and their
implications vvhich had not been apparent before (Pfleeger 95). In our case, the
functional logic diagrams are equivalent to a formal language, and the cause-
and-effect matrix is an abstraction of them, but the Code of Practice is not
normally formalised, and neither are the explanation of the choice of functional
logic. As well as expressiveness, other advantages of using formal languages are
their well-defined semantics, standardisation of language, and consequent easing
of verification and validation. Disadvantages are their complexity, the copious
work involved in applying them to produce a detailed description and lack of

acceptance.
The unanswered question is: which formal langzlage? To answer it, we

must examine our intentions. Our goal in using formal methods might be
termed reqzlirements management. As specification must describe systems in
full without ambiguity, languages capable of detail are normally used.
Requirements management needs to access and reason with relevant
information, some of it unprovable, normally distributed over many
documents, which in turn may contain much that may be irrelevant to the
current system. It must also offer traceability. In order to provide requirements
management support, we only need a lightweight description of the problem,
and hence lightweight formal methods. The designer does not have to work
with the full detail of a precisely formalised design.

3.2 Formalisation of Requirements

Any formalism will have limitations. Conscious of the difficulties of
conveying precisely the exact meaning of any natural language requirement in a
formalism, we have adopted a compromise. We aim to work with a restricted
language that will capture enough to allow simple reasoning and information
access and control, and accept that it will only represent the design partially.
Interpretation is the safety engineer's and designer's responsibility as it already is
for current specifications and guidelines in natural language.

Our criteria for formalisation were as follows:

.We should use logic. Logics are expressive well-understood languages
whose semantics are defined -which IS essential if they are to expose
misconceptions.

.Even though we could select some standard development language,
such as 2, we should not anticipate which language will be used to
express requirements.

we modularised logic use, making different logicsConsequently /

6

admissible in principle (see 7.6). Proof is managed by two modules in the RA.
One lists the proof rules for the logic, and is only accessed by the other which is
the automated prover controlling their use. Access to the prover is restricted to
asking for proofs with their status (including alternative proofs). Our demands
for constructiveness and decidability curtail the choices of logic considerably,
though. However, beyond making some demands of the format of the logic (that
it be sequent-based) and the kinds of formula which may be used in the
hypotheses (see 4.1), there are no further constraints on the particular logic to be
used. This is enough to allow us to deduce whether a requirement is relevant or
satisfied in a given context. The demonstrator itself uses a restricted constructive
first order predicate calculus with a sort hierarchy, to be explained in 7.5.

As noted above, it is expressly expected that safety engineers will take an
active responsibility for their own interpretations. For example, suppose an
engineer wishes to describe the control of a device (D) by a sensor (5). One
requirement may be that on the sensor passing some threshold value, it should
trip the device. A basic representation of this might be:

passed_error_threshold(S) causes trip(D)

There are obvious limitations in this representation. To name but a few:
the error threshold is not given; the means by which the trip is effected are
unspecified; whether the device actually becomes tripped or whether a trip is just
initiated is ambiguous; and there is no mention of time. In spite of these
deficiencies, the simple representation above is enough for basic requirements
management provided that each predicate is well-defined and used consistently.
It would certainly be enough to enable a network of causality relationships to be
examined. It is also close to a level at which design requirements are presented,
and while not offering a deep analysis, it offers a broadly comprehensive one. At
present, the RA's support tools for terminology management are still primitive,
and it relies largely on the same human discipline that engineers use now.

A fuller description of the requirement that a sensor detecting an error
condition should trip some device might well fill in some of the gaps suggested
above. To get to a precise description is demanding and the result complex, just
in this simple example. Even then, however much the designer tries, the
ensuing representation would still rely on their understanding and use of the
defined language. This is an inescapable aspect of any description.

Our approach to description takes the designer's interpretative role
between system and design as central, and puts her/him in the driving seat.
Independently of formalisation or non-formalisation, the designer will interpret
elements of the notation as standing for elements of the domain. There is
inevitably always going to be a balance between the extent to which a safety
engineer chooses to formalise, and the extent to which s/he relies on humanly
declared and accepted but non-formalised definitions. Our intention is to leave
this decision to the safety engineer, and to offer formalisation and reasoning

support.
For the designer, using the formalisation is supported by:

.An interface which allows browsing through the satisfied and

outstanding requirements;

.Links back from requirements expressed formally to the (viewable)
natural language from which they originated, thus making it possible to
see the formalised parts in context;

.A theorem prover which can provide complete and incomplete proofs,
attempt automatic proofs;

.Display of the formal language either as sequents or in a simple
translation to a pseudo-English translation;

.A tool for marking natural language text from requirements documents
and linking them to their formal descriptions.

Thus it is open to whoever maintains the design support system to utilise
a more detailed formalisation for critical parts of a system and less detailed ones
elsewhere. Even for a single component, one aspect of its behaviour may be
critical, while another may not. Response speed may be crucial when exact
location is not, and the design language should be able to reflect this.

3.3 Support for Defining Requirements

The RA provides a tool allowing a safety engineer to read an English text
online, mark phrases or sentences, and then record their translation in whatever
formal language has been chosen. This process links each formalised
requirement to a pointer to its original natural language text for subsequent
reference. Requirement formalisation is a separate task from design. Once
prepared, the file of formalised requirements can be loaded for application to a

design.

3.4 Defining Requirements for the Emergency Shutdown Example

Shell's internal code of practice (Shell 92, Shell 93) was a major source of
requirements in our task. It subsumes national regulations, by setting out many
design practices to be adopted or avoided as well as goals to be aimed for, and is
often quite explicit. It is written in English. The guidelines change infrequently
after careful checking. A guideline formalisation would be stable, subject to
inspection, and when altered could contribute to an understanding of the
changed interpretations.

While laborious, it was fairly straightforward for us to create lightweight
formalisations of natural language text. Shell's guidelines are written in clear
simple language using regular well-understood terms, which lent themselves to
formalisation using equivalent terms to those used in the text. Formalisation
was used to write the existing guidelines in a regular form, not to expound them
in more detail. Potentially, this is a weak point in the approach. Coming up with
a suitable description language which models the domain simply is not easy. The
sort hierarchy we used helped by encouraging the use of standard classes of
objects. Standard operations such as tripping, shutting down and isolation were
apparent. Regularity is crucial to an effective lightweight description because it
enables the consistent use of a terminology shared by all. Otherwise, there is a
danger that the limited terms include cases which are significantly different.
Alternatively a confusing plethora of descriptions may be introduced covering
subtle complexities without any structure available for argument -the

8

disadvantages of heavyweight language without the advantages. Either of these
problems is a likely source of miscommunication. In our examples, implicit
knowledge sometimes had to be made explicit, but we would argue that that is
useful if it exposes assumptions. The level of description used was consistent
with our goal of fitting into existing work practices.

In the language chosen for our demonstrator, Gl, G2 and G3 translate into
four formalised requirements, Rl to R4, which are presented below with their
English translations. To denote causation, an infix connective -» is used, and --
links the description of the context in which this requirement holds (on the left)
from the requirement itself (on the right). setof, which appears in R2, is a
quantifier generating a finite set.

machine(X), initiator(I), expected_consequence(I,X)
~ tripped(l) -» shut_down(X)

Context: Given a machine X, and an input device I, which creates an
input signal which is intended to control X,
an error signal from I causes X to receive a shut down signal.

Requirement:

machine(X), setof(B,(initiator(B) & expected_consequence(B,X»,Bs)

~ reset(X) & (Vs (on(s,Bs) & ok_signal(s)) -» ok_signal(X)

Context: Given a machine X, and the set of input devices Bs, creators of
all the input signals which are intended to control X,
X being reset and ok-to-run signals being sent from all the
elements which are Bs cause X to get an ok-to-run signal.

Requirement:

machine(X)
~:3 r local_reset(r) & resets(r, X)

Context:
Requirement:

Given a machine X,
there must be a local reset control which can reset X.

machine(X)
~ shut_down(X) & not_reset(X) -» latched(X)

Given a machine X,
X getting a shut down signal and no reset causes X to be latched.

Context:
Requirement:

The requirements have been formalised in logic so that we can attempt to
show each one to be true in each context in which it applies. The resulting set of
proofs, when complete, will be evidence of the requirement's satisfaction
wherever it applied. Each incomplete proof will indicate an unsatisfied
requirement, and the gaps in the proof the nature of what is needed. The sequent
style has been adapted giving hypothesis lists a special role -they express the
context which must exist in order for the requirement to apply. The requirement
will be considered to apply whenever all its hypotheses are satisfied, i.e. its
context matches the current design.

9

These really are lightweight formalisations. They express a version of
what is in the natural language version, but more regularly in logic, using a
limited number of predicates. For example, recall that Gl was: All trip demands
cause shlltdown of the appropriate OlltplltS. As trip demands come from things
which can initiate them (sensors, push buttons, etc.) and have effects on
machines controlled by output signals, Gl is translated as a requirement vvhich
applies when we have an initiator (initiator(I)), and a machine, (machine(X)), which is
intended to be controlled by that initiator, (expected_consequence(I,X)). Whenever
that is the case, the requirement is that if the initiator signals an error, then the
machine should be shut down (tripped(l) -» shut_down(X)). All the variables which
occur in hypotheses (upper case letters) are universally quantified across the
whole sequent.

We are making no claim that the formal translation we have chosen is a
precise expression of the corresponding natural language. What is important is
that the designer is alerted to anything in the Code of Practice which is relevant
in order to make an informed decision. The extent to which safety engineers
choose to formalise the Code of Practice and define the design language is at their
own discretion. The 'proofs' of Code of Practice requirements are arguments and
partial evidence, rather than having the force of proof they would have if a
precise formalisation had been attempted.

3.5 Format of Formal Requirements and Use of Context

Having defined a set of requirements, a safety engineer will save them in a
file for later use. Each formal requirement is recorded along with its origin in the
natural language text (file and character position numbers). If necessary, there is a
sequence number too, so that multiple formal requirements all originating from
the same piece of text can be identified uniquely.

The formalised requirements are sequents, but their antecedents are not
used in quite the usual way in the RA. Normally, antecedents are assumed to be
true. We use antecedents to represent the context in which the requirement
applies, in other words, we require the set of hypotheses to be true for the
requirement shown in the sequent's consequent to be applicable. Therefore, the
RA will prove that all the elements of a requirement's antecedent are true in
order to establish that it is applicable.

Deciding what the context should be for a requirement is a balance
between being specific enough and being too precise. If contexts are not precise
enough, the designer will be deluged with irrelevant requirements. At the other
extreme, it is no good being so specific that anything which did match the context
already satisfied the requirement, for then no useful warning could be given.
Consequently it is important that the requirement's context is minimal for
describing the situation in which the requirement applies. Shell's Code of
Practice is amenable to translation into straightforward requirements. Given a
sentence from the code of practice, the basic approach is to write down the proof
obligation as the consequent, and put any contextual information from the
sentence into the hypotheses, along with sort information for any otherwise free
variables.

To illustrate this point, consider requirement R3:

10

machine(X)
1-:3 r local_reset(r) & resets(r, X)

which expresses G3: Field devices may be reset. Reset shalI be achieved by the
provision of local ptLsh-btLttons incorporated into each OILtplLt control device.
Formulated as above, it is invoked as soon as there is a device X (machine(X)), and
reminds the designer that a local reset will be needed (:3 r local_reset(r)) which
resets X (resets(r, X)). Suppose requirement R3 above had been formalised
differently so that a local r,eset control for X figured in the context:

machine(X), local_reset(R,X) I- resets(R, X)

R3° says that if there is a device X (machine(X)), and an associated local reset for X
(local_reset(R,X)) which does reset X (resets(R, X)). The two formulations are clearly
not equivalent, but they are both possible partial translations of G3. R3° would
never be invoked until it was close to being true -because the reset control was
already present in the design -and needed only be connected to the
turbo generator appropriately. By contrast, R3 reminds the designer both that a
reset control must be provided and that it must have the desired functionality. It
is also closer to the intent of the code of practice, since the existence of a reset is
not normally optional.

Satisfying requirements will often have a domino effect, as adding more
components to justify the argument for one may complete the context for
another which can demand yet more components.

3.6 Design Components and Context

The set of components in the design is part of the definition of the world
over which arguments about the satisfaction of requirements take place. The
presence of a component in the design is in itself a fact in that world. Other
objects contribute more facts such as functional abilities, e.g. circuitry. The RA
needs these extra facts to try to establish requirements' satisfaction. To make
them available, objects which can be added to a design are stored as schemata in
files which are loaded into the system. Each schema has a name, a (possibly
empty) context list, a list of components which constitute the object, and the
factual contributions it makes to the design. A schema's context is used to
instantiate variables which exist elsewhere in the schema, thus grounding the
instance that is created and its contributions. The contributions are an important
aspect of the system, because they encapsulate the properties known to be
significant explicitly and concisely, rather than leaving them to be proved from
scratch each time the object schema is used. So, a schema which incorporates a
latch will announce that as a contribution, rather than leaving that fact to be
inferred from its logic. Objects' contexts and contributions are not only expressed
in the same formal language as the requirements, but are designed to meet them.
Just as for requirements, each single contribution can generate multiple
contribution instances, corresponding to each way that its hypotheses can be true.
When an object is added to the design, as well as recording its presence, the RA
instantiates and records the contributions it makes according to its schema. These
contributions are then available as facts for the automatic reasoning module.

11

An example schema is a cable from the sensor to the device controller:

name: cable
context: machine(O)

initiator(I)
components: cable(I,O)
contributions: [] I- tripped(I) -» shut_down(O)

[] I- ok_signal(I) -» ok_signal(O)

This schema may be applied if the design contains a machine and an
initiator. On application, 0 and I are instantiated respectively throughout the
schema. Its contributions are that when the initiator signals a trip, the controlled
machine will be shut down, and when the initiator signal is OK, so is the signal
to the machine. When an instance of an object is added to a design, the
conclusion part of each instantiated contribution sequent is recorded as a fact
available for inference, tagged by its contributing object. Further instantiation
may have taken place when establishing the satisfaction of each contribution's
hypotheses (if any), just as is the case for requirements. The component added
which effects these contributions is a cable from I to O.

A more interesting schema is the latchedreset circuitry (below) which
introduces a latch and links it to the reset control. The context in which it can be
applied consists of a machine, its set of initiators and its local reset control. The
latchedreset schema demonstrates the possibility of parametrisation, as Is can be a
list of any positive number of initiators. Two components effect this schema
which is the one shown in the example at the end of section 2. One is a multi-
input AND gate which combines the initiator signals together with the latching
and reset control. The other is the OR gate which allows a reset to override a
latched error value. The free variable, Or, is the output of the OR gate, and is
needed to show how the two components connect.

name:
context:

components:

con tribu tions

latchedreset
machine(O)
setof(X, (initiator(X) & expected_consequence(X,O)),1s)

reset(R)
reset_control(R,O)
and([Or I 1s],O)

or([R,O],Or)
[on(1,1s)] I- tripped(1) -» shut_down(O)
[] I- (shut_down(O) & not_reset(O) -» latched(O))
[] I- reset(O) & forall(j) : (on(j,1s) & ok_signal(j))

-» ok_signal(O)
[] I- resets(R,O)

The latchedreset schema has four contributions, which can create more
than four contributed facts when instantiated if there are multiple ways of
satisfying the hypotheses:

Each sensor signal which signals a trip will independently
cause the controlled device to be shut down. If there is more

1

12

than one initiator on the Is list, the RA will make an
instantiated copy of this contribution for each one.

2. The device being shut down causes it to remain latched in that
state while it is not reset.

3. All the sensors signalling an OK state, and the device having
been reset causes the device to return to operation.

4. The reset which matched the schema's context is capable of
resetting the device.

Using schemata encourages the benefits of standardisation. Engineers and
designers working on designs and equipment should recognise standard
configurations. Schemata save the designer from having to formulate
contributions every time an object is added to the design. Recording objects'
properties is a well-established technique, although it is less common for them to
be functional properties. While we might have chosen to prove those properties
from the design each time, that seems pointless when using standard schemata.
We can reasonably expect such schemata to have tried and tested properties,
which we take as given.

3.7 Definitions

Definitions are represented as implications in the formal language. The
inference system allows a term which matches the consequent of a definition to
be replaced by the antecedent. In this way, it is possible to use convenient
shorthands. The replacing definition is not executed, for example as a
calculation, just inserted into the formula. Definitions may not include
recursion in order that finiteness and therefore proof termination properties are

preserved.
An example we will use later is the definition of a local reset. A local reset

control is one that is a reset, and the type recorded with it is that of a machine
(i.e. the one it is local to) rather than a operations control centre:

reset(Type,X) & machine(Type) ==> local_reset(X)

The ==> symbol is non-material implication. If the antecedent is true then
the conclusion is true. The definition appears to the left and the defined term on
the right.

3.8 The Sort Lattice

Designers and safety engineers will routinely refer to classes of objects such
as 'initiators' or 'devices/. In order to enable the same kinds of reasoning, the RA
uses a sort lattice defined by the designer. Simple unordered types are not
adequate, as many sorts break down into yet more sorts.

In our sort lattice, a node lying below another node bears a subset
relationship to the higher node. Nodes are not parametrised. Since we expect the
sort hierarchy to capture orthogonal kinds of sort information, it is a lattice, not a
tree. Sort information about equipment may be whether it is pressure operated
or electrically operated, and orthogonally may be whether or not it is part of the

13

emergency shutdown system.
We chose not to build sorts into the demonstrator's logic as part of the

syntax of quantification and hence the unification algorithm. Instead, we use
predicates to describe them because we are aiming to use as general purpose a
logic as possible. Although a little less efficient, we then achieve all the
functionality of a sorted logic by explicit declarations in the context hypotheses
which must true whenever a requirement or schema is applied. For example, the
addition of a rnrbogenerator will result in the calculation of the set of all the sorts
it is in. Using that set ({turbo_generator, machine, equipment}), the RA then takes as
relevant those requirements which have a positively occurring predicate in their
context which is an element of that set.

Here is some of the lattice used for the example later in the paper:

smoke_detector
sf detector

-" flame_detector

fire_detector heat_detector
/"

drilling_warning_sensorsensor
initiator

button

equipment

sprinklerh" maG me,

turbo-generator

4. Requirements Management in the requirements assistant

In section 2, we gave several aspects of the requirements management task
to be performed by the designer. Here we will explain how the RA functions to
shadow these tasks and offer support.

4.1 Noticing when requirements apply

Usually each component which is inserted will have associated
requirements. It is normally a designer's responsibility to know of any general
behaviours and properties expected of the system and its components as well as
their chief function. The RA is intended to help keep track of all such
requirements as are formalised. Although we are dealing with general
requirements such as Shell's Code of Practice here, specific requirements could be
dealt with within the same framework. In our example, when the designer puts
a device controller in the design, that should invoke reminders of general
requirements such as G2 and G3: that the controller should be latched on error
and that it should be possible to reset it.

The RA must be able to perform this task of finding relevant requirements
too. Having located them, it should instantiate them in the context of the current
design fragment. We establish relevance by making the formalised version of
each requirement describe the context in which it applies, then the RA checks
whether the requirement's context matches that currently under design.

14

Each requirement is formulated as a sequent consisting of a hypothesis list
and a conclusion. The list of hypothesis formulae is used to represent the context
in which the requirement applies, so if they simultaneously match a subset of
the elements of the current design, the requirement as instantiated by the match
is relevant. The hypotheses, usually literals, are implicitly conjoined, and all of
them must be true at once in order for the context to match. Requirement Rl

machine(X), initiator(I), expected_consequence(I,X) ~ tripped(l) -»
shut_down(X)

is relevant when there are elements in the design which, when X and I are
instantiated to them, make all the hypotheses true. The matching process may be
a simple match against known facts, or may be proved. For example, the
introduction of a turbogenerator called tgO, provides the fact turbo_generator(tgO),
which from which machine(tgO) can be inferred, because the sort lattice states that
turbo_generator is a subsort of machine.

The hypothesis formulae contain free variables (denoted by names
beginning with capital letters, which are useful for pattern matching in the
Prolog implementation) which also appear in the conclusion. The purpose of
this use of free variables is to quantify over the sequent. As these variables are
instantiated when matching the context to the design, their values are
simultaneously set within the conclusion, setting up a (usually) propositional
requirement formula to be established. The variables may range over objects in
the developing design. No other quantification may appear in the hypotheses
apart from set construction. The reason being that the role of the hypotheses is to
describe a context in which the requirement applies, not to be a list of
assumptions, so the hypotheses should only refer to actual objects which might
exist and relationships between them. The free variables appearing in the
hypothesis list are quantified. Each requirement's conclusion must be true for all
instantiations of the free variables for which its hypotheses are true. For a
requirement to apply there must exist values of the free variables such that the
hypothesis formulae containing them are true. The conclusion is a single
formula which may contain explicit universal and existential quantification over
variables denoted by lower case letters.

The RA checks for relevant requirements incrementally, as each design
step is taken. In order to find any new requirements invoked by the last addition
operation, it reads sequentially through the potential requirements. For each, the
RA establishes whether it matches the current context, by seeing if it is possible to
prove all the hypotheses true at once as described above using the standard
system theorem prover i.e. vvith a common unifier for the free variables. There
may be no way of doing this, in which case the context in which the requirement
applies is not present, and the requirement does not apply. There may be more
than one way, in which case a different instance of the requirement will be
created for each way in which the context can be instantiated and be true. Each is
a distinct application of the requirement.

Returning to our running example, having placed a turbogenerator in the
design, and nothing else, the RA works out that R3 applies. The instantiated

requirement

15

machine(tgO). I- 3 r: local_reset(r) & resets(r, tgO) (R3')

is added to the agenda of outstanding requirements. The proof which allowed
the context to be established is not kept, although it could be in a more
sophisticated system. Similarly, R4' (from R4, and originally G2) is added as an
outstanding requirement:

machine(tgO) f- shut_down(tgO) & not_reset(tgO)-» latched(tgO)

Some requirements referring to design components will not be invoked
until the context in which they apply is complete. The formalisation Rl of Gl:

machine(X), initiator(I), expected_consequence(I,X) I- tripped(I) -» shut_down(X)

does not apply yet, because while machine(X) can be made true when X is tgO, there
is not yet a value for the variable I which will make initiator(l) true.

The order of elements in the context is not significant. In case later context
elements can provide information which might make it possible to establish
earlier ones, the RA attempts to prove the set of them in all necessary
permutations until it finds a proof or has exhausted the possibilities. By choosing
to prove first those context elements which will not need to wait on others'
satisfaction, this process need not be inefficient.

4.2 Keeping track of all the different requirements

In addition to letting designers load a list of applicable requirements at
startup time, the RA maintains the lists of all the satisfied and unsatisfied
instances of requirements being invoked.

Each time a requirement is applied, that instance of its application is
recorded. If the RA establishes that the requirement is satisfied at that point, it is
added to the list of satisfied requirements along with the argument for its
satisfaction. If the RA concludes that the requirement is not satisfied, the
instance and any partial argument relating to its satisfaction are put on a list of
outstanding requirement obligations.

Sometimes the new design step will cause the status of requirements
already on one of the lists to be revised. The new step may affect only the
argument for a requirement's satisfaction, in which case the action is
straightforward -the argument is reevaluated and rerecorded. If necessary the
requirement (with the new argument) is moved to the other list. A more
complicated situation arises if the context which caused the requirement to be
invoked changes. Then the RA applies the requirement afresh as demanded by
the current context and finds and cancels any superseded versions. This happens
if, for example, the design has added to the world so that the context match
which was formerly true is now only a subset of the current match. Take the

requirement:

machine(X), setof(B,(initiator(B) & expected_consequence(B,X)),Bs)

~ reset(X) & (":is (on(s,Bs) & ok_signal(s))) -» ok_signal(X)

16

which describes the property that a device controller which has been reset should
have an OK-to-function signal when all its sensors are also signalling OK-to-
function. When only one initiator is present, say a drilling warning sensor, dwsO,
8s is just the set {dwsO}. But if another initiator, a flame detector tldO, is added
which is also capable of tripping tgO, the set of initiators for tgO, which was just
{dwsO} before, is now {dwsO, fldO}. The old requirement referring to {dwsO} is out-of-
date. The RA must detect that the old instantiated requirement has been

superseded.
For a requirement instance to be superseded it is necessary that new and

old are both instances of the same original, but this is not a sufficient test. The
new instance does not supersede unrelated instances of the requirement, so the
new instance's context must also refer to at least some of the same context as the
old one. While the test for superseded context could be detailed, it need not be in
our case. The RA does not need to know how the requirement has been
superseded, only that it has, since replacement is easy to compute. The test for a
context overlap is simplified because we are comparing two instances of a
common context list. All corresponding pairs of context list elements should be
alpha equivalent except for those which indicate subsumption, of which there
must be at least one. The subsumption indicators are set generators producing
intersecting sets in the new and old instances of the requirement.

From the point of view of a designer using the system, it may be laborious
to see many requirements being superseded when apparently little change has
taken place, but important, as they are all valid.

4.3 Assisting with requirements' interpretation in the current context

At any time, the designer may review the state of the requirements,
whether shown or outstanding. Our expectation is that as well as reviewing its
status, the designer should also be conscious of the interpretation of each
requirement. To this end the RA shows a simple pseudo-English translation of
the formal statement by default. Additionally, the designer can choose to inspect
the instantiated sequent with its proof (see the next section), and the original
code of practice from which it was derived. Our aim is to assist the designer in
maintaining consistent, accurate interpretations and remaining sensitive to the
intentions and goals of the original code of practice.

The next figure shows the designer viewing invoked requirement R3'.
The designer has opted to check on the original text too, by clicking TeHt. The
highlighted part is the original text from which the formalisation was obtained
and it appears in the context of the original document.

17

Translation into pseudo-English is accomplished by means of a Definite
Clause Grammar (a standard language translation utility in Prolog, described in
Clocksin 94), where logical connectives and predicates have language
translations defined when building the requirements. Translation of the sequent
structure itself is standard. The requirement sequent is presented as G I UEN THAT
followed by a list of translated context elements, then SHOW THAT, and finally the
translation of the sequent's conclusion -the requirement to be proved. The
context literal machine(tgO) is translated as the argument t 9 B followed by the
translation of the predicate: is a deuice.

Given a formalised requirement instantiated to the objects in a design
context, the designer will carry the final responsibility for the requirement's
interpretation and satisfaction. Since we are not expecting a total formalisation,
that responsibility is shared between the computer system taking care of syntactic
reasoning on formalised parts of the code of practice, and the human designer,
who must monitor the semantics. In one way, the more detailed the
formalisation, the less open-ended the human's task is, as each term in the
language will be more precisely defined. On the other hand, a more elaborate
description can be harder to follow, increasing the possibility of mistakes. If the
formalisation is less comprehensive, the designer has to do more to interpret the
requirement according to the domain and the instance.

Being able to refer back to the original textual goal is particularly
important for helping designers monitor their formalised interpretations.

4.4 Assessing the extent to which requirements are currently satisfied

In the last figure, clicking on EHamine would allow the designer to
examine the requirement's formal proof, whether partial or complete. Below,
Rl' is shown in its formal logic, along with its proof, which is currently
incomplete. The designer may examine and work on these proofs interactively.
The box marked Giuen contains the sequent's hypothesis list, and its conclusion
follows Show. The sequent shown is a leaf, i.e. it is on the fringe of the proof tree
developed so far where it no longer breaks down into more detailed subproofs. If
further proof were available below, a button would be presented allowing the
designer to navigate down the proof tree. An example is in section 6.3.

18

4.5 Proposing remedial design for unsatisfied requirements

Since at any stage, the designer has the obligation of satisfying outstanding
requirements but is only allowed to achieve this by inserting prescribed
components from the RA's database, the RA can offer advice by second guessing.
For a given outstanding requirement, the RA can use abduction to see if the
addition of one of the known components has the potential to complete the
proof. Each component schema records contributions made by its addition to the
design over and above its presence, for example, connectivity. In the example,
while looking at the details of Rl', the designer asks for such advice:

ReQuirement

IGIUEN THAr dwsO Is Dn InltlDtor. tgO Is D deulce Dnd dwsO triggers tgO
SHOW THAT dwsO Is tripped CAUSES IT TO BE TRUE THAT tgO Is shut down

InC~lete R~ement-.!!!:-q~ment
liluen tn"..,or(OVsO)

mocll'no('90)
.--'..-oon.oq".nco(OV.O. '9°)

Show trippod(OVsO)-"s...'-"ovn<'90)

((Try ~)1 [Stop 1 (Up)

[8 The most useful schema Is latchedreset
[:E:])

The advice is calculated by looking at the applicable schemas'
contributions and seeing which schemas satisfy the greatest number of
outstanding requirements in relation to the current context. Of these, we prefer
solutions which do not add unexpected contributions, since that would be likely

9

to introduce unnecessary complexity. In the current example, two schemas apply,
i.e. their context formulae can be matched to the current context (this process, as
with that for requirements is used to instantiate variables elsewhere in the
schema).

Either of the schemas from 3.6 will satisfy requirement Rl' instantiated as
in the diagram above, that if the sensor is tripped, the device becomes shut
down. However, only latched reset will also satisfy R3' and R4'. For that reason, it
is recommended to the designer.

4.6 Evidence of requirements' satisfaction

The evidence is the proof which the RA has automatically constructed
using the facts supplied by the designer's addition of objects and their
contributions and relationships.

We need evidence to back up our averrals of requirements' satisfaction.
The requirements express statements which should be true about the designed
system. Their proofs, being constructive2, should give us this evidence.

There is one respect in which our use of the term constructive here differs
from the classical one: we accept rules of negation-as-failure3 because we are
working in a finite world. We chose a sequent calculus style, because it usefully
distinguishes the context in which the conclusion of the theorem is to be true -a
key feature of our approach. We need to be able to decide when a requirement is
applicable, and exactly what part of the design is the context it is to be applied to.

The restrictions used in the demonstrator to achieve a logic with the
desired termination properties are:

.only a single conclusion is allowed;

.proof leaves are justified by any of
.facts in the context -objects which are in a diagram or in some

demonstrable relationship in the diagram
.properties contributed by objects in the design
.user-defined sort information and axioms
.user endorsements

.there are no logical rules allowing quantified statements to be unpacked
in the hypotheses, but universal quantification is allowed across the
whole sequent -effectively a prenex universal quantification;

.there is no explicit rule in the logic giving the 'law of the excluded
middle' directly, but negation as failure is used within the finite context
with which the proof is concerned;

.implication disallows material implication: it appears firstly by virtue of
the sequent connective, which allows conditions, and secondly as the
connective in definitions;

.there is no general 'cut' rule, but non-recursive definitions are allowed;

.Neither requirements nor definitions are allowed to contain any
implications which contain quantified statements in their contexts or
antecedents. Set generation is allowed, because it generates a finite set

2 A constructive proof is one which only infers from things which exist or can be constructed from
things which exist. Constructive proofs do not admit the law of the excluded middle, for example.
3 A negated formula is deemed to be true if the formula cannot be proved true -see Clocksin 94.

20

from the finite world.

These restrictions are similar to the standard ones used in a sequent
calculus to turn full FOPC into a constructive logic. The first difference is the
further restriction to disallow quantification within the hypotheses. To allow us
to assume another universal or existential truth, without proving it would not
be advisable in a safety-critical setting. The second is to choose a version of
negation rules which differs from the constructive ones which we claim is
justified by the proviso that this is permissible in finite worlds.

The use of sets allows us to define a context within a context. setof is a
defined connective. It is effectively a local universal quantification, whose scope
in the finite world can be specified.

These restrictions have not proved problematic within our examples, in
that we have been able to formalise any requirements we have attempted,
therefore we believe that they are not unduly restrictive.

4.7 Accounting for the roles played by different components

Designers need to know the roles played by components in satisfying
requirements in order to know what the implications are of changing or
removing them. The constructive proof for each requirement records the
contributions made by all the components involved. The contribution of any
component can be inferred by looking at all the requirement arguments in which
it occurs.

4.8 Remembering requirements' influence on the design decisions

As well as knowing components' contributions to meeting requirements,
designers need to know which requirements have been incorporated and how
they have been satisfied by component choices. The influence of each
requirement is apparent from all the instances of it which appear as requirement
justification arguments. All these arguments are dependent on the components
that appear in them.

5. Using the requirements assistant

On starting the RA, the designer selects files of requirements, components
and their sort hierarchy. Then the designer must create a design and define the
world for which requirements will be monitored via the RA, so that it can
register everything. We expect design definition to happen through RA-
controlled interfaces which only allow the designer to use known components.
Such interfaces must be provided for designers using the RA, corresponding to
different viewpoints. For our demonstrator, we developed two simple interfaces,
one for physical layout and one for functional logic.

The demonstrator RA lets a designer describe an emergency shutdown
system topologically, using a window called the Diagram Editor. The RA has a
tool menu which includes the description of other objects as well as the ones we
have used in this paper: doors, rooms, control panels, sockets, routes etc. For
defining circuit connections, the designer uses the Functional Logic window. In

21

last of its set of context formulae is now expected_consequence(dwsO,tgO). Although
the RA will try to deduce the truth value of expected_consequence(dwsO,tgO) from
the facts known from the diagram, it cannot. Whether or not
expected_consequence(dwsO,tgO) is true depends on the designer's intention, as only
some of all the initiators present in a design will be expected to be capable of
tripping a particular device. As information which can only come from the
designer, we expect that expected_consequence(dwsO,tgO) will either have been
declared to be true e.g. given as part of the cause-and-effect matrix, or be
something the RA can ask of the designer.

The RA will see if there is an axiom, which might, for example, have been
declared as part of a cause-and-effect matrix. Failing that, the RA can see if the
predicate is declared as "askable". expected_consequence is defined as askable.
Askable predicates are protected by the condition that their arguments must be
fully instantiated before the designer is asked whether or not that instance is
true. expected_consequence(dwsO,tgO) is ground, so the designer will be prompted as
to whether it is true or not.

The text for the query is automatically generated using the same natural
language generator used for presenting requirements. If the literal
expected_consequence(dwsO,tgO) is asserted to be true by the user, that fact is added to
the world's facts along with its origin -from the user. If the designer were to
select "no", the equivalent falsity would be recorded. The reason for this is that
now the fact is known, we do not wish to ask the user again. In our example the
designer selects the answer "yes", and the RA attempts to prove

machine(tgO), initiator(dwsO), expected_consequence(dwsO, tgO)
~ tripped(dwsO) -» shut_down(tgO)

but still fails, because it cannot prove the truth of the conclusion. Rl' is added to
the agenda of outstanding requirements. Although we will not do so here, we
could add more initiators and get more copies of this requirement, instantiated

appropriately.
The other outstanding requirements are now:

machine(tgO), setof(B,(initiator(B) & expected_consequence(B,tgO)),Bs)

~ reset(tgO) & ("i7's (on(s,Bs) & ok_signal(s))) -» ok_signal(tgO) (R2')

machine(tgO) ~3 r local_reset(r) & resets(r,tgO)

machine(tgO) I- shut_down(tgO) & not_reset(tgO) -» latched(tgO)

While the contexts might appear redundant at this stage, we keep them in
their role of hypotheses, bearing in mind possible future developments of the
RA. Many logics use hypotheses more actively than the demonstrator's current
one, and we vvant to keep that wider use an option. Further, one way of
speculating about the effects of future design steps is to add their effects to the
hypothesis list temporarily and check the result. We wish to preserve that option
too.

The reset is added similarly to the first two components. Resets are of two
types in the demonstrator. Central ones operate from the main control centre

23

(I C C). Local ones are for a given device. When designer selects re set from the
tool palette, the set of devices on the current context (the current Diagram Editor
window), is automatically constructed. The union of that set and I C C is displayed
in a menu for the designer to choose from. When the reset is inserted, the
designer's menu choice will be recorded with it. From this information,
definitions allow the RA to deduce whether a given reset is local because it is
devoted to a particular device, or whether it is a centrally controlled reset which
can affect many devices at once. Such choices are significant for proofs of
requirements demanding different kinds of reset control. The reset's name (R-
t gO) is generated incorporating that information, too, for the convenience of the

designer.
Lacking the connecting circuitry, the RA cannot complete proofs at this

stage. On request however, it can advise the designer by trying to look one step
ahead and see if any known component would be useful, as described in 4.6.

6.2 Inserting Components using the Functional Logic Editor

The designer switches to a functional logic editor by a menu bar selection.
The RA displays a new window with a logic tool panel which allows the
insertion of inputs, outputs and schemas, again prompted by menus of
alternatives.

Although the functional logic view operates in the same context as the
Design Window there is no assumption that all the components present there
will be involved in this logic. The designer must specify them. However, when
the designer selects inp from the tool panel, the RA computes that the possible
inputs in the context from a functional logic point of view are any initiators and
reset controls. In our example they are dwsO and R-tgO, so the RA offers them in a
selection menu. Having inserted both of these input signals and tgO as an output
signal, it's time to connect them by a circuit schema.

Selecting 5th from the tool palette results in a choice of schemas. Choosing
a latchedreset from the menu (which also includes AND and OR gates) places a
diagrammatic representation of one on the window (see below), adds a named
instance to the world (schemaO), prompts the designer to assign its connections
(thus setting its context), adds all the schema's contributions to the domain, and
as with the addition of any component, revises the lists of known and

outstanding requirements.

24

(Cl)
(C2)
(C3)
(C4)

tripped(dwsO) -» shut_down(tgO)

shut_down(tgO) & not_reset(tgO) -» latched(tgO)
reset(tgO) & forall(i) (on(i,ls) & ok_signal(i)) -» ok_signal(tgO)

resets('R-tgO', tgO)

It is worth noting that these contributions encapsulate several examples of
input/ output behaviour. Each of the -» causations does, and so do the latched
and resets predicates. By describing the contributions of an object or logic circuitry
at a high level, details of its temporal properties or quite how it is achieved can
be finessed to a large extent, while preserving essential behavioural information.
This is a regular feature of the lightweight descriptions we have adopted. For
example the RA' s valve schema allows it to infer that the closure of a valve on
the pipe between two vessels will isolate those vessels from each other. Thus the
agents and effects are noted without modelling the process in complex detail.

6.3 Completing Requirement Proofs

In addition to completing the design, the designer has now satisfied all the
requirements. The system's reassessment of the state of the requirements
confirms this.

The proofs of all the requirements apart from R3' are trivial because their
conclusions match contributions directly, modulo renaming of variables. In R2,
Bs will have been calculated to be {dwsQ}. Their proofs will have leaves which
record that the conclusion has been contributed as a fact by schemaO.

Proving R3' takes a little more work. For ease of reference it is given again:

machine(tgO) I- 3 r local_reset(r) & resets(r, tgO) (R3')

Usually in a sequent calculus the proof at this stage would demand that an
explicit value be provided for r. To find a suitable value for r, the theorem prover
makes it a Prolog variable (R, say) and proceeds to try and prove the existentially
quantified formula, to see if the demands of the proof steps which follow will
force a value for R, and therefore for r. That value is then used in the proof rule
for 3. This is in fact what happens here. The prover attempts to prove:

machine(tgO) ~ local_reset(R) & resets(R, tgO)

which is immediately split into two sub goals which must both be proved:

machine(tgO) ~ local_reset(R)
machine(tgO) ~ resets(R, tgO)

the first subgoal can be proved true by setting R to have the value R-tgO (as we
shall see next). With this value, the second subgoal is immediately true from
contribution C4. The order of the subgoals is not significant. The prover will try
to prove them in all permutations until it finds a solution or fails completely.

25

Requirement

GIUEN THAT Igo Is a deulce SHOW THAT r EHISTS, SUCH THAT r Is a local
resel ANO r resels IgO

Gluenl~~~';;f') M
Imlclltno<tqO) ~

TIIen Io..LJtstt(R-tqO')

by
If

The prover uses the definition of local_reset which requires that R be a
reset for something and that that something be a machine in the current context.
The proof is again split into two sub goals, which are proved from the context.
The overall proof of R3' has been produced by the RA from piecing together
information from the designer's explicit additions to the design and by inference
from contributions due to some of these choices.

7. Discussion

7.1 Finite World and Focus on Context

A common problem in automated reasoning is controlling search.
Problems which can be described finitely have the significant advantage that
proof attempts terminate. We have taken advantage of the concrete nature of
our task to force the domain to be finite. Where recursion occurs in the system
being described, it has been deliberately encapsulated in order to preserve
finiteness within the description language. For example, in the latching circuit
the property of providing a latch is given without going into the recursive detail
of how this is achieved.

By building a notion of focus into the system, we can limit still further the
size of the world to be considered for each task, whether it be checking the
satisfaction of a requirement or establishing which ones are relevant. The notion
of focus echoes the way a human designer would proceed -looking at one design
module at a time, or one page of circuit diagram at a time.

7.2 Proof Strategies

By working in a finite domain, and restricting the use of recursion and the
cut rule, we have an almost propositional system. Although requirements may
be universally quantified, that quantification will only be over a finite domain,
so we need only ever prove the finite set of instantiations of each requirement
formula to all be true. Existential quantification can appear, but it, too, is

26

constrained to a finite domain which would contain any candidate value.
The sort declarations are purely a set of subset links which are used

transitively for deduction. Proof search using transitivity is prevented from
becoming explosive by demanding that the intermediate sort be instantiated
before we embark on the subproofs. In this way, with a finite lattice, sort proofs
are terminating.

This finiteness allows us to use negation as failure safely, since we can
apply proof exhaustively. So far we have worked with relatively small design
and requirement sets and not encountered efficiency problems.

7.3 Using sorts to represent partial descriptions

The entire set of subsorts may include sorts which are not leaves of the
lattice, they are still sorts of sorts. Choosing one of them corresponds to partially
specifying a component. For example a sensor may be declared to be a heat
sensor, but without deciding whether it is a flame detector, a temperature sensor
or a smoke sensor. Our system does not yet monitor such partial descriptions, but
they could be exploited in a system using a refinement logic.

7.4 An Evolving World

As the design proceeds the context is fleshed out, and the domain of proof
changes. Adding components can change simple facts and add lemmas to the
theory as components contribute properties. This means not only that proofs
which were unprovable become provable, but that proofs which were true may
need to be reproved. As we have seen, a proof that was true for all the sensors in
an earlier partial description of the system will not suffice when a new sensor is
added. As described earlier, the RA monitors this process and adjusts superseded

requirements.
Our solution to managing an agenda of outstanding requirements lies

between full truth maintenance and full regeneration. Full truth maintenance
would involve comparing the proofs of each of the context elements in the two
instances of the requirement. We do not need such a level of detail. For our
purposes it is enough to know that the context4 of the earlier requirement
instance has been subsumed. This is so if the values for the set of context
variables yielded by the current proofs subsume those of the earlier proof (or vice
versa). If the context has changed in this way, the RA uses the new requirement
instance as a replacement for the subsumed one. In this way regeneration has
taken place, but only of a requirement detected in relation to the addition. The
test for replacement need only establish context subsumption.

Full regeneration would have the advantage of avoiding the truth
maintenance problem completely, but demand the regeneration of all the
requirements (shown and outstanding) each time a component was added, not
just those requirements pertinent to the addition. For a large system, this could
prove expensive. Another disadvantage of full regeneration would be the failure
to offer a designer information about the implications of an individual design

4 Here we use 'context' to refer to the set of components which are the context for the requirement-

the ones to which its variables are instantiated.

27

step. For this reason the implemented approach is closer to the human
designer's reasoning.

7.5 The Demonstrator's Logic

For the purpose of developing an exemplar we chose a lowest common
denominator logic, one that would be a subset of almost any other logic. We
chose a restricted first order predicate calculus with sets. There is a causation
operator, which is simply an infix predicate (-»).

While specialist non-classical logics have been developed, they are
commonly more complex than ordinary first order predicate calculus. Choosing
a vanilla logic allows us to show the value of our approach without relying on
special purpose language features. Moreover, automated strategies for proof,
which we did want to rely on, are well-developed for standard logics.

Rules relating to the physical interface use a logic of two dimensional
relations allowing the designer to specify topological relationships. As well as
detecting the presence of objects, the RA can detect within, at and leads to/from
rela tionships.

Referring back to the process of monitoring relevance of requirements, it
is worth observing what would happen if both material implication and
negation-as-failure were in the logic. At the stage when only the turbogenerator
had been added, but no initiating sensor, R 1 would have one true and two false
hypotheses using negation-as-failure:

machine(X), initiator(I), expected_consequence(I,X) ~ tripped(l) -» shut_down(X)

Material implication would then permit the inference that the conclusion was
true, which would be meaningless.

7.6 Engineering the Demonstrator

Wherever possible, we adopted an abstract data typing approach to
building the system, in order to assist development and make the demonstrator
as modular and easily extendible as possible.

The RA uses abstract data typing when accessing the proof system. It must
be able to ask whether or not a sequent is proved true, and which objects are
involved in the proof. An organisation using such a system which decided not to
use the demonstrator's vanilla logic would be responsible for providing rules of
inference for the chosen logic, and adapting the proof strategy module. It would
specify predicates, connectives, axioms and constants for designers to use.

8 Evaluation and Further Work

As we said at the beginning of this paper, our intention in devising the
RA was to provide a tool to "assist designers in managing the process of working
with large complex collections of requirements relating to safety systems". We
focussed on the core tasks, their representation and automated reasoning
support. User interfaces were sufficient for demonstration purposes, but not a
focus. As well as evaluating our attempt on the core tasks, we can now look

28

beyond to wider questions of usability/in the light of experience with
demonstrator.

8.1 Lightweight Formalisation

Our use of lightweight formalisation was a key component in achieving
both validation arguments and automated support for managing them and their
associated requirements. We must consider whether it was effective for
expressing requirements.

For each of the different sections of the guidelines we chose, we developed
a vocabulary. Some vocabulary stretched across different sections, referring to
commonly occurring objects such as an alarm or the control centre. We wrote a
set of simple formalisations of the natural language requirements using high
level terms which had a close to human level interpretation in the domain.
Linking formalisations to designs was largely straightforward.

We also need to know if lightweight formalisation itself scales up, and
what effect scale has on vocabular. The description language can usefully be
thought of in four parts: the sorts, properties of individual objects, the relations
and the logic itself. The sorts are simple constructs describing individual objects.
Properties, are similarly simple describing heights of buttons, and colour-codings
for example. A simple logic was chosen deliberately, as part of the lightweight
formalisation, in order to be readily comprehensible, and it was constant.
Relationships (causal or locational, for example) are the most challenging part of
the formalisation, because they require significant proof. To assess the viability of
lightweight formalisation of a whole domain, we progressed from our initial
formalisation of the design criteria for emergency shutdown systems from the
Emergency Shutdown guidelines (Shell 92), and encoded the guideline
requirements for a whole fire zones. The second phase of formalisation built
substantially on the first one, confirming our belief that lightweight
formalisation was able to capture common concepts. Fresh terminology required
for the new domain was mainly to cover sorts and properties. New relationships
were rare.

Demonstrating the RA and typical formalisations to a domain expert was
encouraging in terms of understandability. For usability, it would be important
to ensure consistent use of language, especially when referring to events and
relationships. Vocabulary management assistance would be invaluable.

8.2 Extensibility to a real-life setting

Industrial Usability

The RA would have to be integrated into the actual CAD system used by a

5 sections on "Manual Alarms and Executive Actions" and "Fire Detection and

Annunciation" in the Fire and Gas Detection and Alarm Systems guidelines

(Shell 93)

29

system designer, as exemplified in the demonstrator. It is unlikely that designers
would willingly add an extra layer of work to run their designs through an
separate requirements management system, which would then provide them
with relevant information too late.

The existing support tools for the safety engineer, for example for
generating formalised requirements, are basic. Ideally there would be a structure
editor built around the logic and vocabulary. Requirements definition and
development should also notice interacting requirements. Requirements may be
rightly duplicated, because different parts of the guidelines repeat them. More
importantly, it would be useful to notice if they were contradictory. Such tools
could also allow separate formalisations of new and old guidelines, or internal
and external regulations, to be compared.

A better interface would be needed to assist in accessing the volume of
requirements that are invoked even by simple designs. Modularisation would be
essential. An instance of an accommodation unit with an exit leading onto the
top of a stairway leads to the activation of 28 fire zone guideline requirements
from one section of the guidelines alone in the current formalisation. This
happens because satisfying the initial guidelines results in adding further
features, which in turn trigger more requirements.

Full Scale Tasks

Scaling up can involve not only a larger design, but more requirements
and the demands of a wider domain on the formalisation language. The latter
issue has already been addressed above. Now we will look at the demands of
more extensive designs.

Requirement checking has two phases: adding newly invoked
requirements and reviewing those already triggered. Establishing which
requirements are invoked by adding a new object is a fairly fast operation,
involving a traversal of the formalised guidelines. Inevitably this takes longer as
more guidelines are formalised, but the use of the hypotheses as context to filter
for both relevance to the new object and the current design, is effective.
Reviewing outstanding requirements is also a matter of running down a list. It
could be made more efficient by recording and re-using previously established
facts which are currently re-pr'::Jved. Locational information is an obvious

example.
The real problem is the number of objects present in a design. As the

number of objects present in the design increases, so does the number of
candidate values for each variable, causing each proof attempt to take longer.
Since we rely heavily not just on proof, but on exhaustive proof, design size will
become problematic unless a mechanism is developed to focus each proof on a
subset of the available objects. So far, dealing with small examples, we have not
needed such a mechanism.

9 Conclusion

This paper describes an automated reasoning assistant for interactive
design. For a given partial design, as components are added, the requirements

30

assistant uses automated reasoning to:

.support designers in formalisation and interpretation

.find relevant requirements to be proved;
.check automatically whether they are satisfied;
.record those parts of the design on which requirement satisfaction

depends;
.record the requirements to which components contribute;
.record the partial and complete proofs of requirements;
.make the proofs and the text they represent inspectable;
.suggest why failures to satisfy requirements occur; and
.sometimes offer a suitable remedy.

The schema-based system can capture endorsements or proof
contributions without total proof each time. It is a good compromise between
proof and engineer endorsement. Effectively, new lemmas are added to the
theory when a component is added and instantiated.

We have taken advantage of the fact that our domain uses guidelines
which encourage standardisation and simplicity. While the restrictions we have
imposed in order to achieve termination and completeness in the proof system
might seem oppressive, our experiments show that they have not turned out to
be so. This is especially true in the safety-critical domain, where simplicity is a
virtue.

Our approach relies on the formalisation of standards, requirements
statements (both graphically and textually), components and combinations of

components.
By describing all the potential components as objects with properties

described in frames, it becomes possible to unify component and schema based
approaches within an interactive framework.

Appendix

In addition to the requirements shown in the main body of the paper, we
have formalised other parts of two codes of practice. The results are summarised
in the following table. The variation in numbers of rules per page can be
accounted for largely by the amount of descriptive background material present.

Pages Rules TitleSource Section

Shell 93
Shell 93
Shell 92

4
5
4.1

43
45
96

Manual Alarms and Executive Actions
Fire Detection and Annunciation
Design Criteria for Emergency Shutdown
Levels

3
11
4+table

Many of the formalisations are quite similar to each other, so we have
selected a representative sample. A glossary appears at the end of the set of
examples. We use ellipsis frequently (here, though not in the RA) where the
original text contains a list of similar items from which we are showing an

exemplar.

31

Example text fragments and their formalisations from section 4 of Shell 93:

"GPA call points should also be located in the following
areas: """", in crane cabs."

[crane_cab(A)]
>- exists g:gpa_call_point(g) & location(g, within(A))

"Activation of each GPA call point shall initiate the
following automatic actions: , if the GPA call point is
in the drilling module, an individual visual and audible
alarm at the drilling repeater panel, indicating the zone
of the GPA call point;"

[gpa_call_point(G), drilling_module(M), location(G, within(M)),
drilling_repeater_panel(P, M), visual_alarm(V), location(V, on(P))]

>-activation(G)-»activation(V) & indicates_zone(V, M)

[gpa_call_point(G), drilling_module(M), location(G, within(M)),
drilling_repeater_panel(P, M), audible_alarm(A), location(A, on(P))]

>-activati on (G) -> > activati on (A)

Example text fragments and their formalisations from section 5 of Shell 93:

"Many solid materials smoulder for a period before
developing flames, in which case a smoke detector can
give early warning of such smouldering combustion."

This is an instance of a requirement whose status is noted as being preferred
rather than mandatory.

[solid_fire_source(S), area(A), location(S, within(A))]
>-exists s:smoke_sensor(s) & location(s, within(A))

"Upon activation of a single (smoke (see note), flame or
heat) fire detector, a visual and audible alarm, clearly
indicating the affected zone, shall be initiated at: ...the
turbine repeater panel, if the zone includes a turbine
with a repeater panel."

[fire_protection(P), area(A), location(P, within(A)), turbine(T),
location(T, within(A)), control_panel(turbine_repeater, A, C),
visual_alarm(V), controls(P, V), indicates_zone(V, A), location(V, on (C))]

>- activation(P) -» activation(V)

[fire_protection(P), area(A), location(P, within(A)), turbine(T),
location(T, within(A)), control_panel(drilling_repeater, A, C)]

32

>- exists a:audible_alarm(a) & controls(P, a) & location(a, on (C))

[sf_sensor(S), area(A), location(S, within(A)), turbine(T),
location(T, within(A)), control_panel(drilling_repeater, A, C),

audible_alarm(H), controls(S, H), location(H, on(C))]
>- activation(S) -» activation(H)

Example text fragments and their formalisations from section 4.1 of Shell 92:

"Manual shutdown facilities, interfacing to the
installation emergency shutdown and process and utility
shutdown systems, shall be provided both locally at the
equipment and remotely at the ICC, emergency control
point (TR) and at the DIM's Lifeboat station. Manual
initiation shall be by dedicated push-button allowing
action by a single operator."

[tps_b utton (B)]
>- exists a: location(B, at(a))

& (icc(a) or ecp(a) or lifeboat_station(a))

[input_dev(B), activation(B)-»initiation(tps)]
>- button(B) & dedicated(B)

[icc(I)]
tps_button(b) & location(b,>- exists b

[ecp(E)]
>- exists b : tps_button(b) & location(b, at(E))

[I ifeboat_station(L)]
> -exists b : tps_button(b) & location(b,

"isolation of the installation from subsea pipelines
by closure of riser valves ..."

[riser -valve(V), installation(I), subsea_pipeline(P), location(V, on(P)),

tps_button(B)]
>- err_signal(B) -» closure(V)

& closure(V) -» isolation(l, P)

liSPS shall be initiated by: ..., manual operation of aSPS
push-button. SPS buttons shall be located adjacent to
GPA buttons in process areas (Ref. EA/OO5), at the ICC
and emergency control point (TR);"

(button(B), activation(B)-»initiation(sps)]
>- manual(B)

33

[p rocess_area(A)]
>- exists b : button(b) & location(b, at(A))

& activation(b) -» initiation(sps)

& (exists 9 : gpa_call_point(g) & location(g, at(A))

& adjacent(b, g))

[icc(I)]
>- exists b : button(b) & location(b, at(I))

& activation(b) -» initiation(sps)
& (exists 9 : gpa_call_point(g) & location(g, at(I))

& adjacent(b, g))

[ecp(E)]
>- exists b : button(b) & location(b, at(E))

& activation(b) -» initiation(sps))
& (exists 9 : gpa_call_point(g) & location(g, at(E))

& adjacent(b, g))

SPS shall be initiated by... confirmed fire in a hazardous
area; ...

[fire_sensor(S), hazardous_area(A), location(S, at(A))]
>- confirmed_fire(A, S) -» initiation(sps)

Actions occurring as a result of an SPS shall be: ...
Isolation from the reservoir by closure of all wellhead
shutdown valves.

([installation(I), reservoir(R)]
>- initiation(sps) -» isolation(l, R)

Glossary

Band G are adjacent
the activation of B
A is an area
A is an audible alarm
B is a button
V is closed automatically
a confirmed fire in Z indicated by sources S
S controls H
P is a type T control panel for area A
A is a crane cab
D is dedicated
M is a drilling module
P is a drilling repeater control panel for area M
E is an emergency control point
an error signal from B

adjacent(B/G)
activation(B)
area(A)
audible_alarm(A)
button(B)
closure(V)
confirmed_fire(Z, S)
controls(S, H)
control_panel(D I A, C)
crane_cab (A)
dedicated(B)
drilling_mod ule(M)
drilling_repeater_panel(P I M)
ecp(E)
err_signal(B)

34

~~

P is a fire protection system
S is a fire sensor
General Platform Alarm
General Platform Alarm call point
A is a hazardous area
Installation Control Centre
I is an installation control centre
alarm V indicates zone A
the initiation of X
B is an input device
I is an installation
I becomes isolated from R
L is a lifeboat station
S is located at A
S is located on A
S is located within A
B is manual
Offshore Installation Manager
A is a process area
R is a reservoir
V is a riser valve
S is a smoke or flame sensor
S is a smoke sensor
S is a solid fire source
Surface Process Shutdown
P is a subsea pipeline
Total Process Shutdown
B is a total process shutdown button

Temporary Refuge
T is a turbine
V is a visual alarm

fire_protection(P)
fire_sensor(S)
GPA
gpa_call_point(G)
hazardous_area(A)
ICC
icc(I)
indicates_zone(V, A)
initiation(X)
input_dev(B)
installa tion(I)
isolation(I, R)
lifeboat_station(L)
10cation(S, at(A))
10cation(S, on(A))
10cation(S, within(A))
manual(B)
aIM
process_area(A)
reservoir(R)
riser- valve(V)
sf_sensor(S)
smoke_sensor(S)
so lid_fire_source(S)
SPS
subsea_pi peline(P)
TPS
tps_button(B)
TR
turbine(T)
visual_alarm(V)

References

Clocksin 94 Clocksin, W.F. and Mellish, C.S. Programming in Prolog. 4th
edition. Springer Verlag 1994.

Offshore Installations: Guidance on design, construction and
certification. HMSO 1993.

HSE 93

Pfleeger, S.L. and Hatton, L. How do formal methods affect code
qtlality? to be published in IEEE Computer 1996

Pfleeger 95

Domain Specific Problem Description in the proceedings of the
8th International Conference on Software Engineering and

Knowledge Engineering, 1996.

Robertson 96

Shell 92 Emergency Shtltdown and Process Trip Systems. Shell Expro

35

internal Code of Practice 1992.

Shell 93 Fire and Gas Detection and Alarm Systems for Offshore
Installations. Shell Expro internal Code of Practice 1993.

36

