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Tactic-based theorem proving

in First-Order Modal and Temporal Logics

Claudio Castellini and Alan Smaill

Division of Informatics
University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK

Abstract. We describe the ongoing work on a tactic-based theorem
prover for First-Order Modal and Temporal Logics (FOTLs for the tem-
poral ones). In formal methods, especially temporal logics play a de-
termining role; in particular, FOTLs are natural whenever the mod-
eled systems are infinite-state. But reasoning in FOTLs is hard and
few approaches have so far proved effective. Here we introduce a fam-
ily of sequent calculi for first-order modal and temporal logics which is
modular in the structure of time; moreover, we present a tactic-based
modal/temporal theorem prover enforcing this approach, obtained em-
ploying the higher-order logic programming language λProlog. Finally,
we show some promising experimental results and raise some open issues.
We believe that, together with the Proof Planning approach, our system
will eventually be able to improve the state of the art of formal methods
through the use of FOTLs.

1 Introduction

Temporal logics are extensions of classical logic, dealing with the concept of time
and how properties of a dynamic system change through time [GHR93]. From
another point of view, temporal logics are modal logics whose Kripke frame
enforces the intended structure of time. Temporal logics are used in specifica-
tion and verification of multi-agent, concurrent and reactive systems, programs,
circuits and protocols (see e.g. [MP92]). Therefore, effective temporal thorem
proving is highly desirable.

While several effective approaches have been developed for propositional
modal and temporal logics, the situation is quite hard when we switch to first-
order temporal logics (FOTLs), which constitute a richer class of languages,
mostly undecidable and nevertheless natural for the specification of infinite-state
systems. Even apparently small fragments of FOTL over the natural numbers, for
instance, are not recursively enumerable (see e.g. [BO95] and references therein).

This paper describes the work we are carrying on about first-order modal and
temporal theorem proving: we give a labelled, modular presentation of first-order
modal and temporal logics, setting up a family of sequent calculi which allows
different Kripke structure / time structures to be dealt with; then we describe
a modular, tactic-based modal/temporal theorem prover which supports the



approach described above. The implementation closely follows Amy Felty’s work
on higher-order, tactic-based theorem proving in λProlog [NM98,Fel93].

The choice of a modular approach to FOTLs in a labelled modal logic style
is motivated by three considerations: (i) the temporal logics we are interested
in are modal logics whose Kripke frame enforces the structure of time (linear,
branching, discrete, continuous, etc.); (ii) labelled deduction in modal logics,
even in the first-order case, is feasible (see, e.g., [BMV98]); (iii) most FOTLs
share the same syntax and only differ in the underlying structure of time.

The paper is structured as follows: Section 2 describes the family of sequent
calculi T LL; Section 3 describes the theorem prover FTL and shows some exper-
imental results; Section 4 outlines our future work.

2 A modular presentation of modal and temporal logics

The language we use for our sequent calculi must be flexible enough for a wide
family of modal and temporal logic; at the same time, it must be easily manage-
able by a small set of sequent rules. So we choose to embed modal and temporal
logics in a labelled deductive system whose basic unit of information is the labelled
formula rather than a simple formula. We also use formulae called constraints
to express the relations that must hold between labels. A thorough exposition
of labelled deduction can be found in [Gab96].

In our setting, a labelled formula has the shape ϕ@τ where ϕ is a logical
formula and τ is a label. The intuitive meaning is: “at the (world, situation,
instant) denoted by τ , ϕ holds”. Logical formulae are standard formulae of a
full first-order language; they are combinations of atoms / logical formulae via
standard first-order connectives (¬, ⊃, ∀) plus the unary modal connective 2

(other connectives ∧, ∨, ↔, ∃ and 3 may be defined from these). Labels are
either variable symbols τ or the constant 0. A constraint is the application of
the binary relation � to two labels.

The language of labels / constraints is disjoint from that of logical formulae;
this way, it can be augmented to fit the requirements of the logic we are examin-
ing. For example, in the following we will introduce a “successor” function σ into
the language of labels, thus stepping towards a logic based on discrete frames.

Truth of labelled formulae and constraints is defined in a quite standard way
(see [AM90,BD92]). Let

M = 〈W , R,D, I〉

be a tuple where W is the set of possible worlds, R ⊆ W×W is the accessibility
relation, D is the domain of quantification and I maps a world and a predicate
symbol to a predicate over D. We deal with quantified modal logics on constant
domains, that is, the domain of quantification D is the same in all possible
worlds. Moreover, we employ rigid designators, that is, the only dynamic objects
are predicates.

We also need a first-order interpretation Il mapping � to R, 0 to an element
of W , and variable symbols to elements in W . We indicate possible worlds with



the letter w and intend that w,wi, w
′, . . . are the objects referred to by labels

τ, τi, τ
′, . . .

Let α be a function recursively mapping logical terms to values in D (assign-
ment); the notion of a formula being true in M under α, written M, α |= ϕ, is
recursively defined as follows:

M, α |= τ1 � τ2 iff (w1, w2) ∈ R
M, α |= p(s1, . . . , sn)@τ iff (α(s1), . . . , α(sn)) ∈ I(w, p)
M, α |= ¬ϕ@τ iff M, α 6|= ϕ@τ
M, α |= ϕ ⊃ ψ@τ iff M, α 6|= ϕ@τ or M, α |= ψ@τ
M, α |= ∀x.ϕ@τ iff for all d ∈ D,

M, α[d/x] |= ϕ[d/x]@τ
M, α |= 2ϕ@τ iff for all w′ ∈ W ,

M, α 6|= τ � τ ′ or M, α |= ϕ@τ ′

Given a standard notion of sequents as set of formulae (as presented, e.g., in
[Wal89]), we introduce the sequent calculus T LK for quantified K on constant
domains and with rigid designators in Figure 1.

Γ, ϕ@τ −→ ϕ@τ, ∆
ax

Γ `A ∆

Γ −→ ∆
ent

Γ −→ ϕ@τ,∆

Γ,¬ϕ@τ −→ ∆
l¬

Γ, ϕ@τ −→ ∆

Γ −→ ¬ϕ@τ, ∆
r¬

Γ −→ ϕ@τ,∆ Γ, ψ@τ −→ ∆

Γ,ϕ ⊃ ψ@τ −→ ∆
l⊃

Γ, ϕ@τ −→ ψ@τ,∆

Γ −→ ϕ ⊃ ψ@τ,∆
r⊃

Γ, ϕ[c/x]@τ −→ ∆

Γ, ∀x.ϕ@τ −→ ∆
l∀

Γ −→ ϕ[a/x]@τ,∆

Γ −→ ∀x.ϕ@τ,∆
r∀

Γ, ϕ@t −→ ∆ Γ −→ τ � t,∆

Γ,2ϕ@τ −→ ∆
l2

Γ, τ � ta −→ ϕ@ta, ∆

Γ −→ 2ϕ@τ, ∆
r2

Fig. 1. the calculus T LK for quantified K. a and ta cannot appear in the conclusion
of r∀ and r2.

The entailment rule ent allows to close a branch if the constraints in Γ
“entail” at least one constraint among the consequents; the entailment relation
`A represents first-order deduction from a set A of axioms which enforce the
desired properties of the frame. In this case A is empty and ent reduces to an
axiomatic rule for constraints:



Γ, τ1 � τ2 −→ τ1 � τ2, ∆
axc

It is possible to prove in T LK a number of characteristic axioms of K (e.g.,
modal modus ponens and both Barcan formulae). Also, the rule of necessitation
is naturally enforced.

From the theory of correspondence [van84] we know that most useful proper-
ties of Kripke frames, which also characterize modal logics in toto, are expressible
as modal axioms and have first-order formulations. So we extend T LK with new
sequent rules corresponding to first-order conditions on �. For instance, T is
characterised by reflexive frames; so we add rule refl to T LK and call the result-
ing calculus T LT:

Γ, τ � τ −→ ∆

Γ −→ ∆
refl

This way we obtain sequent calculi for quantified D (characterized by the
axiom D), T (T ), S4 (T, 4), S4.2 (T, 4, 2), S4.3 (T, 4, 3).

Proposition 1 (Main proposition).
Let T LL denote T LD, T LT, T LS4, T LS4.2 or T LS4.3. Then

1. T LK is sound and complete for quantified K on constant domains with rigid
designators;

2. T LL is sound for quantified L on constant domains with rigid designators.

(this result appears in a forthcoming paper, currently under revision by the
Journal of Logic and Computation.)

The remarkable property of the family of sequent calculi T LL is that they
are modular in the Kripke frame: to obtain the calculus for a stronger logic,
we just need to add one or more sequent rules to the previous calculus. We are
currently working on completeness for item #2. This work owes a lot to Basin,
Matthews and Viganò’s early works on labelled deduction in modal logics (see
[BMV97a,BMV97b,BMV98]).

So far for modal logics; but, as we are interested in temporal logics, mainly
with a frame isomorphic to the natural numbers and with a “next” operator, we
consider a further extension. We introduce a unary function σ, called successor,
in the labelling language, and let the label interpretation Il take care of its
semantics. To use this function in the new calculus, which we will call T Lind, a
new modal operator © is introduced, together with appropriate rules:

Γ, ϕ@σ(τ) −→ ∆

Γ,©ϕ@τ −→ ∆
l©

Γ −→ ϕ@σ(τ), ∆

Γ −→©ϕ@τ,∆
r©

We also add the cut rule, rules for induction and rules which define the
relation between � and σ. Some examples:



Γ −→ ϕ@τ,∆ Γ, τ � ta, ϕ@ta −→ ϕ@σ(ta), ∆

Γ −→ 2ϕ@τ,∆
rind

Γ −→ τ2 � τ1, ∆

Γ, τ1 � τ0 −→ τ2 � τ0, ∆
σ1

The optimal set of rules is the object of our future research. We suspect
that a set of rules enforcing a full Presburger Arithmetic decision procedure
would make T Lind equivalent to Annotated Temporal Logic [MMW94], which
is complete for a wide subclass of linear time first-order temporal logic, defined
in [AM90]. We also suspect that T Lind embraces a logic which is stronger than
S4.3.1, obtained by adding the Dummett axiom to S4.3 (see [HC96] and [Gor93]
for a thorough exposition of the hierarchy of modal and temporal logics and their
axiomatizations).

3 System description and experiments

FTL is a prototypal implementation of T LL in in λProlog. λProlog is a higher-
order logic programming language which allows logical modules, λ-abstraction
and -application and higher-order hereditary Harrop formulae in place of first-
order Horn clauses as in ordinary Prolog [NM98]. λProlog fits well the needs of
automated theorem proving; our implementation is largely based on Amy Felty’s
work on classical and intuitionistic theorem proving [Fel93]. In that paper a proof
of correctness of the implementation is given, and it is easy to adapt such a proof
for our case. The proof employs a translation between the object logic and the
higher-order logic of λProlog, showing that every proof in T LL corresponds to
a higher-order term in the meta-logic and viceversa.

FTL consists of five λProlog modules. Modules dynamically make their clauses
available to other modules, and this mechanism is particularly well suited in this
case, where we want the machinery for reasoning on time to be as opaque as
possible with respect to the prover.

The sorts of the object logic are defined in λProlog straightforwardly; Boolean
connectives are logical formulae (sformula) constructors:

type neg sformula -> sformula.

type imp sformula -> sformula -> sformula.

type glob sformula -> sformula.

type forall (i -> sformula) -> sformula.

As one can see in the definition of ∀ (forall), λ-abstractions provide a repre-
sentation of object-level quantification: a logical formula ∀x.p(x) becomes forall
x\ (p x) (the backslash encodes λ-abstraction in λProlog). In this example, p
has been previously declared as a unary predicate (type p i -> sformula.).



The quantified variable is abstracted away, causing λProlog’s unification algo-
rithm, which coincides with βη-reduction, to detect equivalence among formulae
regardless of bound variables.

Tactic theorem proving means that we want to establish a relation between
a sequent and its proof (namely, that the proof proves the sequent). We try to
reach this goal by means of steps enforced by tactics. We thus define a sequent
as a pair of lists of formulae, and a goal as a pair sequent / proof:

kind goal type.

kind proof type.

kind sequent type.

type --> (list formula) -> (list formula) -> sequent.

type proves proof -> sequent -> goal.

Among other apt features, λProlog’s meta-level universal quantification can
be used to enforce the provisos on universal force rules (r∀, r2, rind and so on).
Whenever this mechanism is used, a fresh term is introduced, which is forbidden
to unify with any other term already present in the program, including logical
variables.

A tactic is a predicate linking two goals (its type being therefore goal ->

goal -> o), stating that one of them can be reached from the other by means
of some (multiple) rule application. Besides having imported from Felty’s work
compound tactics, which enforce repeated, exhaustive and conditional applica-
tion of tactics, we have written roughly one basic tactic per sequent rule, such
as in this example (the embedded rule is r⊃):

type r_imp proof -> proof.

type r_imp_tac goal -> goal -> o.

r_imp_tac ((r_imp P) proves (Gamma --> Delta))

(P proves (((Phi @ Tau)::Gamma) --> ((Psi @ Tau)::Delta’))) :-

delete (Phi imp Psi @ Tau) Delta Delta’.

An intuitive reading of the tactic goes as follows: if the conclusion set ∆
contains ϕ ⊃ ψ@τ then we remove it and call the new conclusion set ∆′. If this
operation was successful, proof (r imp P) proves sequent Γ −→ ∆, provided
that proof P proves sequent Γ, ϕ@τ −→ ψ@τ,∆′.

Object-level proofs become meta-level terms, and this correspondence is the
basis of a proof of correctness of our implementation (directly adapted from the
one given in [Fel93]): it is shown that every object-level proof corresponds to
a higher-order term in the meta-logic and viceversa, thus establishing that a
sequent S is provable if and only if there is a corresponding λProlog term P such
that the relation P proves ||S|| holds, where || · || denotes the encoding of the
sequent as a term of the meta-logic.

Reasoning on the Kripke frame (on the structure of time) is almost totally
confined in one of the five modules, in the spirit of the sequent calculi themselves.
The tactic for rule rind, for instance, goes as follows:



type r_ind proof -> (time -> proof) -> proof.

type r_ind_tac goal -> goal -> o.

r_ind_tac ((r_ind P1 P2) proves (Gamma --> Delta))

(and_goal

(P1 proves (Gamma --> ((Phi @ Tau)::Delta’)))

(forall_goal ta\

((P2 ta) proves ((Tau wbefore ta)::(Phi @ ta)::Gamma) -->

((Phi @ (s ta))::Delta’)))) :-

delete (glob Phi @ Tau) Delta Delta’.

where wbefore denotes the accessibility relation � and s is the successor func-
tion. The tactic mimicks the standard basic induction principle: to prove 2ϕ@τ
we prove that ϕ@τ holds, and that if ϕ@ta and τ � ta hold for a fresh time term
ta, ϕ@s(ta) must hold, too.

3.1 Experiments

FTL is still at an early stage of development. Nonetheless it has been able to prove
automatically all relevant valid formulae taken from [AM90] and [MP81], plus
the simple specification of a Boolean circuit, the proof of the Dummett axiom
and of a non-trivial inductive statement called simplified whisky problem1. The
proof of the Dummett axiom (not completely automatic), in particular, lets us
suspect that T Lind could be complete for a large subset of S4.3.1.

As an example, we give below the definition and sketch of the proof of the
simplified whisky problem. Let p be a unary predicate, a a constant and f a
unary function; we want to prove the validity of

p(a) ∧ 2∀x.[p(x) ⊃ p(f(x))] ∧ 2∀x.[p(f(x)) ⊃ ©p(x)] ⊃ 2p(a)

The intuition of this formula is: p(a) holds at time zero, for all x it is always
the case that p(x) implies p(f(x)), and for all x it is always the case that p(f(x))
implies p(x) at the next instant. The first conjunct can be seen as the initial
condition, whereas the two following conjuncts are invariants (they always hold).
It is now clear that the initial condition, plus the two invariants, imply the
conclusion “p(a) is always true”. Ideally a proof of this formula would require a
kind of “double” induction, on time and on the function f . Figure 2 illustrates
the situation.

We define a simple exhaustive compound tactic which applies rules rind and
lind after closing (ax and ent) and non-branching rules (such as l∧):

auto_tac InGoal OutGoal :-

exhaust_tac ( <... closing tactics ...> ::

<... non-branching tactics ...> ::

<... induction tactics ...> ::

<... other tactics ...> :: nil)

InGoal OutGoal.

1 The name of this problem is due to Regimantas Pliuskevicius.



0

p(f(a))

p(a) p(a) p(a)

t t+1 time

Fig. 2. an intuitive reading of the simplified whisky problem. Induction on f is
“chained” to induction on time.

where compund tactic exhaust tac repeatedly and exhaustively applies a list of
tactics to a formula. FTL soon obtains the “flattened” sequent

p(a)@0,2∀x.[p(x) ⊃ p(f(x))]@0,2∀x.[p(f(x)) ⊃ ©p(x)]@0 −→ 2p(a)@0

At this point, the induction rule opens two branches. The base case, in which
p(a)@0 appears among the conclusions, is trivial, while the step case requires 14
basic tactics and generates 5 branches. The resulting proof is, remarkably, very
intuitive — prettyprinted in a tree-like shape, it can be followed by a human
reader.

4 Conclusions

The original contribution of our work are so far represented by the sequent
calculi up to quantified S4.3 and S4.3.1, which had never been reached so far to
our knowledge, and the implementation, which constitutes a novel application of
tactical theorem proving in a higher-order setting to labelled deductive systems
and first-order modal and temporal logics in particular.

Future work primarily includes the application of the proof planning paradigm
to FTL via integration with the λCLAM system [RSG98]. We aim to use proof
planning to guide the search in these calculi, and in particular to help with the
difficult problem of controlling the interaction of the cut rule with our induction
rules for first-order temporal logic.

An interesting issue is raised by the “whisky problem”, which is a weaker
version of the problem stated in the previous Section:

p(a) ∧ ∀x.[p(x) ⊃ p(f(x))] ∧ 2∀x.[p(f(x)) ⊃©p(x)] ⊃ 2p(a).

Here the second conjunct is not an invariant, and nonetheless the formula is
still valid, as the intuition given in Figure 3 explains. It seems that some kind of
higher-order abstraction over proofs is necessary to prove this formula; we think
λCLAM could help.

Finally, our long-term aim is automated system verification, so we also plan
to investigate the use of tactics to find loop invariants and aid requirement
strengthening. At that point, we plan to run comparative tests with such systems
as STeP [M+95].
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t+1

p(f(a))
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......

time

p(f(a))

t

p(f     (a))

Fig. 3. an intuitive reading of the whisky problem. Some kind of higher-order abstrac-
tion over proofs is needed to handle objects such as p(f t+1(a)).

Acknowledgments

This work is being carried out at the University of Edinburgh and is supported
by the EPSRC Grant GR/M46624, “Mechanising First-Order Temporal Logics”.
The authors wish to thank all other people involved in the project: Alan Bundy,
Anatoli Degtyarev, Paul Jackson, Michael Fisher and Peter Quigley.

References

[AM90] Martin Abad́ı and Zohar Manna. Nonclausal deduction in first-order tem-
poral logic. Journal of the ACM, 37(2):279–317, April 1990.

[BD92] Cristina Bicchieri and Maria Luisa Dalla Chiara, editors. Knowledge, belief,
and Strategic Interaction. Cambridge University Press, Cambridge, Eng-
land, 1992.

[BMV97a] D. Basin, S. Matthews, and L. Vigano. A new method for bounding the
complexity of modal logics. Lecture Notes in Computer Science, 1289:89–??,
1997.

[BMV97b] David Basin, Seán Matthews, and Luca Viganò. Labelled propositional
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