

Edinburgh Research Explorer

Learning musical pitch structures with hierarchical hidden
Markov models

Citation for published version:
Weiland, M, Smaill, A & Nelson, P 2005, 'Learning musical pitch structures with hierarchical hidden Markov
models' Journees d’Informatique Musical.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journees d’Informatique Musical

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/learning-musical-pitch-structures-with-hierarchical-hidden-markov-models(2b530060-1d94-480f-8b59-6fc6a8107455).html

LEARNING MUSICAL PITCH STRUCTURES WITH
HIERARCHICAL HIDDEN MARKOV MODELS

Michèle Weiland, Alan Smaill, Peter Nelson
University of Edinburgh, Scotland, UK

{M.Weiland, A.Smaill, P.Nelson}@ed.ac.uk

ABSTRACT

In this paper we attempt to demonstrate the strengths of
Hierarchical Hidden Markov Models (HHMMs) in the
representation and modelling of musical structures. We
show how relatively simple HHMMs, containing a mini-
mum of expert knowledge, use their advantage of having
multiple layers to perform well on tasks where flat Hidden
Markov Models (HMMs) struggle. The examples in this
paper show a HHMM’s performance at extracting higher-
level musical properties through the construction of sim-
ple pitch sequences, correctly representing the data set on
which it was trained.

1. INTRODUCTION

Modelling and representing music computationally is a
task that has been the aim of many research projects in
recent years; it is also the principal aim of this research to
use stochastic processes to learn musical structures from
existing musical data sets. Unlike expert systems, rule
bases or generative theories, our approach is based on the
idea that musical properties should be extracted from data
sets, while as little musical expert knowledge as possi-
ble is encoded in the system’s structure and parameters.
We decided to use stochastic processes to model the de-
pendencies of events in musical data using Hierarchical
Hidden Markov Models. Standard Hidden Markov Mod-
els are efficient at modelling local dependencies in data
sequences, but cannot represent those of a large-scale na-
ture in an efficient way. Local dependencies are important
in musical data for the encoding of style signatures [2],
but a notion of large-scale dependencies is essential for
the creation of believable musical structures; Hierarchi-
cal Hidden Markov Models can represent both the local
and the large-scale dependencies in a data set. We would
like to show that, although in our approach the models
do not have a specific knowledge about the data they are
processing, they are able to extract important musical no-
tions. They might also demonstrate more creativity in the
generation of new musical material than rule-oriented sys-
tems. Work has been done on metric and rhythmic as well
as pitch structure; however this paper presents the results
from the experiments with pitch structure only.

The remainder of the paper is structured as fol-
lows: section 2 gives background information on Hid-
den Markov Models and hierarchical structures in music;

section 3 introduces the concept of Hierarchical Hidden
Markov Models in more detail; section 4 gives an exam-
ple of the use of HHMMs in modelling pitch sequences;
section 5 discusses the results of the previous section; sec-
tion 6 briefly outlines future steps in this research project.

2. BACKGROUND

Data sequences from any area of the real world are char-
acterized by the local dependencies of their elements or
observations. These observations can be discrete or con-
tinuous; they are elements of a knowledge space that rep-
resents the part of the world a data sequence belongs
to. A successful way of modelling many data sets is
by using stochastic processes, namely Hidden Markov
Models (HMMs). They have been used successfully “in
many applications in artificial intelligence, pattern recog-
nition, speech recognition, and modelling of biological
sequences” [1]. A HMM is a Markov chain, a general
statistical tool that models the dependencies of states in
a system, with two layers: the hidden layer, representing
the non-observable states a system can be in, and the layer
of observations that can be made by a system, depending
what state it is in. Rabiner [5] gives a detailed overview
of HMMs and their application in speech recognition, an
area where HMMs have been rather successful.

2.1. Inference with HMMs

Three fundamental problems can be solved using a HMM:
firstly, a data set can be reflected by adjusting a model’s
parameters, ie. the probability values for the transitions
between states and the emissions of observation symbols;
secondly, given a trained model, the overall probability
of a sequence can be calculated; thirdly, given a trained
model and an observation sequence it is possible to ex-
tract the sequence of hidden states that have most likely
generated the observation sequence. The algorithms be-
hind those problems are mathematically well-founded and
offer a great versatility for the use of HMMs. In addi-
tion to the analysis abilities, a HMM can also be used as
a generative model by emitting symbols while traversing
the structure according to its parameters (see section 4.3).

2.2. Hierarchical Structure in Music

However, although HMMs perform well in areas such as
speech recognition, language or DNA modelling, or even
small-scale modelling of music, they lack performance
when it comes to large-scale musical structure. Music can
be seen as a composition of hierarchical structures built
in time, every element in a score being dependent on its
relative place in the score.

Lehrdahl and Jackendoff [4] divide the hierarchical
components in music into four groups: grouping struc-
ture; metrical structure; time-span reduction; prolonga-
tional reduction. This research concentrates on aspects
of the first two groups, namely the segmentation of mu-
sic into phrases and sections, and the subdivision of music
into weak and strong beats that give a musical work its
metre.

The notion of music being hierarchical structures built
in time, resulted in the idea to use Hierarchical Hidden
Markov Models, instead of the standard HMMs. The ad-
ditional level of expressiveness helped to overcome prob-
lems that standard models could not easily solve.

3. HIERARCHICAL HIDDEN MARKOV MODELS

Hierarchical Hidden Markov Models (HHMM) were first
introduced by Fine et al. [3] as an extension of the stan-
dard flat HMM. Contrary to a HMM, a HHMM has “mul-
tiple levels of states which describe input sequences at
different levels of granularity” [6] and can be thought
of as having a tree structure: the nodes of the tree are
the model’s states, the edges are the transitions between
states. HHMMs use the same methods of inference as
standard HMMs, only with adjusted algorithms.

Figure 1. Example of a three-level HHMM.

3.1. States

There are three different types of states in a hierarchical
HMM: internal states, production states and end states;
each of them have different purposes in the model. The
internal states are the tree’s internal nodes, they contain in-
formation about transition probabilities to brother or child
states and they are self-contained probabilistic models.
Production states are the tree’s leaves, they are the only

states in the model that can actively emit symbols. Be-
cause production states are contained in internal states, an
internal state “emits” all the symbols that its production
states emit; internal states emit sequences of observations
rather than single symbols. End states force, if activated,
the return from one level to the next higher level. Figure 1
shows an example of a three-level hierarchical HMM with
an unbalanced tree structure; the states root and is are
the model’s internal states, ps1, ps2 and ps3 are the
production states and e is the end state.

3.2. Transitions

Walking through the tree structure of a HHMM is
achieved by vertical, horizontal and forced transitions.
The vertical transitions initially activate an internal node’s
child 1 ; this activation starts at the root node and is contin-
ued all the way to the lowest, the production state level of
the tree. Once the production state level is reached, hor-
izontal transitions allow movement on that level among
brother states until an end state is reached and a forced
transition gives control back to the parent states. From
there, horizontal activations continue until a new internal
state is reached and the process starts again with a vertical
transition.

3.3. Level of Complexity

A major problem with HHMMs is the level of complexity
caused by their actual strong point, the hierarchical struc-
ture. The algorithms introduced by Fine et al. [3] are com-
putationally very expensive: for instance for the training
of a model every single possible path has to be calculated
for every possible length of the training sequence. The
runtime increases cubically depending on the number of
states in the model and the size of the training set. The al-
gorithms are therefore absolutely impractical and untrace-
able.

3.4. Improved Performance

An alternative way of dealing with inference and training
in hierarchical HMMs has been found by Daan Wierstra
[7]; he devised algorithms that use the flat equivalent of
a HHMM whenever possible, switching between flat and
hierarchical structures. The computational advantage is
enormous, improving performance to linear time depend-
ing on number of states and training set size 2 . Although
the hierarchical structure is given up during some parts of

1 The terms parent, child or brother represent the relationships of
states in a hierarchical structure: brother states are states that are situ-
ated on the same level in the hierarchy; a state q’s children are all the
states that can be reached from state q, and are situated one level down
in the hierarchal structure; a parent state is situated directly above a cer-
tain state in the hierarchy. The root state of the hierarchy doesn’t have a
parent; the production states, being the tree structure’s leaves, don’t have
any children.

2 The runtime performance is improved from O(NT 3) (using the
original algortihms) to O(N2T) [7], N being the number of states in
the model and T being the size of the training corpus.

the algorithms, it is taken into consideration for the im-
portant processes, the parameter estimation. In order to
transform a hierarchical HMM into its flat equivalent, the
HHMM needs to be in minimally self-referential form, i.e.
self-referential transitions are only allowed on production
state level. Sections 3.5 and 3.6 are detailed expositions
of the transformation process, outlined in [7].

3.5. Minimally vs. maximally self-referential HHMM

Maximally self-referential (MaxSR) HHMMs are models
that have self-referential loops on internal states, i.e. in-
ternal states have horizontal transitions that point back to
the same state. Contrary to MaxSR HHMMs, minimally
self-referential (MinSR) HHMMS are not allowed to have
self-referential loops on internal states, although they are
permitted on production states.

While converting an HHMM from maximally to min-
imally self-referential, the equality of both models needs
to be respected, i.e. sequences generated by both models
need to have the same overall probability. The fundamen-
tal difference between a MinSR and a MaxSR HHMM is
that if a model is minimally self-referential there is only
one path through that model that connects two produc-
tion states. This property allows the transformation of a
MinSR hierarchical HMM into a flat HMM. The new hor-
izontal transition probability between the states i and j
in the MinSR model, both substates of q (and with i and
j possibly being the same state, but j not being an end
state), is:

aq∗
(i,j) = aq

(i,j) +
(
aq
(i,end) · a(q,q) · πq

j

)
(1)

The new horizontal transition probability between i and j
is the existing transition probability between those states
plus the probability to go from state i to state j via their
parent state: the product of the probabilities from state
i to the end state, the self-referential loop in the parent
state and the vertical activation of state j. The new tran-
sition probabilities towards end states need to balance out
the fact that internal states are not allowed to have self-
referential loops. The old probability of an internal state
loop therefore has to propagate back through the system:

aq∗
(i,end) = aq

(i,end) ·
(
1− a(q,q)

)
(2)

After updating the horizontal transition probabilities be-
tween state q’s children, simply set the probability of q’s
self-referential loop to zero:

a∗(q,q) = 0 (3)

After calculating the new probabilities, it is necessary to
normalize the new values:

Aq∗
(i,j) =

aq∗
(i,j)∑N

j=1 aq∗
(i,j)

(4)

3.6. HHMM Flattening

When a HHMM is in minimally self-referential form each
pair of production states in the model is connected by
one single path. The flat model does not contain any in-
ternal or end states; therefore transforming the HHMM
into a HMM means building a HMM from the production
states only, calculating the new direct transitions that have
not been present in the HHMM. The transitions between
brother states, i.e. children of the same state i, will remain
unchanged. All other transitions that were possible in the
HHMM between production states, via end and internal
states, need to be computed thus:

a∗ij = ai,end · aqiqj
· πq

j (5)

i.e. the probability of going from (production) state i to
(production) state j is the product of the horizontal prob-
ability a of going from state i to the end state, from state
i’s to state j’s parent, and the vertical probability π of ac-
tivating state j.

The vertical transition probabilities need to be trans-
formed into initial activation probabilities by computing
the product of the vertical probabilities from the root state
to every production state qD:

π∗
qD = πqD−1

qD · πqD−2

qD−1 · ... · πroot
q2 (6)

(with D being the production state level). Figure 2 gives
an example of a minimally self-referential HHMM and its
transformation into an equivalent HMM.

3.7. Technical vs. Logical Equivalence

It is important to understand that, although technically the
hierarchical structure of the HHMM is lost during the flat-
tening process because the tree structure is given up, log-
ically the hierarchical ideas are still present in a HMM
that has been built from flattening a HHMM; the models
are equivalent regarding the information they can learn.
However, the tree structured HHMM is restored after the
training process as a way to conceptualize the hierarchi-
cal structures in the training data, because the flat model
cannot represent hierarchical structures in the same logi-
cal way than a HHMM can; the models are not equivalent
in the way they conceptualize hierarchial structures. Us-
ing the flat version of the model only would mean a loss
of information regarding the probabilities between the dif-
ferent levels of the hierarchy, which provide an additional
view of the internal structure of a data set.

3.8. Inference and Training

In order to fully understand the ways in which HHMMs
work, the methods how to solve the three fundamental
problems that were mentioned earlier need to be explained
briefly.

The overall probability of an observation sequence can
be calculated with the Forward-Backward (FB) algorithm.

Figure 2. Example of a HHMM and its equivalent flat
HMM. (The dashed transitions in the hierarchical model
replace the transitions to and from the end states, which
were omitted for clarity.) The vertical transition probabil-
ities are converted into initial probabilities; existing direct
transitions are copied into the flat model. Paths between
two production states are transformed into direct transi-
tions by adapting the probabilities according to (5).

This algorithm calculates the probabilities for each sub-
section of the sequence, ie. starting at the beginning of
the sequence and increasing the length until the end of the
sequence is reached, given the parameters of the HHMM.
This way the context of each symbol is taken into con-
sideration and the true overall likelihood of the sequence
can be calculated. For the Forward-Backward algorithm, a
hierarchical HMM is converted into a flat model; this con-
version does not have any effect on the results, as during
the conversion the hierarchical probabilities are incorpo-
rated into the flat HMM.

Finding the sequence of states that have most likely
emitted a given observation sequence is achieved with the
Viterbi decoding. For every symbol of the observation
sequence the most likely production state, as well as the
path that leads to it, is calculated, checking all the possi-
ble paths through both horizontal and vertical transitions.
Again, these calculations are dependent on the context of
the symbol, allowing the extraction of the state sequence
that overall would be most likely.

Training a HHMM, ie. updating or adjusting the
model’s parameters to reflect a training set, is the most
complex and important process. By scanning through the
training corpus the Expectation-Maximization (EM) algo-
rithm changes the vertical and horizontal transition prob-
abilities between states, as well as the symbol emission
probabilities in the production states in order to maximize
the overall probability of the training set given the model.
By calculating at each time step the probabilities of en-

tering and leaving states, and the probabilities of moving
from one state to the next, new transition probabilities can
be estimated. Emission probabilities for a symbol can be
estimated by extracting the likelihood of actually observ-
ing that symbol while being in a certain state.

4. MODELLING PITCH STRUCTURE

Modelling the pitch structure of a set of Bach chorales 3

is a good way to show how a structurally simple HHMM
can extract important musical notions from even a small
training corpus. The data that was modelled is the pitch
and phrasing information from twenty-five Bach chorales
- the chosen chorales were all in a major key and were
transposed to Cmajor. Only the soprano from the chorales
was used, and no duration information was included. The
possible observation symbols for this HHMM were the
opening bracket (and the closing bracket) represent-
ing the beginning and the end of a phrase respectively, the
pitch symbols C, C#, Db, D, D#, Eb, E, F, F#, Gb, G, G#,
Ab, A, A#, Bb, B, Cb and the symbol # which represents
the end of a choral. No other symbols are allowed in the
training set, the information that is fed into the model is
limited to segments and pitch.

4.1. Choice of Model Structure

Although the inference and training algorithms run effi-
ciently in linear time, it is still preferable to use simple
models with a minimum of states, transitions and obser-
vation symbols to keep the runtime in a reasonable frame.
The HHMM that models the pitch and phrase structure of
Bach chorales is a three-level model; the top two levels of
this model are shown in Figure 3. The motivation for hav-
ing three different internal states to represent the phrases
of the melodies is the importance of a distinction between
the start, the body and the end of a melody; in this rep-
resentation special attention is given to the start and the
end of a melody, as they are both important in defining the
pitch structure of a piece, but at the same time generally
have very different structures. This model defines that a
chorale has one start segment, one or more body segments
(which can be seen as being less important in the over-
all structure), and one end segment. On the second level,

Figure 3. Top two levels of pitch/phrase structure
HHMM.

there are three internal states start, body and end, and a
3 The set of machine readable Bach chorales used here is available on-

line from ftp://i11ftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip.

production state eof. The internal states roughly repre-
sent the phrases in a musical piece; the piece has one start
phrase, one or more body phrases and an end phrase. The
eof production state emits the end of choral symbol #. On
the third and lowest level, each internal state that repre-
sents a musical phrase contains one production state for
each possible observation symbol; there are two phrasing
and twelve pitch symbols (enharmonics are represented by
one state) per phrasing state. Because every production
state only represents one symbol, the symbols’ emission
probabilities are set to 1.

4.2. Parameter Initialization

Setting the initial values of all vertical and horizontal tran-
sitions is extremely important and crucial to the model’s
overall performance. Say for instance that all the transi-
tions of the HHMM described in the previous paragraphs
were set to random probability values at the start of the
experiment; the model is completely interconnected, with
no zero transitions. After updating the model’s parameters
with the EM procedure, it will quickly become clear that
initializing all transitions randomly without providing the
EM algorithm with any guidelines through the model can-
not deliver satisfactory results: because the three phrasing
states start, body and end are essentially equivalent, the
EM algorithm will regard two of the three states as obso-
lete and set every transition towards these states to zero.
Therefore, to avoid such problems, a minimum of domain
knowledge will have to be included in the model structure.

With the basic layout of the HHMM, the initial vertical
and horizontal transitions were set so as to force a certain
path through the tree structure; simple notions such as “the
music has to start with a start phrase” and “a phrase has to
start with the (symbol” were encoded by setting certain
transitions to zero, and not allowing the EM algorithm to
update those values. Table 1 shows the model parameters
as production rules (with transition probabilities in brack-
ets) after training the HHMM on the set of Bach choral
melodies. The table only shows the probabilities of those
production states in the hierarchical model that can still be
reached after training, ie. all transitions to and from pro-
duction states whose observation symbols do not appear
in the training data are set to 0 and are therefore not listed
in the table; this explains for instance the absence of F#
in the end part on the table. All the remaining pitches and
their corresponding production states that are not listed in
the table were also simply made redundant by being made
unreachable.

4.3. Training results

Looking at the horizontal transition probabilities in the ta-
ble several simple results can be extracted, such as the
fact that all the chorales in the training set started on a
C in the melody and ended their first phrase mostly on a
G. However also musically more interesting properties are
contained: according to the results, stepwise motion of

start
(→ C,100
C → G,50 B,22 C,14 D,7 A,7
D → C,75 A,25
E → D,75 C,25
F → E,100
F# → G,100
G →),43 A,22 E,14 F,14 G,7
A → G,45 A,28 F#,9 B,9),9
B → A,75 C,25
) → end,100

body
(→ G,46 E,22 D,18 C,10

A,4
C → B,35),30 D,23 A,12
D → C,32 E,32),16 D,13 G,3

F#,3
E → D,40 E,20),18 A,7 F,7

G,5 C,3
F → E,78 F,11 G,11
F# → G,100
G → E,30 A,27),23 F,20
A → B,39 G,39 A,14 C,4 E,4
B → C,61 A,34),5
) → (,75 end,25

end
(→ C,57 G,29 A,14
C →),41 D,24 B,23 C,12
D → C,73 E,27
E → D,85 F,15
F → E,80 D,20
G → A,51 F,49
A → G,57 B,29 F,14
B → C,51 A,49
) → end,100

Table 1. Horizontal transition probabilities after training.
The pitches and phrase symbols represent the production
states; end represents the end state of the level that forces
the return back to the next higher level. The symbols on
the RHS of the rules are the events that can be reached
from the symbol on the LHS of the rule. The numbers
represent the transition probabilities from the LHS to the
RHS in percent.

the soprano is clearly preferable, leaps seem to be rare. If
there is a leap in the melody, it is mostly followed by step-
wise motion in the opposite direction. This is in agree-
ment with the well-known rules of melodic movement in
chorales.

In order to get a better overview of the trained
HHMM’s performance, a set of one hundred new chorales
was generated. The generation process is simple: walk
through the tree structure, at every crossroad randomly de-
cide which path to take or which symbol to emit, and con-
tinue doing so until the end of choral symbol # is emitted.
This process introduces a certain degree of “creativity”; as
every decision is taken randomly the newly composed se-
quences are, almost certainly, different from the sequences
in the training set, but still related to what the model has
learned.

A few examples of soprano sequences generated by the
HHMM described earlier are shown in Figure 4.

Figure 4. Four examples of soprano lines generated by
the HHMM.

These sequences are a sample set, chosen because these
short examples reflect the musical notions the HHMM has
incorporated after training. The length of these examples
is not typical; because the sequences are generated ran-
domly, there is no actual way of controlling the lengths, al-
though the horizontal transition probabilities between the
states), (and end certainly give preference to start a new
body phrase after finishing one (see Table 1). The step-
wise motion of the melody is clearly preferred in the pitch
structure, as discussed earlier. But more promisingly, all
the sequences that were generated end their phrases in ca-
dences, and each melody concludes in a perfect cadence.

Using the same model structure, the experiment was
also run on the bass line of the same Bach chorales. As ex-
pected, the HHMM learns that leaps of fourths and fifths
are more common in a bass line, while stepwise motion is
still important. The ability to create cadences at the right
moments is still given. An example of a bass line is shown
in Figure 5.

Figure 5. Example of a bass line generated by the
HHMM.

5. DISCUSSION AND CONCLUSION

This paper aims to discuss the suitability of HHMMs for
representation and modelling of music, and its possible
advantages in performance over standard HMMs. Eval-
uating the HHMM’s performance based on the results
presented, the approach most certainly demonstrates the
ability to model and generate music in a ‘musical’ way
with very little given information about the data set. The
hierarchical structure of the HHMMs plays a major part
in the success of this approach. In a flat HMM, the hidden
states can be interconnected in any possible way, but
there is only one hidden layer. In the hierarchical HMM
however, every level is connected among itself and the
levels above and below it.

Going back to the example of pitch structure modelling
from the previous section: in a flat HMM 4 , a natural
choice for the model structure would be one set of twelve
pitch states and two phrasing states; the model would
have no way to distinguish between different phrases, and
between different phrases at different times in a piece.
If it cannot distinguish between those phrases, it cannot
learn that phrases in different parts of a piece of music
have different properties, ie. although the first phrase of a
Bach choral ends on the dominant most of the time, this
is not true for the last, ending phrase in a piece. Training
such a HMM on the same data as the HHMM, it would
not be able to represent the overall musical structure as
accurately as the HHMM.

The extra level of expressiveness that a HHMM offers
can be shown with that same example: the relationships
between the phrases of a piece are modelled on one level;
the level below models the dependencies of the events
inside those phrases. When generating new sequences
with the HHMM it is almost as if two processes are
running at the same time: on one level, the phrases are
constructed, on another level their events are created -
and both process layers are contained in the root state.
The generation process thus becomes more natural as it
is happening simultaneously on different levels, creating
a sequence as a whole, rather than as a chain-like process
that constructs a sequence one symbol at a time.

However, although HHMMs are very powerful for rep-
resenting hierarchical structures, they are only powerful
if their potential is used in the right way, ie. if appropriate
model structures are chosen to represent certain aspects of
musical knowledge. A big challenge therefore is to find
good representations of these aspects that allow models
to be kept small and manageable; the bigger the models,
the harder it is to find the best possible structures.

As a conclusion it can be said that, although hierar-
chical HMMs are complex in their implementation, and
can quickly become unmanageable and inefficient if their
structure is not chosen ideally, they certainly are a step

4 By flat HMM we mean a HMM that does not incorporate any idea of
conceptualizing data hierarchically; we do not refer to the HMM that can
be constructed from flattening a HHMM, which would learn the same
information as the HHMM, only lacking in accurate hierarchical repre-
sentation.

forward in the attempt to generate believable large-scale
musical structures.

6. FUTURE WORK

Future work on this research project will concentrate on
further modelling of music’s structural properties, for in-
stance harmonic structure, or the combination of metri-
cal and pitch structure. As current results demonstrate
the suitability of HHMMs for learning large-scale musical
structures, and properties such as cadences, future efforts
will go into trying to find further simple representations of
musical structures that are able to learn higher-level mu-
sical properties. It is hoped that a network of HHMMs,
each representing a different musical characteristic, can
be built, allowing the generation of more complete musi-
cal examples that can show the potential of hierarchical
HMMs in learning music and being ‘creative’. Addition-
ally, we will aim at expanding the project towards using
Input-Output HHMMs, which model the dependency of
an output sequence not only on a series of hidden states
but also on a given input sequence, thus giving an ad-
vantage of modelling the relationships between different
structural properties.

7. REFERENCES

[1] Yoshua Bengio. Markovian Models for Sequential
Data. Neural Computing Surveys 2. 1999.

[2] David Cope. Computers and Musical Style. Oxford
University Press. 1991.

[3] Shai Fine, Yoram Singer and Naftali Tishby. The Hi-
erarchical Hidden Markov Model: Analysis and Ap-
plications. Machine Learning, Vol.32, No.1. 1998.

[4] Fred Lerdahl and Ray Jackendoff. A Generative The-
ory of Tonal Music. MIT Press, Cambridge. 1983.

[5] Lawrence R. Rabiner. A Tutorial On Hidden Markov
Models and Selected Applications In Speech Recog-
nition. Proceedings of the IEEE, Vol.77, No.2. 1989.

[6] Marios Skounakis, Mark Craven and Soumya Ray.
Hierarchical Hidden Markov Models for Informa-
tion Extraction. Proceedings of the 18th International
Joint Conference on Artificial Intelligence, Acapulco,
Mexico. 2003.

[7] Daan Wierstra. A New Implementation of Hierarchi-
cal Hidden Markov Models. Master’s Thesis, Utrecht
University. 2004.

