

Edinburgh Research Explorer

Getting to know your Card: Reverse-Engineering the Smart-Card
Application Protocol Data Unit

Citation for published version:
Bundy, A, Gkaniatsou, A, McNeill, F, Steel, G, Focardi, R & Bozzato, C 2015, Getting to know your Card:
Reverse-Engineering the Smart-Card Application Protocol Data Unit. in ACSAC 2015 Proceedings of the
31st Annual Computer Security Applications Conference. ACM, New York, pp. 441-450. DOI:
10.1145/2818000.2818020

Digital Object Identifier (DOI):
10.1145/2818000.2818020

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACSAC 2015 Proceedings of the 31st Annual Computer Security Applications Conference

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2818000.2818020
https://www.research.ed.ac.uk/portal/en/publications/getting-to-know-your-card-reverseengineering-the-smartcard-application-protocol-data-unit(12678596-4d3f-42d9-acb1-039cdd15a221).html

Getting to know your Card: Reverse-Engineering the
Smart-Card Application Protocol Data Unit

Andriana Gkaniatsou Fiona McNeill Alan Bundy
University of Edinburgh, UK Heriot-Watt University, UK University of Edinburgh, UK

a.e.gkaniatsou@sms.ed.ac.uk f.mcneill@hw.ac.uk a.bundy@ed.ac.uk

Graham Steel Riccardo Focardi Claudio Bozzato
Cryptosense, France Ca’ Foscari University, Italy Ca’ Foscari University, Italy

graham@cryptosense.com focardi@unive.it bozzato@dsi.unive.it

ABSTRACT
Smart-cards are considered to be one of the most secure, tamper-
resistant, and trusted devices for implementing confidential oper-
ations, such as authentication, key management, encryption and
decryption for financial, communication, security and data man-
agement purposes. The commonly used RSA PKCS#11 standard
defines the Application Programming Interface for cryptographic
devices such as smart-cards. Though there has been work on for-
mally verifying the correctness of the implementation of PKCS#11
in the API level, little attention has been paid to the low-level cryp-
tographic protocols that implement it.

We present REPROVE, the first automated system that reverse-
engineers the low-level communication between a smart-card and
a reader, deduces the card’s functionality and translates PKCS#11
cryptographic functions into communication steps. REPROVE an-
alyzes both standard-conforming and proprietary implementations,
and does not require access to the card. To the best of our knowl-
edge, REPROVE is the first system to address proprietary imple-
mentations and the only system that maps cryptographic functions
to communication steps and on-card operations. We have evalu-
ated REPROVE on five commercially available smart-cards and
we show how essential functions to gain access to the card’s pri-
vate objects and perform cryptographic functions can be compro-
mised through reverse-engineering traces of the low-level commu-
nication.

Keywords
Smart-card reverse-engineering, PKCS#11 low-level attacks, APDU
formal modeling, APDU attacks.

1. INTRODUCTION
Smart-cards are ubiquitous and are universally considered to be

secure, tamper-resistant, and trustworthy devices. They have been
used to implement confidential operations such as user identifica-
tion and authentication and sensitive data storage and processing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818020

These operations involve a deliberately confidential communica-
tion between smart-cards and third-party systems. Such commu-
nication is prone to “man-in-the-middle” attacks thus rendering
smart-cards vulnerable.

Sniffing the smart-card communication and consequently per-
forming man-in-the-middle attacks has attracted a lot of attention
and many tools have been proposed (e.g., [7, 15]). Studies have
exposed that such attacks reveal severe problems. For example,
by blind-replaying a communication session one may distinguish
different passports [6]. The way an attack is designed varies de-
pending on the target e.g., knowledge of the semantics of a com-
munication session may suggest attacks like the previous one, PIN
or authentication data sniffing, access to sensitive keys, execution
of unauthorized operations or cloning the card. However, for an
attack to be universally successful it has to deal with proprietary
protocol implementations as well as with inter-industry ones, an
issue that previous studies do not address.

Analyzing, attacking and fixing cryptographic standards used by
smart-cards, such as PKCS#11, is an active area. As defined in
PKCS#11 [18], cryptography is only one aspect of security and the
token is only one component in a system; one must consider the
environment the token operates in as well. Smart-cards suppos-
edly offer a tamper-resistant environment for protecting sensitive
data, but should also be designed so that this data remains secure.
This is delegated to the communication protocols, under the as-
sumption that these protocols are secure. Proprietary implementa-
tions create the illusion of security as they hide the card’s code. A
smart-card operates as a black-box: only access to the card’s code
may reveal the semantics of the communication protocol and its in-
ternal operations. We propose reverse-engineering the smart-card
communication protocol, with respect to PKCS#11, to determine
the security of that implementation. We present REPROVE, which
stands for Reverse Engineering of PROtocols for VErification: an
automated tool based on first-order logic, that infers the seman-
tics of the communication, the on-card operations and their inter-
connection with the PKCS#11. REPROVE is implementation- and
function-independent, as it deals with both inter-industry and pro-
prietary implementations and does not require access to the card’s
code.

An alternative to REPROVE’s automated reasoning is to man-
ually reverse-engineer the trace. This is not straightforward and is
far from a quick exercise. It requires access to the card’s library and
its internal calls, whereas REPROVE does not. If one tries to guess
the meaning of the trace, without access to the card, then, given the
combinatorial nature of the problem, one will need to test a con-
siderably large number of combinations (e.g., in some of the cards

PKCS#11

API

Function
call

low-level
communication

Smart-cardAPDU
layer

Figure 1: API and smart-card interaction when a PKCS#11 func-
tion is called.

we tested there are more than 540× 868 possible combinations—
see also Section 4) which will require a long time to decode. RE-
PROVE does this in a matter of milliseconds.

PKCS#11 defines an Application Programming Interface (API)
for smart-cards. Any API call (i.e., calling a specific cryptographic
function) initiates a low-level communication that manifests as a
communication trace of API requests to the smart-card, as shown
in Figure 1. REPROVE reverse-engineers the low-level implemen-
tation of the cryptographic protocol by automatically aligning the
byte-wise decomposition of the communication trace to expected
PKCS#11 calls for specific types of functionality. This process is
helpful in multiple ways: (a) It provides the means to test smart-
card implementations and discover their security vulnerabilities.
(b) In the absence of detected vulnerabilities, it provides empiri-
cal evidence for the security of the implementation. (c) It can be
used by the developers of smart-card technologies to test their im-
plementations. (d) It can be used by the clients themselves, to test
whether their card is vulnerable to attack and, therefore, fraud.

A security token, such as a smart-card, implements all the cryp-
tographic operations internally. The token stores objects (e.g., data
and certificates) that can be accessed via session handles, and per-
forms cryptographic functions. PKCS#11 is the most widely used
cryptographic standard of functions like signing, encryption, de-
cryption, etc. API-related attacks were first discovered in [14], fol-
lowed by the exposure of the vulnerability to attacks of PKCS#11
[3, 8]. Formally analyzing security APIs and reasoning about at-
tacks has been revisited [11, 16, 19, 20, 23] through approaches
like model checking, theorem proving, customized decision proce-
dures, or reverse-engineering for verification [3, 10, 12, 16, 22].
However, security analysis has mostly focused on the PKCS#11 it-
self. There has been less attention given to the implementations
connected to the standard, such as the low-level communication
between the on-card and the off-card applications, defined by the
Application Data Protocol Unit (APDU).

The basic principles of the APDU, e.g., the structure and the con-
tents of the exchanged messages, the available inter-industry com-
mands etc, are specified by the ISO 7816 standard. Precisely fol-
lowing the standard is not compulsory. Many smart-card manufac-
turers deviate from the standard under the assumption that a propri-
etary APDU implementation is more secure. REPROVE reverse-
engineers the APDU implementation and deduces the card’s func-
tionalities, regardless of whether it is inter-industry, proprietary or
a mixture of both.

A high-level description of REPROVE is shown in Figure 2.
The card communicates with the reader and this communication
generates a trace that we reverse-engineer. The analysis module
accepts as parameters the trace and abstract models of the cryp-
tographic protocols; and outputs how the card performs specific
cryptographic functions. It models the low-level communication
in first-order logic, and uses reasoning and inference over plug-
in knowledge bases, which consist of APDU abstractions based
on ISO 7816 and PKCS#11, to automatically reverse-engineer the
model. Its algorithm parses a communication trace and uses these
abstractions to draw conclusions about the semantics of the various
elements of the trace, narrow-down their possible implementations

REPROVE

PKCS#11

ISO 7816

Generic
assumptions

Abstract
Models

On-card operations

Communication Trace

APDU semantics

 pkcs#11 function
translation

Output

Input

Figure 2: High-level overview of our technique.

and infer the card’s actually executed operations.
To the best of our knowledge, this is the first work for modeling

the APDU layer and formally reverse-engineering it by mapping
the low-level communication to the on-card operations and to the
PKCS#11 standard. The abstract models of the background knowl-
edge do not hard-code the implementation. Instead, they offer a
generic framework to automatically capture different implementa-
tions. Specific implementations are mapped to these abstractions
by reasoning about the exact meaning of the input trace. Our nov-
elty stems from not requiring access to the card’s software and deal-
ing with both inter-industry and proprietary implementations in a
single setting.
Smart-card attacks If an attacker compromises the APDU level
and the communication is not secure, she can have access to the
card’s sensitive information, e.g., private keys, or data that should
be encrypted but is not. [17], for instance, proposes a man-in-the-
middle device to allow authentication without knowing the card’s
PIN by intercepting and modifying the communication between the
card and terminal. A different approach is to bypass confiden-
tiality by assuming access to the APDU buffer used to exchange
data [1]. The SmartLogic tool [15] obtains full control over the
smart-card communication channel for eavesdropping and man-in-
the-middle attacks. These efforts motivate the need for a formal
way of reverse-engineering the protocol and reasoning about smart-
card security. A key assumption of all these approaches is that the
implementation of the communication channel is known before-
hand. However, a good number of smart-card vendors opt for a pro-
prietary implementation, which renders the existing security anal-
ysis approaches inapplicable. A proprietary implementation of the
communication, as witnessed by any security testing framework,
looks like a random sequence of bits that needs to be deciphered to
understand its semantics.
Reverse-engineering protocols Protocol reverse-engineering is a
related area to our project, but works up to date do not satisfy the
requirements of our project. For example, Polygot [4] automati-
cally extracts protocol messages through binary analysis. Another
similar approach is Prospex [9], which infers the protocol format
and the corresponding state machines. Discoverer [13] reverse-
engineers the protocol message formats. ReFormat [21] reverse-
engineers encrypted messages, and [5] infers protocol state ma-
chines based on abstractions provided by the end users. All these
projects either: (i) require software access, and/or (ii) assume
known message semantics, and/or (iii) derive only the protocol
message format without its semantics. What is central to our project
is to make no assumptions about prior knowledge apart from what
is publically available, i.e., the inter-industry commands of ISO
7816, and map the communication to the card’s internal operations.

Contributions and roadmap The main contributions of this pa-
per are:
• Section 2 gives an overview of the PKCS#11 ISO/IEC 7816

standards. We show the discrepancies between the inter-
industry and proprietary definitions of the commands cov-
ered by the standard, and how these discrepancies aggravate
the problem of reverse-engineering communication traces.
• Section 3 presents the modeling of the APDU layer and its

interconnection to PKCS#11. Due to space limitations we
focus on sample implementations of the C_logIn function.
REPROVE, however, is function independent as it is possi-
ble to plug in different models. Computing all potential pro-
prietary implementations and testing them for correctness is
practically infeasible, as it is a combinatorial problem. In-
stead, we produce a model that is based on decomposing
the various functionalities of the API into finer-grained sub-
functionalities and analyze how the commands of the stan-
dard can be used to implement these functionalities. We
present the reverse-engineering algorithm to automatically
analyze a trace of commands and group them according to
their intended functionality as this has been captured by our
model.
• Section 4 evaluates the accuracy of REPROVE, after reverse-

engineering five commercially available smart-cards for nine
cryptographic functions. Our results suggest that our method-
ology can be used to automatically reverse-engineer traces to
detect security flaws for other PKCS#11 functions as well.
• Finally, Section 5 concludes the paper with a summary of our

findings and with our future work directions.

2. BACKGROUND
2.1 RSA PKCS#11

Security APIs implement access to sensitive resources in a se-
cure way. The design of such APIs is critical, as they have to en-
sure the secure creation, deletion, importing and exporting of a key
from a device. Also, they are responsible for permitting the use of
these keys for encryption, decryption, signing and authentication
so that even if a device is exposed to malicious software the keys
remain secure. The RSA PKCS#11 standard specifies an ANSI C
API, called Cryptoki, for hardware devices that can perform cryp-
tographic functions and store cryptographic-related and encrypted
data. It aims to ‘sand-box’ an application and isolate it from the
details of the underlying cryptographic device.

When an application connects to a security token it authenticates
itself and initiates a session which is either public or private, defin-
ing the kind of objects the application can access and the types of
operations that it can perform on them. Each session is assigned
with a unique value by the Cryptoki, the session handle, to prevent
a blind-replay of the same session: replaying the communication
trace of the session and replicating its functionality thereby bypass-
ing all the security mechanisms through repetition of the transmit-
ted information. The application can then access the token’s objects
e.g., keys and certificates.

Objects have attributes which may be the value of the object or
properties that define the allowed actions e.g., CKA_EXTRACTABLE
set to false means that the value of the object cannot be extracted
from the token. PKCS#11 provides a set of functions for e.g., key,
token, session and object management, encryption, and decryption.
When a function for a particular object is called, the token checks
whether the attributes of that object allow the use of that object with
respect to the called function.

The functions that we have successfully reverse-engineered are

the following, according to the standard [18]:
C_login is called to log a user onto the token. A successful call
can initiate a private session and provide user access to the token’s
private objects. The function takes as inputs the session handle, the
type of the user (user, or a privileged user termed a security officer),
the location of the user’s PIN and the length of the PIN.
C_generateKey is called to generate a secret key or a set of do-
main parameters. It takes as inputs the session handle, the location
of the generation mechanism, the location of the template for the
new key’s attributes, the number of attributes in the template and
the location of the handle of the new key.
C_sign signs data, with the signature being an appendix to the data.
Its inputs are a session handle, the location of the data, the location
of the signature and the length of the signature.
C_findObjectsInit is called to initiate a search for token and
session objects that match an input template with attribute values
to match. It takes as inputs the session handle, the location of the
template and the number of attributes in the template.
C_findObjects is called after C_findObjectsInit and obtains
the handles of the objects that match the given template. It takes
as inputs the session handle, the maximum number of the returned
handles, the location of the additional object handles and the loca-
tion of the actual number of the returned handles.
C_getAttributeValue is called to obtain the value of one or
more attributes of an object. It takes as inputs the session han-
dle, the object’s handle, the location of a template with the attribute
values to be obtained and the number of the template’s attributes.
C_setAttributeValue is called to modify the value of one or
more attributes of an object. It takes as inputs the session handle,
the objects’ handle, the location of the template with the attributes,
the number of the attributes to change and the new values of the
attributes.
C_wrapKey is called to encrypt a private or a secret key. It takes as
inputs the session handle, the location of the wrapping mechanism,
the handle of the wrapping key, the handle of the key to be wrapped,
the location of the wrapped key and the length of the wrapped key.
C_encrypt is called to encrypt single part data. It takes as inputs
the session handle, the data to be encrypted, the location of the en-
crypted data and the the length of the encrypted data.
C_unwrapKey is called to decrypt a wrapped key and creates a new
private key or a secret key objects. It takes as inputs the session
handle, the location of the unwrapping mechanism, the handle of
the unwrapping key, the wrapped key, the length of the wrapped
key, the location of the new key, the location of the template of
the new key, the number of the attributes in the template and the
location of the handle of the new key.

2.2 ISO/IEC 7816
ISO 7816 defines the contact smart-cards and comes into 15 parts

each of them specifying different characteristics of the card. RE-
PROVE is based on parts 4, 8 and 9 which specify the organisation
of the card, security access, the commands for interchange, and
the commands for security operations and card management. The
communication consists of command-response pairs: a command
is sent by the outside world to the card and a response is the card’s
reply. A command consists of a compulsory 4-byte header, with the
bytes named Cla, Ins, P1 and P2 and an optional body with fields
Lc, Data and Le. The Cla field is the type of the command i.e.,
inter-industry or proprietary. The Ins field indicates the specific
command, e.g., the select_file command. Fields P1 and P2 are
the instruction parameters for the command, e.g., the offset to write
into the selected file. The Lc is the number of bytes of the Data
field. The latter contains the data sent to the card. Finally, Le is the

number of the expected (if any) response bytes. A response consists
of an optional body, the response data, and a compulsory 2-byte
trailer of bytes SW1 and SW2 encoding the expected status of the
card after processing the command). A command can (i) send data
to the card; (ii) expect data from the card; (iii) both send and expect
data; or (iv) none of the above. The length of the response depends
on the sent command. ISO 7816 specifies the inter-industry com-
mand class for the Cla field, the allowable values of the Ins field
and the expected combinations of values for the P1, P2 and SW1,
SW2 fields for all inter-industry commands/responses.

Type Cla Ins P1 P2 Lc Data Le

inter-industry 00 84 00 00 00 00 08
proprietary 80 21 00 00 00 00 08

Table 1: Implementations of the get_challenge command.

An APDU implementation is defined according to ISO 7816 and
can either be inter-industry, where the command codings are de-
fined by the standards; or proprietary, where the developers define
their own command codings. Table 1 presents an inter-industry
implementation of the get_challenge command and a possible pro-
prietary one. Each byte of the inter-industry command can be de-
coded, whereas the semantics of the proprietary command is un-
known. The inter-industry implementation has its Cla field set to
00 as ISO 7816 defines, so, the remaining fields can be decoded.
The proprietary one has an unknown Cla code, so, it is not possible
to determine the semantics of the command using the ISO-based
codings. REPROVE aims to infer such unknown semantics.

2.3 Threat model
Reverse-engineering the APDU layer exposes possible bad prac-

tices and vulnerabilities for both the APDU and the PKCS#11 im-
plementation. For example, permitting the token to reveal sensitive
data when it should not, an implementation that does not use pro-
tection mechanisms, e.g., encryption, when transmitting sensitive
data, or an implementation that performs cryptographic operations
outside the token. In such cases the opportunity to steal sensitive
information, e.g., keys, is almost inevitable. Moreover, reverse-
engineering the APDU layer provides the required knowledge to
apply a wide range of attacks.

Attacker model The attacker model that we are considering is
a non-legitimate user or a malicious software that control the com-
munication layer to:

1. authenticate by compromising the C_logIn function and ex-
ploit their credentials to perform unauthorized operations and
steal senstive data e.g., keys, and/or

2. send a sequence of APDU commands that lead to sensitive
information leakage by repeating the same operations initi-
ated by the API calls during the execution of a cryptographic
function.

Attacks Although performing such attacks is not part of this
work, we have identified potential risks that can be addressed. Such
attacks can be performed by using third party tools. Knowledge
of the APDU semantics and the corresponding on-card operations
may enable (i) manipulation of the communication to deceive the
user, e.g., let the user believe that a particular operation is executed
while in reality a different one is taking place, (ii) sniffing sensitive
data, (iii) repetition of a communication run, (iv) alteration of the
transmitted data, (v) alteration of a communication run by injecting
commands, (vi) bypassing security mechanisms, (vii) unauthorized
access to the card’s operations, or (viii) cloning of the card.

Additionally, having the know-how of the PKCS#11 implemen-
tation at the APDU layer may allow access to the standard’s func-
tions and the token’s objects that library calls do not permit, or the

application of already known PKCS#11 attacks e.g., [8] by calling
a function directly through the APDU layer. Also, it may allow
an attacker (i) to compromise the C_logIn function to initiate a
private session and gain access to the corresponding objects and
operation, to steal the PIN, or even bypass that function, (ii) to
blind-reply sessions with the token, (iii) to sniff sensitive data that
may be transmitted during the execution of the function, (iv) to alter
object attributes through C_setAttributeValue, or, (v) to iden-
tify the location of sensitive data.

The idea behind this work is that sufficient knowledge of the
card’s implementation and the APDU semantics may allow greater
access than the API itself to specific PKCS#11 functions and sen-
sitive objects, when the same access through library calls is re-
stricted.

2.4 Reverse-engineering goals
Inferred model REPROVE takes as input an APDU trace and
produces a model that describes the card’s implementation of the
communication protocol. Reverse-engineering addresses three dif-
ferent derivations of the protocol: the exchanged commands, the
executed on-card operations during the communication and the in-
terconnection with specific PKCS#11 functions, with each address-
ing different types of attacks. For example:
• Exchanged commands give insight into the semantics of the

exchanged commands, may allow the identification of parts
of transmitted data of interest to the attacker, or may gain
knowledge of command semantics.
• On-card operations are mapped to a sequence of commands,

so the attacker may have complete knowledge of the exact
set of commands needed to execute unauthorized operations.
• Since each of the PKCS#11 function is recorded as sets of

card operations, an attacker may be aware of which opera-
tions she needs to execute to perform already known PKCS#11
attacks.

Tested functions In our experiments we tested REPROVE in five
commercially available smart-cards and checked for the following
PKCS#11 violations: (i) the cryptographic function is not exe-
cuted on-card, (ii) the cryptographic function does not respect the
PKCS#11 specifications, (iii) misuse of session handles, (iv) sensi-
tive data leakage, i.e., when it should not be revealed and (v) lack
of encryption when needed, e.g., when sensitive data is transmitted.

The outputs of REPROVE can be useful to both the card sup-
pliers and private users, in order to verify the security of logging
into a particular card. REPROVE aids in understanding the secu-
rity properties of the underlying implementation. Our technique
is extensible and allows different formal models to be plugged-in,
depending on the security properties to be checked.

3. METHODOLOGY
We have modeled the APDU reverse-engineering as an infer-

ence problem. REPROVE has a built-in inference engine that al-
lows to plug-in different knowledge bases such as models, abstrac-
tions and specifications of the protocol. The background knowl-
edge to our problem consists of abstract models, which need to be
instantiated according to the input trace. These models are based
on ISO 7816 and define: (i) the main properties, the restrictions
and requirements of communication, (ii) possible implementations
of the on-card operations, (iii) possible implementations of spe-
cific PKCS#11 functions. Such models do not hard-code the im-
plementation of the card. They present abstractions of different
functionalities that are then refined according to the input trace.
The background knowledge is expressed in first-order logic as it is
machine-readable and expressive enough to model the protocol’s

functionality

sub-functionality1

sub-functionality2

sub-functionality3

commanda

commandb

commandx

commandy

commandz

commanda

commandx NN, dummy

NY, additional

YY, additional

YY, core

YN, additional

YY, core

NY, core

operation steps APDU layer
commands

data exchange and
role properties

characterised
by

implemented
as

decomposed
into

Figure 3: A single operation represents a specific functionality
and it is modeled as a sequence of sub-functionalities. Each sub-
functionality is further implemented as a sequence of commands.
Commands are characterized by their data exchange properties and
role within some particular sub-functionality.

rules. REPROVE’s reverse-engineering algorithm constructs and
refines the possible mappings while extracting abstract properties
and functionalities.

More formally, REPROVE applies the transformation function
y(f (x)) with f : T n → In and y : In → Om, where T n is an input
trace of n commands, In is a set of n inter-industry commands and
Om is a set of m on-card operations.

3.1 Modeling the APDU layer
ISO 7816 defines different meanings for a command depend-

ing on particular fields of that command. REPROVE’s background
knowledge consists of all the meanings defined by the ISO and the
corresponding preconditions: 49 individual commands with 122
different meanings in total. A sample of these commands are the
following:

select get_data
read_binary read_record
update_binary erase_record
activate_file put_data
get_response perform_security_operation
append_record create_file
append_file get_challenge
verify activate_file
external_authenticate mutual_authenticate

In Figure 3 we show a high-level description of our modeling ap-
proach. Each individual card operation (functionality) of the card
is decomposed into a sequence of steps (sub-functionalities). Each
step is then implemented as a sequence of APDU commands: pro-
prietary, inter-industry, or a mix of them. The APDU commands
are further characterized depending on their data exchange proper-
ties (shown, for example, as ‘YY’ in the figure to indicate a com-
mand that both sends and receives data) and their role within the
sub-functionality in question (core, additional, or dummy). The
same command may have different data exchange properties and
different roles depending the sub-functionality, e.g., commanda and
commandx in Figure 3.
APDU commands An APDU command is represented as a predi-
cate command(Cla, Ins,P1,P2,Lc,D,Le) where the variables Cla,
Ins, P1, P2, Lc, D, Le are instantiated according to the semantics
of the command. A command is valid if it is: (i) an inter-industry

command; (ii) a proprietary command that can be mapped1 to an
inter-industry command that does not occurre within the same trace.
A command is categorized based on: (i) its data exchange proper-
ties; and (ii) the card operations.
Categorization according to data exchange properties Depend-
ing on the exchanged data, a command is assigned to one of the
following categories:

(i) commandnn(Cla, Ins,P1,P2,Lc,D,Le): no data is sent, no data is
expected,

(ii) commandny(Cla, Ins,P1,P2,Lc,D,Le): no data is sent, data is ex-
pected,

(iii) commandyy(Cla, Ins,P1,P2,Lc,D,Le): data is sent, data is expected,
(iv) commandyn(Cla, Ins,P1,P2,Lc,D,Le): data is sent, no data is ex-

pected.
Variables Lc, D and Le define the category of a command. We
defined rules that assign each command to the appropriate category.
For example, if Lc 6= 00 and D 6= 00 then the command sends some
data D with length Lc to the card. If Le is not null2 then the
response will be some data with length Le. The above is captured
by the following rule:

∀Cla, Ins,P1,P2,Lc,D,Le,((command(Cla, Ins,P1,P2,Lc,D,Le)

∧Lc = 00∧D = 00∧Le 6= null)
→ (commandny(Cla, Ins,P1,P2,Lc,D,Le))

Categorization according to card operations The commands
are further categorized depending on their role in a specific on-card
operation, to:

(i) Core: the basic commands that perform the operation, e.g., to
create a new file create_file is a core command.

(ii) Additional: the commands that add extra properties to the op-
eration, but they do not change its meaning; the same opera-
tion can be performed without them. For example, to create
a file, select is an additional command as it merely adds in-
formation to the file creation (e.g., selecting a path to create
the file into) but the operation can be also performed without
it.

(iii) Dummy: the commands that neither send nor expect any data.
They usually just query, or check, the communication with
the card. For example, a verify command when it does not
send nor expect any data to/from the card. Such commands
may occur any time during the communication and they do
not affect the reverse-engineering output.

Command preconditions The preconditions of a command de-
fine: (i) the values of its parameters, (ii) the restrictions on the
types of previously issued commands, (iii) different semantics for
the same command, and (iv) the valid data types and file structures
for that command. For instance, the common use of read_binary
is to access the content of an elementary file (EF). Yet, if the value
of parameter P1 is between 128 and 160 then read_binary is used
to select the EF file defined by the data field D. This precondition
is modeled as:

∀Cla, Ins,P1,P2,Lc,D,Le,((command(Cla,bo,P1,P2,Lc,D,Le)

∧P1 ∈ [128,160])→ (select(file,D)∧isa(D,EF)))

Card operations We introduce a hierarchy of abstractions, the
functionality models, which provide high-level views of different
on-card operations, and the sub-functionality models which describe
1Under the condition that all preconditions are satisfiable.
2Null indicates absence of a field.

Sub-functionality Core command set
selected {select,read_binary}
read_data_sub {get_data,read_binary,get_response,read_record}
data_updated {update_binary} {update_record}
data_written {write_binary,update_binary,write_record}

Table 2: Sample of sub-functionalities and the corresponding core
commands.

the steps by which each operation is implemented. A valid (sub-
)/functionality has: (i) all its preconditions satisfied by the com-
mands3 seen so far, or (ii) has a subset of its preconditions satisfied
by the commands seen so far, but it is possible to satisfy the rest
by the commands that will follow, i.e., the (sub-)/functionality is
partially satisfiable.
Sub-functionalities Sub-functionalities model the steps, in terms
of the exchanged commands, that are needed to perform a card op-
eration. The same sub-functionality may be performed in differ-
ent ways, thus, it may have more than one model. REPROVE’s
background knowledge has 36 sub-functionality models. In Ta-
ble 2, we give a sample of sub-functionalities and their correspond-
ing core commands. For example, the authentication of the reader
through the challenge-response protocol is expressed by the ex-
ternal_authenticated(RD, D) sub-functionality. The card issues a
challenge RD and the reader authenticates itself by providing the
corresponding response D. The following rule describes this:

∀RD,Le,P1,P2,Lc,D,((command(00,84,0,0,0,0,Le)∧response(RD)

∧command(00,87,P1,P2,Lc,D,null)

∧P2 ∈ [128,256])
→ external_authenticated(RD,D))

which says that if the command Ins = 84 with a response of the
card RD, is followed by the command Ins = 87 with its parameter
P2 being between 128 and 256, then the reader has authenticated it-
self via a challenge-response external authentication. Furthermore,
we categorize each sub-functionality as: (i) a sensitive operation:
any process that we expect to deal with sensitive data, e.g., the ver-
ification of a PIN; or (ii) a non-sensitive operation: any generic
process over non-sensitive data, e.g., the selection of a file.
Functionalities Functionalities model the on-card operations. As
there are different implementation ways, each functionality consists
of a set of possible core and additional sub-functionalities. For ex-
ample, consider two cards Cardx and Cardy which both store data
(store_data). Cardx performs this operation through a file_created
sub-functionality, while Cardy through a data_written. Table 3
presents a sample of the defined functionalities and their corre-
sponding sub-functionality sets. The core sub-functionalities are
extracted on the basis that at least one of them (but potentially
more) are necessary for the implementation of the functionality.
Additional sub-functionalities may appear in the implementation,
but are not compulsory. REPROVE’s background knowledge has
15 functionality models.
General rules We define rules to describe communication restric-
tions, card responses, file specifications and data types. For in-
stance, the following rule requires that if some data D of length
Le is expected, then the response should contain D and the corre-
sponding length should be Le.

∀Le,D(expected(data,Le,D)→ (response(D)∧ length(D,Le)))

3Under the condition that the response is positive i.e., 90 00.

Functionality Core and Additional sub-functionalities set
store_data {file_created,data_written,data_updated}

{selected,read_data_sub}
authenticated {challenge_sent,verified,

external_authenticated, internal_authenticated,
mutual_authenticated} {selected,read_data_sub,
data_written}

Table 3: Sample of functionalities and the corresponding sub-
functionality sets.

RSA PKCS#11 models PKCS#11 models are expressed in terms
of functionalities and represent our assumptions on how specific
cryptographic functions might be implemented at the APDU level.
These models aim to capture an abstraction of the expected on-card
operations and they do not impose an implementation, but merely
act as a flexible guide of the implemented functionality.

Each cryptographic function is modeled as a set of functionali-
ties based on the PKCS#11 and the ISO 7816 specifications. For
example, for the C_logIn function we expect one of the authen-
tication operations to be a core one: a PIN/Pass-code verification
or a challenge-response one. Also, an invocation of the read_data
functionality for authentication-related data is possible as an ad-
ditional operation. Authentication is defined with respect to ISO
7816: (i) authentication with a PIN: the card compares received
data from the outside world with internal data; (ii) authentication
with a key: an entity to be authenticated has to prove the knowl-
edge of a relevant key through the challenge-response procedure;
(iii) data authentication: using internal data, secret or public, the
card checks data received by the outside world. Another way is for
the card to check secret internal data and compute a data element
(cryptographic checksum or digital signature) and insert it to the
data sent to the outside world; (iv) data encipherment: using secret
internal data, the card enciphers a cryptogram received in a data
field, or using internal data (secret or public) the card computes
a cryptogram and inserts it in a data field, possibly together with
other data.

3.2 Reverse-engineering algorithm
The algorithm consists of three steps, each addressing a differ-

ent abstraction of the implementation: (i) the APDU semantics,
(ii) the on-card operations that are executed during the communi-
cation, and (iii) the APDU implementation of a PKCS#11 function.
Figure 4 shows how we restrict the search space during the three-
step analysis: grey arrows indicate narrowing-down and black ar-
rows indicate mapping; each path of a black tree is an individual
mapping of the same APDU trace. The nodes appearing at the
same depth represent different mappings of the same command;
each path of a grey tree represents a sequence of operation steps
(sub-/functionalities) and each path of a white tree represents a se-
quence of executed card operations (functionalities).

Step 2. Step 3.Step 1.

Figure 4: Reducing the search space.

Step 1: Semantics of the APDU trace. Given an input trace T n of
n commands, we generate a tree in which each path from root to leaf

T n
i
′ is a semantic mapping of the trace such that T n 7→ T n

i
′. As the ex-

change of the command-response pairs is sequential so is the anal-
ysis of the commands, which implies that the semantics of an un-
known command heavily depend on the previous commands. Each
unknown command is categorized and all corresponding mappings
M are identified, which are then narrowed-down to a set P′ based
on precondition satisfiability. For each mapping m ∈ P′ , the com-
mands analyzed so far are grouped, and sets that fully or partially4

satisfy any sub-functionality are considered valid. The outcome
of this process is a set of valid5 mappings M′′ of each unknown
command such that M′′ ⊆ P′ ⊆ M , and the set P which consists of
different interpretations of T . More formally, Step 1 performs the
transformation f : f (T n) = Pn where ∀T n

i
′ ∈ Pn : T n 7→ T n

i
′.

Step 2: On-card operations. At this stage, given Pn from the
previous step, the commands at each T n

i
′ ∈ Pn are grouped in all

possible combinations. Each group is checked on whether there
exist any sub-functionality(ies) that satisfy its preconditions. The
outcome of this process is a set Sl of sub-functionalities such that
∀Sl

k ∈ Sl∃T n
i
′ ∈ Pn : T n

i
′ 7→ Sl

k. Then all sub-functionalities in Sl

are grouped and the set of valid functionalities Om is identified.
The sub-functionalities that do not satisfy Om are discarded along
with the corresponding trace mappings. The overall step can be
presented as a function y: y(Pn) = Om with Sl ′ 7→ Om, Sl ′ ⊆ Sl , and
Pn ′ 7→ Sl ′, Pn ′ ⊆ Pn.

Step 3: APDU implementation of the PKCS#11 function. Here,
the set of functionalities Om from Step 2 is mapped to the back-
ground models of specific PKCS#11 functions, resulting in an in-
terpretation of the communication in terms of the standard. The
outcome is the APDU mapping to PKCS#11, the set of card oper-
ations that are executed during the communication Om ′ ⊆ Om , and
the APDU trace T n

i
′ ∈ T n ′ that satisfy them.

In each reverse-engineering step the low-level input (commands)
evolves to abstract models (card operations). A schematic descrip-
tion of the transformations of the commands during the reverse-
engineering process is presented in Figure 5. The trace itself goes
through a sequence of transformations: from commands, to inter-
industry mappings, to potential sub-functionalities, to groups of
sub-functionalities into higher-level functionalities. If REPROVE
is successful in providing a sequence of functionalities that de-
scribe a PKCS#11 function, then the trace is effectively reverse-
engineered. This translates into a vulnerability for the card as it
exposes its implementation.
Reverse-engineering algorithm The overall reverse-engineering
process for a trace of commands is shown in Algorithm 1. The input
to the algorithm is a list T of commands representing the commu-
nication trace, whereas the output is a list P of potential mappings
of T (each mapping is a list itself) and a list O of card function-
alities. The list P is initialized to [[]] which indicates that the first
mapping is the empty one. Each command c ∈T is then analyzed
and depending on its value of Cla it is classified as proprietary or
inter-industry. In the former case (lines 3 to 5) the values of its Lc,
D , and Le parameters are checked to categorize its data exchange
properties and obtain a list M of potential mappings. From M we
only keep the valid mappings (lines 5 to 6) and store them in P.
The valid mappings are identified based on precondition and sub-
functionality satisfiability (lines 6 to 9): for each potential mapping
to an inter-industry command, we check that the preconditions of
the inter-industry command are met by computing the union of the
postconditions of all commands that precede it. If the preconditions

4Given a sub-functionality, there exists at least one core command
that satisfies its preconditions.
5Valid here indicates that neither the ISO, nor any background
model is violated.

inter-industry mappings
for the same proprietary command

categorization to inter-industry (◯)
 or proprietary commands (●)

potential
sub-functionalities (�)

of the same
inter-industry command

…

valid sub-functionality combinations
after filtering them

by precondition satisfiability

for each sub-functionality combination,
test different groupings of

sub-functionalities into functionalities

Figure 5: The transformations of the APDU trace during the
reverse-engineering process.

of an inter-industry command are not met, the erroneous mapping
is removed from M and the analysis continues to the next candi-
date mapping; else, we iterate over the analyzed trace so far, and
look at the categorization of commands based on their role. Us-
ing this role, we group commands into different combinations that
may form potential sub-functionalities. If such grouping exists, the
mapping is stored in P. If c is an inter-industry command, there
is only one such mapping n, so M is a singleton list. We search
for satisfiable (sub-)/functionalities by this command and store the
command in P (lines 13 to 17). At this point P consists of differ-
ent mappings of the trace. Then, P is further narrowed-down based
on the sub-functionality and functionality models (lines 18 to 25).
For each different mapping of the trace, the commands are grouped
into sub-functionalities which are then further grouped into higher-
level functionalities that are added to O, all in the context of our
models. If no such grouping is found for a candidate trace, the
trace is removed from P. If a grouping is found, its constituents
mappings are annotated accordingly to denote this. The final step
of the algorithm is to further narrow-down P by matching the re-
sulting functionalities in O with the PKCS#11 models. In the end,
P will contain zero or more traces of candidate mappings. If P is
empty, our reverse-engineering has failed to produce a mapping. If
there is only one trace in P we say that the mapping is unique. If
there are more than one candidate traces the reverse-engineering is
successful, but we have only identified an abstraction of the correct
mapping.

Algorithm 1: The reverse-engineering process for a trace of
commands

input : List T of commands to be analyzed
output: Potential mappings and operation models P for T

1 P = [[]]; O = [[]];
2 foreach c(Cla, Ins,P1,P2,Lc,D ,Le) ∈T do
3 if Ins indicates c is proprietary then
4 use `c,d, `e to extract data exchange properties δ ;
5 M = list of APDU commands c maps to based on δ ;
6 foreach m ∈M do
7 Z = {z | (k precedes m in p)∧ (z ∈ postconditions(sk))};
8 if preconditions of m are not satisfied by Z then
9 remove m and move on to the next;

10 foreach p ∈ P do
11 if a grouping of p to sub-functionalities can be found

then
12 s = p⊕ (c 7→ m); P = P⊕ s

13 n = inter-industry command c maps to; M = [n];
14 annotate each command with its sub-functionality;
15 annotate sub-functionalities with functionalities;
16 O = O⊕ functionalities;
17 s = p⊕ (c 7→ n); P = P⊕ s;

18 foreach p ∈ P do
19 foreach (c 7→ m) ∈ p, potential sub-functionality of m do
20 group sub-functionalities into functionalities;
21 if no such grouping can be found then remove p from P;
22 else
23 annotate each command with its sub-functionality;
24 annotate command groups with functionalities;
25 O = O⊕ functionalities;

26 foreach f ∈ O do
27 if f /∈ PKCS#11 models then remove f from O; remove p

from P ;

28 return P,O;

4. EVALUATION

4.1 Experimental setting
We have evaluated REPROVE using five commercially available

smart-cards. Each smart-card had its own API implementation,
provided by the manufacturer, with none of them using an open-
source implementation like opencryptoki. We were not able to test
the same PKCS#11 functions for all cards. This is because in some
cases the cryptographic function was executed library-side instead
of token-side (i.e., outside the card instead of on-card), which is
violation of the standard as it allows for sensitive data, eg., keys, to
be transmitted outside of the token.

Our purpose was to assess REPROVE along the following di-
mensions:
• Functional success: the system infers at least one model. If

REPROVE is unable to infer a model then, there are two
cases: (i) the system has failed, or (ii) the communication
is encrypted. The latter case is not REPROVE’s failure as it
merely acts as a verification that the implementation is se-
cure.
• Quality of the results: the output captures at least a high-

level view of the implementation. REPROVE can produce
more than one output models. We consider the following
outcomes to be of high quality: (i) a unique model which
matches exactly both with the low- and the high-level views
of the implementation, i.e., the exchanged commands and the
on-card executed operations, and (ii) two or more models that

exactly match the high-level view of the implementation, i.e.,
on-card executed operations.

To address these aspects we used the standard precision and recall
metrics, as defined by:

precision =
True Positives

True Positives+False Positives

recall =
True Postives

True Positives+False Negatives

where (i) True Positive: the outcome model suggests the cor-
rect on-card operations and the exact meaning of the APDU trace,
(ii) False Positive: the outcome model suggests the correct on-card
operations, and a partially correct meaning of the APDU trace (the
APDU semantics does not exactly match with the actual implemen-
tation), (iii) False Negative: the outcome model suggest incorrect
on-card operations and an incorrect meaning of the APDU trace.

For each smart-card we used the sniffed APDU trace as the in-
put to REPROVE. The trace was produced when each PKCS#11
function was called. We were aware of the implementation of each
smart-card from the beginning but we treated them as unknowns
during the reverse-engineering. To evaluate the quality of the re-
sults we compared REPROVE’s output with the actual implemen-
tation. Because of a non-disclosure agreement (NDA) we must re-
frain from naming the cards and revealing details of their imple-
mentation. More information about their implementations and a
reproduction of our study can be obtained with appropriate permis-
sion through an NDA.

4.2 Results
Number of inferred models REPROVE performed well on all
cards: it inferred at least one model for the exchanged commands,
one model for the on-card operations and one model for the an-
alyzed cryptographic function. In most cases the inferred model
was unique and matched exactly with the actual implementation of
the card. The results are presented in Table 4. For Card1 and Card2
in the case of C_logIn and for Card5 in the case of C_sign RE-
PROVE inferred the correct on-card operations but suggested two
different implementation models. In all cases the correct model of
the implementation existed within the suggested ones.
Security vulnerabilities suggested by the models We checked
REPROVE’s suggested models for 1. security-vulnerabilities at the
APDU layer, and 2. violations of the PKCS#11 standard.

1. APDU Level. The first security vulnerability we checked was
sensitive information leakage and identification of the location of
the sensitive data. The functions that were not implemented in a
secure way are the following:
i) C_logIn. In all cases we were able to identify the authentication
data and the location that was stored. In two cases the authentica-
tion data was sent in plaintext, which consequently allowed man-
in-the-middle attacks.
Moreover, the resulting models suggested the specific on-card op-
erations that were executed during the authentication with the to-
ken. As the card uses the exact same authentication ways in each
initiated session, such knowledge may enable a blind-replay attack
where the attacker replays the exchanged data at specific points dur-
ing communication; or, the attacker requests the same operations to
be performed, in the hopes that these operations, albeit applied in a
blind way, are enough to gain access to sensitive data.
ii) C_wrapKey. In one case the card returned the sensitive key in
plaintext and the function was executed library-side.
iii) C_generateKey. In two cases the card returned the sensitive
key in plaintext and the function was executed library-side.

Function Precision Recall

Card1 C_logIn 0.5 1
C_wrapKey 1 1
C_sign 1 1
C_findObjects 1 1
C_getAttributeValue 1 1
C_generateKey 1 1
C_getAttribute 1 1
C_encrypt 1 1

Card2 C_logIn 0.5 1
C_sign 1 1
C_findObjects 1 1
C_generateKey 1 1
C_setAttributeValue 1 1
C_encrypt 1 1

Card3 C_logIn 1 1
C_sign 1 1
C_findObjects 1 1
C_getAttribute 1 1
C_setAttribuyeValue 1 1

Card4 C_logIn 1 1
Card4 C_findObjects 1 1
Card4 C_getAttributeValue 1 1
Card4 C_sign 1 1
Card5 C_logIn 1 1

C_sign 0.5 1
C_setAttributeValue 1 1

Table 4: RSA PKCS#11 reverse-engineering evaluation results.

iv) C_encrypt. In one case the card returned the sensitive key in
plaintext and the function was executed library-side.

2. RSA PKCS#11. We checked the resulting models for viola-
tions of the standard that may lead to security vulnerabilities. Ac-
cording to PKCS#11 each initiated session is uniquely identified by
a freshly produced session handle. This handle will also be an in-
put of each function that is called within that session. REPROVE’s
results showed that all tested cards violated this specification. Such
departure from the standard allows blind-replaying a given ses-
sion. Another problem is that trivial authentication methods were
used. As the protocol is stateless, the same trivial authentication
method is used before all operations over sensitive data. There-
fore, by knowing how C_login is implemented one may employ
this trivial authentication to gain access to unauthorized operations.
Moreover, according to the PKCS#11 documentation sensitive keys
must not be revealed off the token in plaintext which is another se-
rious violation of the standard. Finally, one of the most significant
findings is that in many cases the tested cryptographic functions
took place library-side, instead of token-side as the intended use of
smart-cards. Such misuse of the standard allows sensitive data to
leave the token.
Narrowing-down the search space The reverse-engineering of
proprietary APDUs is a combinatorial problem and the solution
time grows exponentially with the size of the APDU trace. RE-
PROVE uses search to advance towards the proof, and inference to
block and exclude directions from the search. During the analy-
sis, the search space is continuously restricted until the final model
is produced. To demonstrate REPROVE’s effectiveness on that
matter, we have implemented a baseline algorithm that generates
a search tree that consists of all possible mappings (including dif-
ferent meanings of each command) of the APDU trace, based on
the category each command belongs to. Table 5 presents the com-
mand combinations produced by the baseline algorithm, termed
B.CC. The terms R.CC, R.SBC and R.FC present REPROVE’s to-
tal command, sub-functionality and functionality combinations re-
spectively. Model is the number of final model(s) suggested by RE-
PROVE for the specific cryptographic function. At each successive
step the number of alternative implementations is progressively re-
duced. As Table 5 demonstrates there are cases that B.CC is 1. That

Function Total B.CC R.CC R.SFC R.FC R.Model
Card1 C_logIn 13932 24 11 3 2

C_wrapKey 20 4 1 1 1
C_sign 20 8 1 1 1
C_findObjects 20 3 1 1 1
C_generateKey 86 9 2 1 1
C_getAttribute 400 6 1 1 1
C_encrypt 200 4 1 1 1

Card2 C_logIn 32000 12 4 2 2
C_sign 20 24 1 1 1
C_findObjects 400 3 1 1 1
C_generateKey 540x868 512 69 8 1
C_setAttributeValue 86 14 3 1 1
C_encrypt 20 3 4 2 1

Card3 C_logIn 1 1 1 1 1 1
C_sign 1 1 1 1 1
C_findObjects 1 1 1 1 1
C_getAttribute 1 1 1 1 1
C_setAttribuyeValue 1 1 1 1 1

Card4 C_logIn 7396 65 39 21 1
C_findObjects 7396 6 1 1 1
C_getAttributeValue 54700816 3 1 1 1
C_sign 86 1 1 1 1

Card5 C_logIn 1 1 1 1 1
C_sign 12322 53 7 4 2
C_setAttributeValue 1 1 1 1 1

Table 5: Reduction in the number of alternative implementations
during the analysis.

happens when either most of the commands or all the commands of
the trace are inter-industry, which suggests an 1-1 mapping. How-
ever, in some cases the search space is prohibitive, eg., in Card2
for the C_generateKey function there are 540x868 total command
combinations. In such cases REPROVE narrows-down the combi-
nations to a single mapping.
Discussion REPROVE inferred at least a high-level model of the
actual implementation for all tested cards. In some cases the reverse-
engineering outcome was more than one model, each one captur-
ing the same on-card operations but differed at the implementation
level. We do not consider this as a failure as REPROVE provided
at least a high-level view of the implementation. However, this
shows the necessity of incorporating feedback techniques to refine
the reverse-engineering outcome. A straightforward technique is
to send the analyzed commands to the card in order to check the
validity of the results and discard suggestions that do not work.

5. CONCLUSIONS AND FUTURE WORK
We have presented REPROVE, a proof-of-concept system for

automatically analyzing the low-level communication protocol of
a smart-card by reasoning over a formal model of the ISO 7816
standard, regardless of the protocol’s implementation. We have
used REPROVE to successfully extract at least one model from
each tested card and shown that, although analyzing proprietary
implementations is a combinatorial problem, it is possible to lever-
age background knowledge to effectively reduce the search space.
To the best of our knowledge, REPROVE is the first system that
successfully reverse-engineers proprietary implementations. RE-
PROVE’s results can provide the necessary evidence to reason about
the implementation of the protocol and discover possible security
flaws. Obtaining such evidence is especially crucial, as bad imple-
mentations may lead to fraud and/or disputes between card issuer
and client.

We have evaluated REPROVE by reverse-engineering the APDU
implementations of five commercially available smart-cards. Dur-
ing these experiments we were surprised by our findings, which
suggested many insecurities of the cards. All of the cards violate
the specification of PKCS#11 that requires each session to be iden-
tified by a unique session handle. This specification aims at pre-
venting blind-reply attacks and its violation automatically makes

the token vulnerable. Also, the majority of the cards do not respect
the security specifications of the standard by allowing sensitive in-
formation to leave the token or even performing the cryptographic
functions library-side. Last but not least, we discovered implemen-
tations that allowed the cryptographic function to be executed out-
side the token. Regarding the implementation of the communica-
tion, in many cards sensitive data was treated as public: this part
of the communication was not encrypted and the data was sent in
plaintext. Such implementations are vulnerable to attacks and make
the sectors that use them insecure. Detecting such violations man-
ually is not trivial: it requires either knowledge of the semantics of
the communication trace, access to the PKCS#11 library or/and to
the card’s code. REPROVE does not make any of these assump-
tions.

Reverse-engineering PKCS#11 based APIs and discovering vul-
nerabilities is not a new idea, e.g., Tookan [3] reverse-engineers a
card’s API and discovers security flaws with respect to the standard.
On another perspective, Caml Crush [2] acts as an attack filtering
tool that sits between the PKCS#11 device and the calling applica-
tion. Caml Crush considers attacks only at the API level and not
at the low-level communication. Targeting the implementation of
PKCS#11 at the low-level communication is a novel idea and sug-
gests a new way of attacking the standard by bypassing the API and
talking directly to the device, thereby avoiding API-level restric-
tions. Such attacks cannot be detected nor filtered by such tools, as
they address strictly the API level. REPROVE addresses PKCS#11
attacks at the APDU layer. PKCS#11 defines specifications for se-
cure implementations and applies to a broad range of cards. These
specifications have to be addressed at the communication layer as
well, e.g., in session identification. REPROVE’s analysis exposed
several violations of the standard’s specifications. Reaching these
findings in the first place would not have been possible without
reverse-engineering. We therefore believe our approach cuts across
all layers of the PKCS#11 implementation and provides a blueprint
that can be applied to other models and protocols as well.

6. REFERENCES
[1] G. Barbu, C. Giraud, and V. Guerin. Embedded

eavesdropping on java card. In SEC, pages 37–48, 2012.
[2] R. Benadjila, T. Calderon, and M. Daubignard. Caml crush:

A pkcs# 11 filtering proxy. In Smart Card Research and
Advanced Applications, pages 173–192. Springer, 2014.

[3] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel.
Attacking and fixing pkcs#11 security tokens. In ACM
Conference on Computer and Communications Security,
pages 260–269, 2010.

[4] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
Automatic extraction of protocol message format using
dynamic binary analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security,
CCS ’07, pages 317–329, 2007.

[5] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song. Inference
and analysis of formal models of botnet command and
control protocols. In Proceedings of the 17th ACM
Conference on Computer and Communications Security,
CCS ’10, pages 426–439, 2010.

[6] T. Chothia and V. Smirnov. A traceability attack against
e-passports. In Financial Cryptography, volume 6052 of
Lecture Notes in Computer Science, pages 20–34. Springer,
2010.

[7] O. Choudary. The Smart Card Detective: a hand-held emv
interceptor, University of Cambridge, Computer Laboratory,
Darwin College, MPhil thesis, 2010.

[8] J. Clulow. On the Security of PKCS#11. In IN Proceedings
Of the 5TH International Workshop on Cryptographic
Hardware and Embedded Systems, CHES, pages 411–425,
2003.

[9] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda.
Prospex: Protocol specification extraction. In Proceedings of
the 2009 30th IEEE Symposium on Security and Privacy, SP
’09, pages 110–125, 2009.

[10] V. Cortier, G. Keighren, and G. Steel. Automatic analysis of
the security of XOR-based key management schemes,. In
O. Grumberg and M. Huth, editors, TACAS 2007, number
4424 in LNCS, pages 538–552, 2007.

[11] J. Courant and J.-F. Monin. Defending the Bank with a Proof
assistant. In In Proceedings of the 6th International
Workshop on Issues in the Theory of Security, pages 87–98,
2006.

[12] J. Courant and J.-F. Monin. Defending the bank with a proof
assistant. In WITS 2006, 2006. In WITS proceedings.

[13] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic
protocol reverse engineering from network traces. In
Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, SS’07, pages 14:1–14:14,
2007.

[14] S. R. D. Longley. An automatic search for security flaws in
key management schemes. Computers and Security, 11(1),
1992.

[15] G. de Koning Gans and J. de Ruiter. The SmartLogic Tool:
Analysing and Testing Smart Card Protocols. In Proceedings
of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, ICST ’12, pages
864–871, 2012.

[16] S. Delaune, S. Kremer, and G. Steel. Formal analysis of
PKCS#11. In CSF, pages 331–344, 2008.

[17] S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond. Chip
and pin is broken. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP ’10, pages 433–446.
IEEE Computer Society, 2010.

[18] RSA Security INC. v2.20. PKCS#11: Cryptographic Token
Interface Standard, 2004.

[19] G. Steel and A. Bundy. Deduction with xor constraints in
security api modelling. In In Proceedings of the 20th
International Conference on Automated Deduction, volume
3632 of LNCS, pages 322–336, 2005.

[20] E. Tsalapati. Analysis of PKCS#11 using AVISPA tools.
Master thesis, University of Edinburgh, 2007.

[21] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace.
Reformat: Automatic reverse engineering of encrypted
messages. In Proceedings of the 14th European Conference
on Research in Computer Security, ESORICS’09, pages
200–215, 2009.

[22] P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin,
R. Rivest, and R. Anderson. Robbing the bank with a
theorem prover. Technical Report UCAM-CL-TR-644,
University of Cambridge, 2005.

[23] P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin,
R. L. Rivest, and R. Anderson. Robbing the bank with a
theorem prover. Technical report, Univerisity of Cambridge,
2005.

