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Abstract—The significant increase in the use of cloud com-
puting, has led to an interest in partitioning applications over
a set of public and private clouds in order to meet a range of
non-functional requirements including performance (for example
where private cloud resources alone are insufficient), dependabil-
ity (e.g. to allow the application to continue to operate even if
one cloud fails) and security (for example to ensure that sensitive
data is restricted to sufficiently secure clouds and networks).
This paper describes a novel deployment planning algorithm
to partition complex workflow-based applications over federated
clouds, while meeting security requirements. The security issues
are based on our previous work which extends the Bell-LaPadula
model to encompass cloud computing. Selecting the cheapest
option for partitioning a workflow over a set of resources
has been shown to be an NP-hard problem, which can take
impractically long for partitioning large workflows over multiple
clouds. We therefore introduce a novel adaptive partitioning
algorithm to handle these large workflow applications, which
significantly reduces the time required to choose a sufficiently-
good partitioning option. This is based on generating an initial
partitioning, and then adapting it to see if a better solution
can be found by bringing together on the same node services
with significant communication costs. The algorithm has been
implemented and evaluated by using both randomly generated
and real world scientific workflows. The experiment results show
that our algorithm is thousands times quicker than the exhaustive
algorithm presented in our previous work. Yet, on average it
generates only 25% more costly solutions. We also compared this
algorithm with two other methods commonly used to partition
workflows over a set of clouds.

Index Terms—cloud computing, workflow deployment, parti-
tioning, scheduling, security

I. INTRODUCTION

Cloud computing offers computing resources as a utility like
water or electrical power, which means that any organisation
or individual can easily rent remote computer and storage
resources dynamically to the host networked applications.
There are now several cloud providing companies, including
Microsoft, Google and Amazon, and each company is making
multiple, geographically distributed cloud data centres avail-
able. This enables customers to select an individual cloud data
centre based on their requirements for price, functionality,
latency and governance regulations. However, it also opens
the possibility of running applications over a set of cloud data
centres to meet availability requirements. This has led to an
interest in the idea of federated clouds [1][2], but the main
push for these has been security.

Some organisations have sensitive data or services that they
are not prepared to host on public cloud. A potential solution
to this also comes from the idea of federated clouds: deploy
those parts of applications that are sensitive on trusted internal
IT resources within an organisation (on what have come to be
known as private clouds), but allow those parts with fewer
security requirements to be deployed on public clouds where
they can take advantage of their scalability and cost benefits.

Achieving this is not necessarily straightforward, especially
for complex applications. There can be a very large number
of options for how to deploy the data and services across a
set of clouds, each of which will have a different cost model.
Therefore, in this paper we tackle one of the main problems
faced by organisations wishing to exploit federated clouds:
how to select a deployment option that meets their security
requirements, while at the same time minimising the cost that
a given deployment will incur.

We describe the design and evaluation of an algorithm
to partition an application structured as a workflow over a
federated cloud in order to exploit the strengths of each cloud.
The algorithm improves our previous method presented in
[3], making it suitable for large workflow applications. The
previous method, based on the Bell-LaPadula [4] Multi-Level
Security model [5], gave a solution for partitioning a workflow
over a set of clouds to meet certain security requirements.
However, in order to find the cheapest workflow deployment,
all of the potential partitioning options needed to be listed
and ranked to find the cheapest one. Although this method
gives the optimal and guarantees that the result is the cheapest
deployment (we use ACO which means always cheapest
option to represent this method in the following paragraphs),
it is not very scalable. For example, it can take more than
15 minutes to optimally partition a workflow comprising 12
blocks (services and data items) over 4 clouds. The complexity
of the method is O(cs), where c is the number of clouds and
s is the number of blocks. Therefore increasing the number
of the blocks in the workflow, raises the partitioning time
exponentially.

Consequently, to handle more complex workflows and larger
cloud federations our idea is to sacrifice some cost in order
to reduce the time to produce a recommended deployment
option. We present an approximate algorithm which still meets
Bell-LaPadula security requirements. Its time complexity ap-



proximated closely to O(2 · s · c) but gives an acceptable yet
suboptimal result in terms of costs. We highlight the challenges
and contributions of this paper as follows.
• The main contribution of this work is a deployment

planning algorithm that minimises the time taken to de-
rive a partitioning of a large workflow application across
federated clouds so as to meet security requirements and
reduce the price paid by the organisation for executing
the workflow. The algorithm takes into account the three
main sources of financial cost in the cloud: computation,
data transfer and data storage. To estimate these costs we
analysed the provenance traces of our case. Other work
[6] [7] [8] describe how to predict those information using
execution logs or workflow input data.

• We build on our previous work of using a version of the
Bell-LaPadula Multi-level model easier to guarantee that
the selected deployment option meets the organisation’s
security requirements.

• We evaluate our algorithm by using both randomly gen-
erated workflows, and a real world scientific workflow,
and compare the experimental results with our previous
work and other methods.

The paper is structured as follows. The following section
reviews related work. The security problem and the cost issue
are discussed in Section III. Next, the algorithm is presented in
Section IV, followed by an illustrative example. In Section VI
the complexity of the algorithm is briefly analysed. Finally, our
experimental results are discussed and conclusion are drawn.

II. RELATED WORK
Cost optimisation has been a classic research topic for

decades. Existing work has attempted to solve the workflow-
mapping problem using DAG scheduling heuristics such as
[9], [10], [11], to name just a few. However, these algorithms
are all based on “free” grid resources and thus aim to minimise
makespan. In clouds the providers charge a monetary cost
depending on three factors (computation, data transfer and
data storage). Our work takes these factors into account and
partitions workflows over federated clouds and minimise the
monetary cost.

To reduce the monetary cost various techniques has been
proposed previously including rule-based techniques [12] and
model-based techniques [13], [14]. In paper [14], the cost is
minimised by transforming the structure of workflow applica-
tions in a single cloud. In contrast, our work uses a model-
based technique on federated clouds.

Research related to federated clouds or multicloud environ-
ments is still new with little literature available. In [15], the
authors introduce a pricing model and a truthful mechanism
for scheduling workflow applications to different clouds. Chen
and Deelman described in [16] how to use Genetic Algorithm
(GA) to map a workflow to different clouds to minimise
the monetary cost. While both of the papers are focused
on minimising the monetary cost of completely executing
workflow applications, neither consider the security issues that
can limit the set of options.

Compared with our previous work [3], this algorithm avoids
generating all possible results to achieve cost minimisation,
which makes it much more efficient in dealing with more
complex workflows (this is evaluated in SectionVII). In order
to extend the evaluation, we have applied the security model
to both GA and the Greedy Algorithm to compare the results
with our algorithm. Our algorithm shows better performance
in cost optimisation. The details are described in Section VII.

With regards to the security of cloud computing, most
research focuses on improving security of the data centres
[17], [18], [19] and [20], etc. [20] introduces a monitoring
architecture to ensure the security and flexibility of a virtual
machine. Conversely, we consider improving security by de-
ploying services of a workflow application on different clouds
to meet their security requirements.

In paper [21], the authors propose a approach to partition
business workflow applications over a set of clouds to meet the
security constraints. However, the paper focuses on minimising
the communication to improve the reliability of the workflow
enactment. In contrast, our aim is to minimise the monetary
cost of enactment of scientific workflows which are often
characterised by high demand in processing power and/or
requiring the transfer and storage of large amounts of data.

III. PROBLEM DESCRIPTION

A workflow-based application consists of a set of services
and data. It can be represented as a Directed Acyclic Graph
(DAG), G = (S,E), where the vertices S are the set of
services, and edges E are a set of dependencies between
those services. A workflow-based application can have several
different types of dependency relationships, but here we only
consider data dependency, which means a data item is gener-
ated from a source service and consumed by a destination ser-
vice. For example, ei,j represents a data dependency between
service si and service sj . To represent data dependencies we
use a distance matrix D = [di,j ] of size |S|× |S| where a di,j
value greater than zero indicates not only there is a dependency
between si and sj but also the size of data transmitted between
them. Furthermore, C represents a set of clouds which are
available for deployment.

A. Security Rules

A security model is needed to determine whether a de-
ployment of services and data to a set of clouds meets an
organisation’s security requirements. We reuse our previous
model [3], which builds on the Bell-LaPadula and incorporate
the security levels of the clouds, data and services. Three
security matrices represent these security level:
• SecS is a |S| × 2 matrix which describes the security

levels of each service. Each service is assigned two
security levels: “Clearance” and “Location”. “Clearance”
represents the service’s highest security level, and “Loca-
tion” is the required operation security level of the service
in a specific application. The clearance of a service must
be greater than or equal to its location. To make the rest
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Fig. 1: The Security Level of Each Lattice

of the paper simpler, we split the SecS into two |S|-
dimensional vectors: CoS (clearance of service) and LoS
(location of service).

• SecD is a |S| × |S| distance matrix, where SecDi,j

represents the security location of data item di,j .
• SecC is a vector representing the security location of

each cloud.

Our security model consists of three rules. Firstly, NRU or
“no-read-up”, means service sj cannot read di,j , if the data’s
location is higher than its own clearance. Let CoSj represents
the clearance of service sj ; similarly, SecDi,j is di,j’s location
value. Therefore, the NRU rule is defined as

NRU(di,j , sj) =

{
true, CoSj ≥ SecDi,j

false, Otherwise

Next, the “no-write-down” rule NWD indicates that service
si cannot write data di,j to lower location value than its own
location. The location value of service si is LoSi.

NWD(si, di,j) =

{
true, SecDi,j ≥ LoSi

false, Otherwise

Finally, when extending Bell-LaPdula to cloud computing,
rule CS guarantees the security for the deployment of data
and services on a cloud. It is defined such that location of a
cloud must be greater than or equal to the location both any
service and data that are hosted by the cloud. Note, that if data
is transmitted from one cloud to another then this rule must
be applied to both, the sending and receiving clouds.

CS(dhi,j , s
h
j ) =


true, SecCCh ≥ LoSi

and
SecCCh ≥ SecDi,j

false, Otherwise

Figure 1 illustrates the relationship between the clearance
and location attributes of services, data and clouds; where the
“→” represents the “≥” relationship, and l, c are location and
clearance respectively.

B. Representing Cost Requirements

We assume that the clouds are linked in a fully connected
topology but the data can be freely transferred between clouds
only if the security requirements described above are met.
Additionally, a cloud can run several services at the same time.
To represent cost we first define some basic metrics of our cost
model:

• Compu is a |S|× |C| matrix that represents computation
cost such that Compui,h is the cost of running service
si on cloud ch.

• The matrix Com represents a unit cost of data transmis-
sion from one cloud to another. For example, Comh,f

means the cost of transferring 1GB of data from cloud
ch to cf .

• CStore is a vector for describing the cost of a unit data
stored in a cloud for a unit timeCStoreh, for instance,
denotes the cost of stored 1GB of data for 1 hour on
cloud ch. Besides, this is only charged by source clouds
when data cross cloud boundaries.

• The storage time of each unit of data is denoted in matrix
TStore. For instance, TStorei,j is the storage time of
di,j , which is equal to the sum of the execution time
of services si and sj and plus the data transfer time if
crossing cloud boundaries.

Given these basic metrics we now define a set of cost
functions that we will use later in our algorithm:

• First is the data storage cost:

SCOST (dhi,j) = di,j × TStorei,j × CStoreh

Where dhi,j represents data di,j stored on cloud ch. Where
data is transferred from cloud ch to another cloud (to
transfer it from one partition of the application to another
held on a different cloud) we make the assumption that
data only remains stored on the source cloud so as not
to double-account for the cost. A reason for storing the
output of a partition even after the data it generates has
been sent to another cloud is that if the destination cloud
fails, it provides a way to continue the computation on
another cloud without having to restart the execution of
the whole workflow.

• The communication cost of a set of data transferred from
service si to sj , which are deployed on cloud h and f
respectively, can be defined as:

CCOST (shi , s
f
j ) = di,j × Comh,f

Note that when both si and sj are deployed on the same
cloud the communication cost is 0.

• SCOST and CCOST are used to derive the key func-
tions in our algorithm, SOC and COD. SOC(sfi ) is
the costs incurred in bringing the input data consumed
by service si to cloud cf before the service is executed.



This includes the storage cost and communication cost

SOC(sfi ) =
∑

shn∈Pred(si)

CCOST (shn, s
f
i )+∑

shn∈Pred(si)

SCOST (dhn,i)

Where Pred(si) represents the set of immediate prede-
cessor services that produce data consumed by service
si. Furthermore, shn indicates that one of si’s predecessor
service sn was running on cloud ch. If a service has no
predecessors (i.e. it is one of the initial services in the
workflow) then:

SOC(shentry) = 0

The COD function denotes the extended cost of having
a service deployed on a specific cloud. It is calculated
by adding the computing cost of the service si to the
transmission cost and storage cost of data sent from any
of its predecessor services that are not in the same cloud.

COD(sfi ) = Compui,f + SOC(sfi )

• We define a |S|× |C| matrix PrePLAN = [preplani,h]
which is used to determine the initial deployment of
workflow services to clouds. Each value in the matrix
is defined as preplani,h = COD(shi ). Thus, each row of
the matrix therefore contains COD values for a selected
service as deployed on each specific cloud (except where
deploying the service on a cloud would violate the secu-
rity requirements). The initial deployment is then based
on the smallest COD value in each row (i.e. for each
service). Later, to improve this initial deployment we use
the “Re-Deployment Method” (discussed in the following
section) which generates the final deployment matrix for
each service. The final deployment is stored in a |S|×|C|
adjacency matrix DEP . Where depi,h = 1 indicates that
service si is deployed on cloud ch. Consequently, the
total COST of deploying a workflow application is:

COST =
∑
si∈S

∃h∈C depi,h=1

COD(shi )

IV. ALGORITHM

The COD function is used to determine the initial de-
ployment of services to clouds. It does not provide optimal
deployment because it takes into account only the local costs
related to each single service considered in isolation. Thus,
the idea of our algorithm is to use more information in the
planning of the final deployment and to make short term
sacrifice for long term benefit. We call our algorithm NCF
(not cheapest first). The algorithm consists of three steps.
First, it starts by applying security rules to verify whether
security requirements are met by the original workflow. We

use rule CS to verify security for deploying services to clouds.
Next, if the security requirements are met, we use COD to
calculate the initial deployment matrix PrePLAN . Finally,
the “Re-Deployment Method” is applied to improve the initial
deployment, which works by combining services deployed in
different clouds into a single cloud. The overall aim is to
detect whether the costs can be reduced by avoiding intercloud
communication and related storage costs.

The following sections describe the algorithm steps in more
details.

A. Workflow Security Checking

The workflow is valid iff all return NRU and NWD values
are true. OOtherwise, the workflow is invalid, security check
returns error and the whole algorithm stops. The pseudocode
of the ”Workflow Security Check” is shown in Algorithm 1.

Algorithm 1 Workflow Security Check
D set of dependencies between related services
S set of service
Secure: =True
for di,j ∈ D do

if not (NRU(di,j , sj) and NWD(si, di,j)) then
Secure:=False
Stop

end if
end for

B. Initial Deployment

The initial deployment of services is based on the smallest
COD value of each service taking into account security
requirements checked by the CS rule. If a cloud ch generates
the smallest COD value but does not meet requirements
imposed by CS, a cloud with the second smallest COD
value is considered. The algorithm works until it finds a cloud
that can meet the security requirements and the COD value
associated with this cloud is stored in vector REC. If no cloud
is found that meets CS, the algorithm stops. Algorithm 2
shows pseudocode for the initial deployment step.

Algorithm 2 Initial Deployment
S set of services in the workflow
REC init with INF
PrePLAN init with zero
for si ∈ S do

for ch ∈ Cloud do
if CS == 1 then

if COD < RECi then
RECi = COD
PrePLANi,h = 1

end if
end if

end for
end for



C. Re-Deployment Method

The core idea behind the “Re-Deployment Method” is to
avoid scheduling services to the clouds which bring huge
communication cost. To realise this we use two functions
“detect” and “replace” which are defined as follows:

detect(si) =


case1, a & ¬b
case2, ¬a & b

case3, a & b

case4, ¬(a & b)

si,max = maxsj∈Child(si)(REC(sj))

SETP (si) = Parent(smax) ∪ smax

SETC(si) = Child(si) ∪ si

MIN(SET ) = minch∈C(SET )∑
sh∈SETP (si)

REC(sh) > MIN(SETP (si)) a∑
sh∈SETC(si)

REC(sh) > MIN(SETC(si)) b

From the description above, the minimal COD value of
each service and the pre-planned deployment are recorded
in REC and PrePLAN respectively. The detect function
determines four different cases based on this and additional
information:
• si,max denotes the service si’s child service with maxi-

mum COD value.
• SETP (si) is a set which includes service si,max and all

its parent services.
• SETC(si) includes si and all its child services.
• MIN(SET ) is the minimum cost of deploying the ser-

vices from SET on a single cloud which meets security
requirements of all services in SET .

• a is true if the cost of the initial deployment of
the services in SETP (si) is greater than the cost of
MIN(SETP (si))

• b is true if the cost of the initial deployment of
the services in SETC(si) is greater than the cost of
MIN(SETC(si))

Given all this information detect returns four different sets
of services. In case1 it returns SETP (si), in case2 it returns
SETC(si), in case3 it returns one of SETP , SETC which
has smaller MIN value. Finally, in case4 it returns {si}.

After the services are selected by detect, the replace
function is invoked to assign these services into a cloud
which minimises deployment cost. The pseudocode is shown
in Algorithm 3.

V. AN ILLUSTRATIVE EXAMPLE

The workflow, shown in Figure 2, will be used to demon-
strate the algorithm. More complicated workflows will be
evaluated in section VII.

Workflow and cloud cost information are shown in Ta-
bles I, II, III, IV. Additionally, the security levels of the

Algorithm 3 Re-Deployment Method
US = S // is a set of unscheduled services
for si ∈ US do

switch(detect(si))
case1:replace(SETP (si))
case2:replace(SETC(si))
case3:
if MIN(SETP ) > MIN(SETC) then

replace(SETC(si))
else

replace(SETP (si))
end if
case4: replace({si})

end for

Fig. 2: Sample Workflow Application

services, data and clouds are also required, which are indicated
in Table V.

Before assigning the services to clouds, the security of the
workflow is checked. From Table V, every service and data
meet the security rules NRU and NWD.

Next, the workflow has to be pre-assigned by following the
function COD and security rule CS. The initial deployment
is shown in Figure 3 and the cost is 1045.

To improve on the initial deployment, the “Re-Deployment
Method” is applied. When detect(s1) is applied, the value of∑

sh∈SETP (si)
REC(s1) = 530 and MIN(SETP (s1)) =

300 (SETP (s1) includes s1 and s3, and “ Cloud1” is the one
to minimise the cost). In addition,

∑
sh∈SETC(si)

REC(s1) =
845, while MIN(SETC(s1)) = 550 (s1, s2 and s3 are
selected for SETC(s1), and “Cloud1” is also the best choice
). In this example, both case1 and case2 are satisfied. However,
the former case has cheaper MIN value, therefore assigning
services in SETP (s1) to “Cloud1”.

Next, after applying the detect method to “s2”, “s2” be-
longs case4, and is assigned to “Cloud1” after replace(s2) is
invoked. Similarly, service “s4” is also allocated to “Cloud1”
after the application of “Re-Deployment Method”. Conse-

Matrix Element Clearance Location

SecS

S1 0 0
S2 1 1
S3 1 1
S4 1 0

SecC
C0 0
C1 1

SecD

ds1,s2 0
ds1,s3 0
ds2,s4 1
ds3,s4 1

TABLE V: The Security Levels for Services, Data and Clouds



Service C0 C1
S1 50 100
S2 100 200
S3 150 250
S4 160 200

TABLE I: The CPU Cost in
Clouds

Cloud C0 C1
C0 0 10
C1 20 0

TABLE II: Cloud Commu-
nication Costs (per GB)

Data Time (hour) Size(GB)
ds1,s2 15 10
ds1,s3 15 20
ds2,s4 5 8
ds3,s4 5 6

TABLE III: Data Size and
Data Storage Time

Cloud Cost
C0 0.1
C1 0.2

TABLE IV: Cloud Storage Cost of Clouds
(per GB Hour)

Fig. 3: Pre-Deployment Workflow System

quently, all services are assigned to “Cloud1”, and the cost
is 750.

VI. COMPLEXITY ANALYSIS

In our algorithm, we split the workflow security check and
pre-planned deployment into two parts, because this can make
the algorithm easier to understand. However, they can be com-
bined in one step. This makes calculations more efficient and
results in complexity O(|E|× |C|), where E is the set of data
dependency edges and C is the set of clouds. The detect and
replace functions have to compare the cost of a service and its
immediate predecessor services in a pre-planned situation with
the cost of deploying these services in one cloud. However, the
complexity of the algorithm is also impacted by the structure
of the workflow. If the workflow is linear, the complexity in
the worst case becomes O(|E + S| × |C|). Conversely, for a
star-shaped workflow the best case complexity is O(|E|×|C|).

VII. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare and evaluate our algorithm with
ACO and other popular algorithms. Two types of workflow
are tested in our experiments. One is randomly generated, the
other is an example of a real world scientific workflow.

A. Randomly Generated Workflows

In this case, the workflow is represented by a distance matrix
D in which if di,j is greater than 0 that means service si sends
data to service sj . The value represents the size of data that
is transferred between them. We create a n × n matrix with
“-1” as the initial value. Next, the values of the matrix are
assigned randomly, however we make sure that workflows are
connected and acyclic.

In the experiment, we consider five different clouds that are
assigned security levels from 0 to 4 randomly and stored in
SecC vector. The other required matrices are generated in a
similar way.

The experiments are implemented in the Java language and
run on a 4-Cores machine with 2 GHz Intel Core i7 processor,
8G RAM and OS X MAvericks.

Figure 4 denotes the execution time of the NCF algorithm
for different workflows which have different numbers of
blocks, as shown on the x-axis from 2 to 30. In all cases

the time was less than 1 millisecond. However, the execution
time does not grow linearly with the number of blocks because
the time complexity depends also on the structure of the
workflow. In our experiment we can control the number of
clouds, services and edges but the structure of the workflow is
randomly generated. Note also that due to huge differences in
the execution time of NCF and other algorithms, we present
in the Figures ratio alg/NCF rather than absolute execution
time.

The time cost of each column is the mean value of ten
different structures of workflows. For example, we calculate
the time cost of a workflow with five blocks by mean of the
time cost of the algorithm which is applied to ten different
5 blocks workflows. As Figure 5 shows, the time cost of
the ACO is significant ascent when the workflow which has
more than 10 blocks. Figure 5 compares the ACO and NCF
algorithms. The x-axis shows the number of blocks in random
workflows, which is from 2 to 12 blocks, and the y-axis is
the ratio of execution time of ACO by execution time of NCF.
As presented there is a sudden surge in run time of the ACO
algorithm when workflows have more than 10 blocks

The relative monetary cost of both algorithms is displayed in
Figure 6. In most cases NCF is very close to the optimum with
the worst case result we found being 25% higher than reported
by ACO. The reason for this gap is that NCF can only improve
the result by adjusting the deployment of the immediate
predecessor services of the current planning service. However,
further away services are not considered by our algorithm.

To generate the results of more complex workflows by
using ACO is very time costly; therefore we also compare
our algorithm with GA and Greedy Algorithm (GR). Both
are popular methods to deploy large workflow systems on
federated clouds proposed in [16]. As Figure 7 shows, the
deployment options generated by our algorithm are closer to
the optimal options. For 30-block workflow NCF generates
solution that is 20% less costly than GA and 36% less costly
than GR Besides, NCF is thousands of times faster than GA
to generate a deployment option, and only 13 times slower
than GR in the worst case, as shown in Figure 8, 9. These
experimental results are generated by testing more than 750
workflows, between 5 blocks and 30 blocks.

B. Workflows from a Real Scientific Application

To verify our algorithm for real workflow, we used one from
the Cloud e-Genome project[22] (Figure 10). The project’s
overall goal is to facilitate the adoption of genetic testing in
clinical practice at a population scale. To realise this goal,
Cloud e-Genome uses workflow modelling to program the
whole exome sequencing pipeline, cloud computing to run
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Cloud Pu1 Pr1 Pu2 Pr2
Security 0 1 0 1

CPU 1.68(/hour) 3.41(/hour) 1.40(/hour) 3.23(/hour)
EC2 0 0.08 0.02 0.07

EC(private) 0.08 0 0.07 0.12
Azure 0.06 0.11 0 0.1

Azure(private) 0.11 0.16 0.1 0

TABLE VII: Cloud Cost (U.S. Dollar per GB)

the workflows on large scale and provenance of workflow
enactment to achieve reproducibility. All these aspects are sup-
ported by the e-Science Central platform (e-Science Central)
[23] used to develop the pipeline

Although security aspects are not in the central focus of
this pilot project, guaranteeing that human genome data can be
securely processed on the cloud is a key issue. Therefore, we
selected a workflow from Cloud e-Genome and modelled its
security requirements by assigning security levels as shown in
Tables VIa and VIb. The services “Data In” and “Data Out” are
e-Science Central storage services which are not represented
by blocks. Therefore they were not included in the Figure 10

Using logs collected by e-Science Central, we were able to
determine the size of data transferred between workflow blocks
execution times. Table VIa includes execution times in hours;
0 means that the times was less than 1 minute. Table VIb
shows data sizes in GB and 0 means the size was less than
1 MB. From this data we calculated the cost of running the
workflow in clouds offered by two major cloud providers.

The pricing of the clouds is shown in Table VII. We chose
the same type of Virtual Machines in both clouds and also refer
to public and private cloud setup offered by both providers;
the private cloud setup is more secure yet more expensive. In
the same table we present also data transfer costs between the
clouds.

From these inputs, services S1 and S5 are assigned to Azure
public cloud, and others are located in Azure private cloud.
The total cost is 84.319 dollars.

VIII. CONCLUSION

This paper has described a novel, efficient scalable al-
gorithm to automatically partition complex workflows over
a federated clouds while meeting security requirements and
minimizing exection cost. The main contribution of this paper
is to redesign the exact algorithm presented in our previous
work to enable it to be applied in real world scenarios by
reducing the time it takes to generate a low-cost, secure
partitioning option.

The algorithm was tested on randomly generated workflows
and real world scientific workflows. Comparing with other
methods, the time complexity of our algorithm has a significant
advantage, and the cost is very close to the cost of the
optimal deployments and less than the cost of deployments
that generated from widely used algorithms. In the future work
we will extend the algorithm to handle dynamic changes in the
cloud environment (such as cloud failure) and will develop a
tool to real-time monitoring of clouds and workflows.
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