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Abstract—The federation of clouds can provide benefits
for cloud-based applications. Different clouds have different
advantages – one might be more reliable whilst another might
be more secure or less expensive. However, being able to
select the best combination of clouds to meet the application
requirements is not trivial.

This paper presents a novel algorithm to deploy workflow
applications on federated clouds. Firstly, we introduce an
entropy-based method to quantify the most reliable workflow
deployments. Secondly, we apply an extension of the Bell-
LaPadula Multi-Level security model to meet application se-
curity requirements. Finally, we optimise deployment in terms
of its entropy and also its monetary cost, taking into account
the price of computing power, data storage and inter-cloud
communication.

To evaluate the new algorithm we compared it against two
existing scheduling algorithms: Dynamic Constraint Algorithm
(DCA) and Biobjective dynamic level scheduling (BDLS). We
show that our algorithm can find deployments that are of
equivalent reliability but are less expensive and also meet
security requirements. We have validated our solution using
workflows implemented in the e-Science Central cloud-based
data analysis system.

Keywords-Cloud Computing; Reliability; Security; Work-
flow; Scheduling; Cost

I. INTRODUCTION

Cloud computing has experienced significant growth over
recent years with a multitude of public clouds becoming
available. There has been also a trend toward managing local
data centres as private clouds. Thus, currently application
developers who decide to host their system in the cloud
face the issue of which cloud to choose to best meet their
requirements in terms of price, reliability and security. The
decision becomes even more complicated if the application
consists of a number of distributed components, each with
slightly different requirements.

Access to a range of different cloud providers has led to
an interest in the idea of federated clouds [1] and [2]. Cloud
federation gives the ability to distribute a single application
on two or more cloud platforms, so that the application can
benefit from the advantages of each of them. This creates the
problem of how to find the best distribution (or deployment)
of application components, that yields the most gains. In this
paper we tackle this problem and propose an algorithm to
deploy workflow-based applications over federated clouds
in order to exploit the strengths of each cloud in terms of
reliability, security and price.

Our algorithm schedules an application structured as a
workflow so as to reliability and security requirements while
minimising the financial cost of execution.

The algorithm extends our security model presented pre-
viously in [3], and adapts it to the new, multi-criteria
requirements. It is based on the Bell-LaPadula Multi-Level
Security model and was designed to deploy a workflow over
a federated cloud to meet certain security requirements.

The basis for the algorithm is a new method to quantify
the most reliable workflow deployments which applies Shan-
non’s information theory [4]. Using reliability information
for each application component and the underlying cloud
platform, the method calculates the entropy of a workflow
deployment. This value is then used as a constraint in the
optimisation problem. We argue that by using entropy we
can reduce the overall risk of workflow failures caused by a
small number of components being deployed on less reliable
clouds.

Furthermore, as there may be a number of deployments
that meet our security and reliability requirements, we search
for the option that minimises the monetary cost. Finding
the optimal deployment is, however, an NP-hard problem,
thus we need an approximate algorithm to solve it. The two
most common approaches are: (1) to linearise the problem
by assigning weights to the criteria and then optimise the
weighted sum, (2) to optimise one criterion and keep the
others constrained within predefined thresholds. In the first
approach the difficulty is not only in defining the weights
properly but also in the limitation of the simple, linear
model which may not be able to accurately represent the
complexity of the problem. Hence in this work we use the
second approach.

To handle this multi-criteria and NP-hard problem we
generate a valid initial solution and then apply a set of
refinement methods to approach the optimum. At the same
time we want guarantees that the time complexity of the
algorithm is polynomial.

In summary the contributions of this paper are as follows:
• An algorithm that reduces the time taken to derive a

deployment of a workflow application across federated
clouds is presented. The algorithm takes into account
security and reliability requirements and reduces the
monetary cost incurred from three main sources in the
cloud: computation, data transfer and data storage.

• A novel method to quantify the reliability of a workflow



deployment using entropy, remedying the limitation of
the existing methods.

• An evaluation of our work using both randomly gen-
erated workflows and an existing scientific workflow
running on e-Science Central, a cloud-based data anal-
ysis platform.

The remainder of the paper is structured as follows. We
first introduce the notation and models used to represent
the reliability and security requirements and to calculate the
monetary cost of deployment. Next, in Section III we show
the optimisation problem as described by the models. Then
a scheduling algorithm to search efficiently for a suitable
deployment option is presented. In Section V we discuss
the evaluation of our work. Finally, future work is outlined
and conclusions are drawn.

II. MOTIVATION AND PROBLEM DESCRIPTION

With the increasing availability of public and private cloud
resources it is easy to deploy instances of the same service in
multiple places. We observe this tendency with our e-Science
Central data analysis system [5] which, depending on the use
case, has been deployed in a variety of locations including
private clouds at universities in Spain and Brazil and public
cloud resources such as Amazon AWS and Microsoft Azure.
Each of these clouds has its own advantages and thus we
focus in this paper on how a single workflow application
might be deployed over the federated cloud. By federated
cloud we consider in this paper a set of workflow execution
environments (such a e-Science Central) running in different
clouds. Our goal is to partition a workflow application in
such a way that it can benefit from the “best” combination
of these environments.

In this section we introduce the notation used and define
the three concepts that form the basis for our algorithm: the
measure of reliability, the security rules and the cost model.

A. Reliability

The target clouds of this paper are comprised of a set
of PMs (physical machines); the set of clouds can be
geographically distributed. A single physical machine pmi

is able to contain n ∈ [0, 1, ...] VMs (virtual machines).
Each VM can run 0 or more instances of WPs (workflow
execution platform). Lastly, a WP can run a number of
services si concurrently.

Clearly, for a service to be executed completely and
reliably on a workflow execution platform, all elements of
this vertical stack (PM, VM, WP and service) must run fault-
free during service execution.

1) Computing Reliability: reliability (REL) defined as:
REL = Fault-Free Time

Total Time . Let h̄pm be a random variable which
represents the time of the failure of machine pm while
fpm denotes the probability density function of h̄pm. We
assume that failures are randomly distributed in time and
can be modelled by the exponential distribution. Therefore,

an exponential probability density function is fpm(t) =
λpme

−λpmt, where λpm is the failure rate of machine pm.
Consequently, the reliability function of pm can be defined
as in [6]:

Rpm(t) = 1−
∫ t

0

fpm(t)dt = e−λpmt (1)

Similarly, the reliability of VM and the workflow exe-
cution platform can be denoted by Rvm(t) = e−λvmt and
Rwp(t) = e−λwpt respectively.

2) Measure of Workflow Reliability: We assume work-
flow W consists of n services s1, . . . , sn, and the reliability
of each service is Rsi . Entropy [4] is a widely used measure-
ment that captures the degree of dispersal or concentration of
random variable distributions. For a discrete random variable
X with the probabilities p(xi) it is defined as:

H(X) = −
n∑
i=1

p(xi) log p(xi) (2)

We deem p(xi) as the reliability of si. Therefore the
entropy of the workflow W is:

H(W) = −
n∑
i=1

Rsi logRsi (3)

Why Entropy? The most widely used methods to measure

the reliability of a system are arithmetic mean (
∑n

i=1
RELi

n )
and power (

∏n
i=1RELi). For workflow-based applications

the most popular method is power [7],[8] and [9]. However,
we decided to use another way to quantify reliability because
both the mean and power method share the same limitation
– they allow mixing many high reliable services with a few
services of lower reliability.

For example, let us assume that the required reliability
rate of workflow W is REL = 0.85, and that it consists
of 3 services s1, s2 and s3. Both distributions: DT1 =
(0.97, 0.985, 0.89) and DT2 = (0.95, 0.95, 0.95) meet the
required threshold. Yet, if W is a pipeline structured as
s1 → s2 → s3, the last service for DT1 has relatively high
chances to fail which increases the risk of the loss of work
done by s1 and s2.

The method based on entropy has more advantage of
reflecting a situation when a fault in one element limits the
result and can not be compensated by other elements.

It because Entropy is a version of weighted geometric
mean, and power belong to geometric mean. In our case
weighted geometric mean can include more information
about service reliability than geometric mean. Therefore,
weighted geometric mean better reflects a situation when
a shortage in one element limits the result and cannot be
compensated by other elements. At the same time, keep
the characteristic of power which guarantees the reliability
constraint



B. Security Rules

A security model is needed to determine whether a
deployment of services and data onto a set of clouds meets
organisation’s security requirements. We use the security
model defined in our previous work which builds upon the
Bell-LaPadula model.

In the following we will use λ ∈ Λ to denote a secure
distribution of a workflow deployed on a set of clouds; where
Λ is all possible distributions of the workflow.

C. Cost Model

The cost model plays key role in our algorithm. We
assume that clouds are linked in a fully connected topology
and data can be freely transferred between them. Addition-
ally, a wp can run several services at the same time.

To calculate the cost of executing a service in the feder-
ated cloud we define a set of cost functions. First is the data
storage cost:

SCOST (spi ) =
∑

di,j∈OUT

di,j × Ti,j × Storep (4)

Where spi means service si is deployed on workflow/cloud
platform p. OUT is a set of data dependencies, representing
that data are generated by si and transferred to its immediate
successor sj which is not deployed on platform p (note that
if all immediate successors of si are on p, OUT = ∅).
di,j represents the amount of data which is generated by si
and consumed by sj . Ti,j denotes storage time of data di,j ,
which is the time from the data being generated until the
end of workflow execution. Finally, Storep is the cost of
storing 1GB of data for 1 hour on workflow platform p.

Only a few researchers consider the data storage cost
when deploying workflows over a federated clouds. How-
ever, the following four reasons describe why it is worth tak-
ing into account: 1) it makes the cost model more complete
because cloud providers usually charge not only for compute
resources and data transfer but also for data storage; 2) for
data intensive workflows the storage cost becomes consid-
erable, especially when data need to be transmitted between
two clouds; 3) storing the output of a workflow partition
is a checkpoint which can reduce the loss in the event of
an outage in the clouds running the following partitions; 4)
such data checkpointing mechanisms are implemented by
some workflow management platforms. For example, the e-
Science Central cloud platform [5] implicitly stores the data
that need to be transferred between partitions.

Next function, CCOST , is used to estimate the commu-
nication cost for services:

CCOST (sqj) =
∑

di,j∈IN

di,j × Comp,q (5)

It is the cost of the data transferred from the immedi-
ate predecessors of service sj (denoted as IN ). Comp,q

represents the unit cost of transferring 1GB of data from
workflow platform p to q. Note that if two services are
deployed on the same platform, the unit cost is zero, i.e.
∀p = q : Comp,q = 0.

Finally, ECOST (spj ) indicates the execution cost of
service sj on platform p. It is defined as:

ECOST (spj ) = T pj × Execp (6)

Where T pj is the execution time of sj on platform p, and
Execp represents the cost of using compute resources on p
for 1 hour.

Based on these three functions, we can define the total
cost of deploying a workflow over a set of clouds:

COST (λ′) =
∑
sp
i
∈W

SCOST (spi ) +

CCOST (spi ) + ECOST (spi )

(7)

Where λ′ is one of the deployment solutions, λ′ ∈ Λ.

III. TAXONOMY OF SCHEDULING CRITERIA

A. Multi-Objective Optimisation Problem

For a given λ, a secure deployment of workflow W over
federated clouds P , we propose to optimise two parameters:
i) minimise the value of entropy H(λ) which results in a
distribution that maximises the reliability of the workflow,
ii) minimise the value of COST (λ) to obtain deployments
with low cost of execution. We express this problem as:

min (COST (λ))

s.t.:∃ secure deploymentλ && min ((H(λ))

Finding a solution which optimises both COST (λ) and
H(λ) is a challenging problem and the main focus of our
algorithm.

IV. SCHEDULING ALGORITHM

We propose a novel scheduling algorithm that can opti-
mise the deployment of a workflow over a set of clouds. It
takes into account user requirements against multiple crite-
ria, namely security, reliability and cost. The optimisation
part of the algorithm is an extension of the multiple-choice
knapsack problem (MCKP) [10].

Overall, our algorithm is executed following three steps:
1) set a boundary on one of the two objectives, 2) search for
a deployment which minimises the other objective while the
first objective is within the boundary chosen and 3) traverse
the available options to optimise the deployment found in
step 2.

In the first step we set a bound C on entropy such that:

H(λ) ≤ H(λC) +H(λE)

2
= C (8)



where λE is the entropy-optimal deployment, and λC is
the cost-optimal deployment. We could also make a bound
on cost, however, we need to guarantee that the reliability
rate is acceptable. We also do not set the boundary on
security because all candidate solutions we generated meet
the security requirements W .

As mentioned above, our optimisation is an extension of
MCKP. MCKP is used to optimise a set of decisions S =
{s1, . . . , sn} within a defined constraint. In our scenario, S
represents the set of deployments Λ, where si is a mapping
of each workflow object o onto a cloud platform p, si =
{opx1 , . . . , opzm }. Our algorithm aims to find the optimal si.

To realise this goal, we firstly generate the cost- optimal
and entropy-optimal deployments that satisfy security re-
quirements. If the cost-optimal solution meets the reliability
requirement, then this will be the optimal option. However,
in most cases the cost-optimal solution does not meet the
reliability constraints invoking a set of optimisation mech-
anisms to improve this deployment. Thus, our algorithm
consists of two phases: initial deployment and deployment
optimisation.

A. Initial Deployment

The goal of the initial deployment is to generate a solution
which can be a seed to find the optimal deployment. To
generate the cost-optimal deployment (λC) we applied the
NCF algorithm from our previous work [11]. The algorithm
works as follows: 1) A greedy-based function determines a
deployment which accounts for only the local costs related
to each single service considered in isolation. 2) Based on
the first step we have more information that can be used
to produce the optimal deployment and to make a short
term sacrifice for long term benefit. Obviously, for each
step the security requirements must be guaranteed. Then,
we compare the entropy value of λC with constraint C.
If H(λC) < C, the λC will be the optimal solution. In
contrast, we use an entropy-optimal solution which can be
generated by applying a basic greedy algorithm as a seed
to find the optimal solution. The reason why the entropy-
optimal solution can be generated by the basic greedy
algorithm is because the entropy values of each service are
independent of each other. Thus, the problem has the optimal
substructure.

B. Deployment Optimisation

If λC is not a valid deployment, we use λE as the seed
to find available options. We limit the search to find t
deployment options and store the result in descending order
of the cost. The optimal solution is the last on the list; the
pseudocode is shown in Algorithm 1.

Finding t valid options was the key challenge in designing
the algorithm because of the huge search space. To solve it
we observe the contribution of each cloud for each service,
also taking into account its predecessors. To calculate the

Algorithm 1 Deployment Optimisation

W – workflow; λE – the entropy-optimal deployment; C
– entropy constraint; t – maximum number of deploy-
ments; Cloud – valid clouds for each service; M – valid
deployments;
M [0]← λE

λ← λE

for i ∈ 1...t do
λNEW ← CHANGE(λ,Cloud); . generate a new

deployment from λ
λ← λNEW

M [i]← λNEW

end for
sort M by cost return M [t]

cost of deploying a service on a specific cloud we use the
COD function. COD is calculated by adding the computing
cost of service si to the transmission cost and storage cost
of data sent from all of its immediate predecessor services
that are not in the same cloud.

COD(spi ) =SCOST (spi ) + CCOST (spi )

+ ECOST (spi )

Each si may have more than one valid cloud, therefore the
ranking of the valid clouds can be created by the ascending
order of the COD value. This is described by the ranking
algorithm (Algorithm 2).

Algorithm 2 Rank

function RANK(λ)
. Topsort returns a topological order of W

for si ∈ topsort(W) do
for p ∈ Cloud[si] do

Tmp[p]← COD(spi )
end for
sort Tmp in the ascending order
. update the order of the clouds in Cloud[si] by

following the corresponding order of cache
Cloud[si]← Tmp

end for
end function

As Algorithm 3 shows, the ranking is used to find an
alternative cloud for si, which is chosen randomly by using
the Benford function.

The reason we used randomisation is because the optimal
option is not always composed of the clouds which minimise
the COD. By applying the function, the clouds on the front
of the ranking have a higher chance of being selected but we
also avoid the situation that some clouds are never chosen.



Algorithm 3 Change

function CHANGE(λ,Cloud)
. Sort the cloud list by COD in the ascending order

and update the Cloud list for the Benford function
Cloud← RANK(λ)
while true do

Randomly choose a service si
λNEW ⇐ Cloud[Benford(si)]; . Apply

Benford function to select a replace the cloud for si
if λNEW 6∈M and is secure and H(λNEW ) ≤ C

then return λNEW

end if
end while

end function

The Benford function is a transformation of Benford’s law
[12] defined as:

Benford(si) = b 1

10b − 1
c

b = random(log10(1 +
1

len(Cloud[si])
), log102)

V. RESULTS OF THE EXPERIMENTS AND EVALUATION

In order to evaluate our algorithm we set up two ex-
periments. The first used randomly generated workflows to
compare our algorithm with other existing algorithms. In the
second experiment we applied our algorithm over federated
clouds to deploy a scientific workflow from one of the
projects we have been involved in. Note that in this work,
workflows are defined as directed acyclic graphs where
vertices represent tasks and arcs between them represent data
dependencies.

A. Randomly Generated Workflows

To define a workflow we use distance matrix D = [di,j ].
Each di,j greater than 0 means that service si is an im-
mediate predecessor of sj and randomly assigned value
di,j represents the amount of data transferred between the
services.

In this experiment, we consider five different clouds that
are assigned the start time and failure rate randomly in
predefined ranges. For example, the clouds may be assigned
start times as 20–50 hours before deploying a workflow
application. The initial failure rate of each cloud may be
between 0.3–0.5%. Therefore, if a cloud has been executed
20 hours before deploying a workflow and its failure rate
is 0.3%, its entropy value will be e−0.003×20 = 0.941.
The other parameters such as cloud security levels, service
security constraints and service execution times are also
generated randomly.

Furthermore, as discussed in section IV-A, we can easily
get the entropy values of both cost-optimal deployment λC

and entropy-optimal deployment λE , therefore setting the
constraint of the entropy as C = H(λC)+H(λE)

2 .
The experiments are implemented in Java and run on a

4-core machine with 2 GHz Intel i7 processor, 8G RAM and
OS X Yosemite.

We compare our algorithm EMCK (extended multiple-
choice knapsack) with DCA [13] and BDLS [8] which rep-
resent two existing and widely used multi-criteria scheduling
algorithms. DCA and our algorithm both extend MCKP.
However, DCA is focused on a single computing resource,
and does not take into account cost of data transfer and
storage. BDLS is a list scheduling algorithm that schedules
services according to a priority list of service–resource
pairs. For the purpose of the experiment, we had to extend
and adapt BDLS as follows: (1) we applied the ranking
mechanism, shown in Algorithm 2, to build cost list CL;
(2) we added another list with entropy constraint for each
service defined as ELsi =

H(sCi )+H(sEi )
2 , where H(sCi )

represents the entropy value of si in the cost-optimal deploy-
ment, whereas H(sEi ) is the value in the entropy-optimal
deployment. As a result the services were assigned to the
cloud which minimised the cost and also met the entropy
requirement.

The relative monetary cost of all algorithms is displayed
in Figures 1 and 2. In all tested cases our EMCK algorithm
gave cheaper deployments than the other two. Comparing
with the entropy-optimal solution, EMCK significantly re-
duced the monetary costs while keeping the reliability within
the constraints.
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Figure 3 presents the execution time of EMCK with all
results below 1 second. There are significant fluctuations in
the execution time because of a few cases when the cost-
optimal deployment was also the entropy-optimal deploy-
ment, and thus it took less than 100 µs to find them. The
comparison between the execution time of EMCK and other
algorithms is presented in Figure 4. Due to large differences
between the algorithms we present in the figure the ratio
EMCK/other algorithm. Despite our algorithm was much
slower than BDLS, still the execution time was acceptable
(below 1 second). It is a polynomial time algorithm and its
response time is perfectly sufficient to handle our use case.
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Figure 3: Execution time of finding an optimal deploy-
ment.
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B. Scheduling Scientific Workflows

To evaluate our algorithm in conditions closer to a pro-
duction use we applied it to schedule scientific workflows in
e-Science Central [5]. e-Science Central (e-SC) is a cloud-
based data analysis system that can run on a range of public
and private clouds including Amazon AWS, Microsoft Azure
and OpenShift. e-SC is a SaaS and PaaS, it offers a web
user interface but also provides a range of APIs to allow
users to control the system from code. For example, the
storage subsystem API allows users to upload, download and
manipulate data, whereas the workflow API enables them
to execute, terminate and monitor workflow invocations. We
used the APIs to create a tool that can orchestrate invocations

Workflow

Federated Clouds

e-Science Central

Private Cloud

e-Science Central e-Science Central

Public Cloud Public Cloud

Monitor

Planner
Failure 

Generator

Figure 5: The architecture of the deployment tool.

of a single workflow partitioned over a number of e-SC
instances.

1) Tool Design: Figure 5 shows the architecture of our
deployment tool. It consists of four core components: Plan-
ner assigns workflow partitions to Federated Clouds using
the algorithm discussed above. The Federated Clouds is a
set of e-Science Central instances which run in different
clouds and are accessed by other components via e-SC APIs.
Monitor observes the status of each instance, detects failures,
and provides the information about available instances to
the Planner. Finally, Failure Generator is used to simulate
failures by shutting down e-SC instances with predefined
probability.

2) Experiment Setup: To verify our algorithm we selected
one of the workflows used in the Cloud e-Genome project
[14] (see Figure 6). The project implements a whole ex-
ome sequencing pipeline using e-Science Central workflows
deployed on the Microsoft Azure cloud.

Whilst in the project the security aspects are not of pri-
mary concern, guaranteeing that human genomic data can be
securely processed on the cloud is very important. Therefore,
we modelled the security requirements of a selected Cloud
e-Genome workflow by assigning security levels as shown
in Tables I and II; note that the size of data transferred
between blocks and the execution time of each block are
actual values taken from logs collected by e-SC. Table I
shows data sizes in GB, where 0 denotes less than 1 MB of
data. The pricing shown in Table III is collected from two
major cloud providers and is based on the equivalent VM
configurations, referring to public and private cloud.

To simulate this environment we set up three virtual
machines each running a single instance of the e-SC system.
VM1 was hosted on a personal PC and represented the
private cloud. Two other VMs were hosted in our University
virtualised environment and played the role of public cloud
providers Pu1 and Pu2.

In order to test our algorithm the platform’s start-up time



Service Name Id Clearance Location Time [h]
Sample Name S1 1 0 1
Import Input File S2 1 0 1.5
String List S3 1 0 3
Prepare HG19 S4 1 0 0.1
GATK Filter S5 2 0 10
Import Exome-Regions S6 1 0 7
Interval padding S7 0 0 20
Column Join S8 2 0 0.1
Annotate Sample S9 2 0 5
Export CSV S10 1 0 0.3

Table I: Service security requirements and execution times.

Data Location Size (GB)
S1,8 1 0
S2,5 0 1.1
S3,8 2 0.01
S4,5 0 0.005
S4,7 0 0.005
S5,7 0 6.2
S6,7 0 10.3
S7,9 1 3.6
S8,9 0 0
S9,10 0 0.05

Table II: Data security requirements.

Cloud Pr1 Pu1 Pu2
Security 2 1 0

CPU 3.41(/h) 2.40(/h) 1.28(/h)
Pr1 0 0.1 0.11
Pu1 0.13 0 0.09
Pu2 0.07 0.02 0

Table III: Basic attributes of the three clouds used in the experiment:
security level, cost of computing resources, cost of data transfer
between clouds (e.g. Pr1 → Pu1 = 0.1).

Service Cheapest EMCK-optimal
S1 Pr1 Pu1
S2 Pu2 Pu2
S3 Pr1 Pr1
S4 Pu2 Pu2
S5 Pu2 Pu1
S6 Pu2 Pu2
S7 Pu2 Pu2
S8 Pr1 Pr1
S9 Pu2 Pu2
S10 Pu2 Pr1

Table IV: Two deployments.

Figure 6: A selected workflow from the Cloud e-Genome project.

must be defined. It is the time when a platform was started
and it is needed to calculate the platform reliability value
at the moment when a workflow deployment occurs. We
set the failure rate of each VM as 0.03, reference start-up
time of VM1, VM2 and VM3 as 1.7h, 2.4h and 3.5h, and
their initial reliability as 0.95, 0.93 and 0.90, respectively.
The reason for the high failure rates is that we need failures
to occur while we are running the experiments. Otherwise,
we would need to run the experiments for a prohibitively
long time. For the same reason we reduced the execution
time of each workflow to about 30 seconds, not as shown
in Table I, by scaling down the amount of input data by a
factor of 2400.

3) Results and Discussion: Based on the presented ex-
periment setup our algorithm generated two deployments
(Table IV): the cheapest and the EMCK-optimal with costs
69.832 and 128.897 respectively. Figure 7 shows that the
deployment produced by our algorithm is more reliable than
the cheapest one by about 25%.

Someone may challenge that the failure rate for the
EMCK-optimal deployment is too high (about 40%). This,
however, is the result of the high initial failure rate set for
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Figure 7: The execution results of two deployments.

each VM.

VI. RELATED WORK

Workflow scheduling has been a classic research topic
for decades and has developed together with changes in
the technology. In the last decade, most work has focused
on workflow mapping problems using DAG scheduling
heuristics such as [15], to name just a few. However, these
algorithms are all based on single computing resources such
as “free” grid resources, and thus aim to minimise makespan.
Furthermore, there are a few works which consider other
scheduling with other objectives such as security, reliability
and performance. Song introduces in [16] a version of
a genetic algorithm to assign jobs based on risk-resilient
strategies to provide security assurance of trusted Grid
computing. The algorithm in [17] tolerates processor failure
by means of primary/backup techniques to allocate two
copies of each task to different processors.

In [18], the authors model the security needs of the real-
time application on clusters, and design and implement a



scheduling algorithm, including the security-aware heuristic
strategy. In contrast, in our work we consider not only one
objective or criteria but we designed an algorithm which can
optimise security, reliability and monetary costs together.

Multi-objective optimisation has been explored previously
in heterogeneous computing. The work in [8] presents two
algorithms to address the trade-off between makespan and
reliability. One is based on a dynamic level scheduling
algorithm and the other is a version of a genetic algorithm.
However, our work uses a model-based technique on fed-
erated clouds where the monetary cost plays a crucial role,
and none of the mentioned algorithms consider this.

Research related to federated clouds or multi-cloud en-
vironments is still new with little literature available and
most focus is merely on a single objective. For example,
in [19], the authors introduced a pricing model and truthful
mechanism for scheduling workflow applications to different
clouds. However, reliability and security are not considered.

Finally, Web Services has been developed for about two
decades and resulted in a number of service selection
algorithms that are related to our work [20], [21]. However,
service selection and discovery techniques are focused on
grouping business processes and the existing services to
create new applications. In our work we tackle the oppo-
site problem which is to deploy and schedule an existing
scientific workflow applications. Scientific workflows often
require large amounts of data to be transferred and thus
factors such as the cost of data transfer between two clouds
require a new approach. Similarly, the security model used
in our work makes it different from other work in this area.

VII. CONCLUSION

Cloud computing provides elasticity for deploying ser-
vices or cloud based platforms over different clouds, this
SOA fashion makes federated clouds become possible. Fur-
thermore, the pay-as-you-go utility model means users can
easily calculate the monetary cost of computing resources
that have been used. In this paper, we design and implement
an algorithm to solve the problem of deploying workflow
applications over federated clouds meeting the reliability,
security and monetary requirements. We also develop a tool
(included the scheduling algorithm) to allocate a workflow
over a set of e-Science Central instances which are running
on different clouds. We have shown the trade-off between
reliability and cost when the location value is set as hard
bounded. Our algorithm guarantees the reliability and se-
curity constraint and optimises the cost. The evaluation has
been done by using randomly generated workflow and a real
world cloud based platform. Experimental results prove that
our solution can guarantee the security and reliability to find
a cost-optimal deployment.

Future work will consider adding more evaluation for
testing our algorithm. For example, adapting our algorithm

to DynamicCloudSim can more efficiently emulate the work-
flow execution and cloud failures.
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