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Functional transcription factor 
target discovery via compendia of 
binding and expression profiles
Christopher J. Banks1, Anagha Joshi2 & Tom Michoel1

Genome-wide experiments to map the DNA-binding locations of transcription-associated factors (TFs) 
have shown that the number of genes bound by a TF far exceeds the number of possible direct target 
genes. Distinguishing functional from non-functional binding is therefore a major challenge in the study 
of transcriptional regulation. We hypothesized that functional targets can be discovered by correlating 
binding and expression profiles across multiple experimental conditions. To test this hypothesis, we 
obtained ChIP-seq and RNA-seq data from matching cell types from the human ENCODE resource, 
considered promoter-proximal and distal cumulative regulatory models to map binding sites to genes, 
and used a combination of linear and non-linear measures to correlate binding and expression data. 
We found that a high degree of correlation between a gene’s TF-binding and expression profiles was 
significantly more predictive of the gene being differentially expressed upon knockdown of that TF, 
compared to using binding sites in the cell type of interest only. Remarkably, TF targets predicted 
from correlation across a compendium of cell types were also predictive of functional targets in other 
cell types. Finally, correlation across a time course of ChIP-seq and RNA-seq experiments was also 
predictive of functional TF targets in that tissue.

Transcriptional regulation by DNA-binding transcription-associated factors and chromatin modifiers (here col-
lectively abbreviated as “TFs”) is a fundamental process determining all aspects of cell behaviour, and TFs are 
known to be essential for a wide range of important cellular and organismal phenotypes. Using ChIP-sequencing 
technology1, the ENCODE and modENCODE consortia have generated detailed maps of the genomic locations 
where TFs bind in diverse human cell types2 and in important model organisms3–5. Invariably, these experiments 
have demonstrated that TFs bind throughout the genome over a quantitative continuum of occupancy levels6 and 
that the number of binding events can significantly exceed the number of known or possible direct target genes7. 
Hence, predicting when the binding of a TF in a gene locus will lead to a biologically significant change in the rate 
of transcription of the neighbouring gene (“functional DNA binding”, see the glossary of terms by Biggin6) is a 
challenging and largely unsolved problem.

Several studies have recently used ChIP-sequencing data of TFs and/or histone modifications to predict abso-
lute expression levels in a particular cell type8–11. While these studies show that a large proportion of the variation 
in expression levels across genes can be explained by the presence or absence of TF-binding sites for particular 
combinations of TFs8,9, this approach is ill-suited to predict functional TF targets, i.e. to predict differential gene 
expression in a particular cell type upon perturbation of the TF. Indeed, a recent large-scale study where 59 TFs 
where knocked down in a human lymphoblastoid cell line (GM12878) concluded that only a small subset of 
genes bound by a factor within 10 kb of their transcription start site (TSS) were differentially expressed following 
knockdown of that factor12. However, Cheng et al.9 also showed that differential TF binding between two cell 
types correlates with differential gene expression between those two cell types, suggesting that functional TF 
target genes can possibly be predicted through the “guilt-by-association” principle by correlating TF-occupancy 
and gene expression levels across multiple cell types.

In other applications of genomics, function is often predicted in this manner. Genes with similar expression 
pr,14, genetic interaction profiles15 or protein interaction partners16 often share the same molecular function. 
Likewise, putative DNA-regulatory motifs are identified from their shared occurrence in the upstream regulatory 
sequences of co-expressed genes17, networks of TF-regulatory interactions are inferred by associating TF activity 
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profiles to candidate target expression levels18–20, and long-range DNA contact interactions between regulatory 
elements and putative target genes can be predicted by correlating open chromatin (measured by sequencing 
DNase I hypersensitive sites21) and gene expression levels across multiple cell types22–26.

To test the hypothesis that the guilt-by-association principle applies to the discovery of functional TF target 
genes, we used ChIP- and RNA-sequencing data across multiple cell types from the human ENCODE resource2. 
We considered several cumulative regulatory models to map ChIP-peaks to genes, ranging from proximal bind-
ing to incorporating distal events: 1 kb/5 kb/10 kb/50 kb around the TSS, the nearest TSS, and 1 kb/5 kb around the 
TSS and in the gene body. This is consistent with the emerging view that TF-binding sites act redundantly to pro-
mote robustness against genetic and environmental perturbations, and that they may regulate their target genes 
in a cumulative manner27. Furthermore, since there exists no gold standard data of functional DNA-binding 
events (in the sense defined above), we used the knockdown data of Cusanovich et al.12 as a proxy measurement. 
Five of the knocked down factors had ChIP-seq binding maps available in at least ten cell types in the human 
ENCODE data, with matching RNA-seq gene expression data, and were considered in this study. Using three dif-
ferent correlation measures, individually and in combination, we found that the correlation between variation in 
cumulative binding around the TSS of a gene and variation in expression levels of that gene was a better predictor 
of functional effects than the presence of multiple binding events in the cell type where the TF knockdown was 
performed. Remarkably, these results were confirmed when using correlation across a time course of ChIP-seq 
and RNA-seq experiments during mouse circadian rhythm28.

Methods
Preparation of data. The binding events (peaks) for eight transcription-associated factors (CEBPB, EP300, 
EZH2, MYC, RAD21, REST, TAF1 and YY1) with binding profiles in ten or more cell types were downloaded 
from the ENCODE resource2. Peaks were mapped to transcription start sites (GENCODE v12) using seven differ-
ent models (1 kb/5 kb/10 kb/50 kb around the TSS, the nearest TSS, and 1 kb/5 kb around the TSS and in the gene 
body). To calculate the peak height at each peak, we downloaded the corresponding mapped read files (BED files) 
for each sample from the ENCODE resource. We then calculated the coverage using BEDTOOLs and normalized 
coverage count was used as an estimate for peak height. The RPKM values of RNA sequencing data (GENCODE 
v12) for the corresponding cell lines were also downloaded from the ENCODE resource. They were then quantile 
normalised using R to be comparable across samples. ENCODE binding and expression profiles were available 
for 24,392 genes. The global expression change (in the form of differential expression P-value s) upon deletion 
of five of the eight factors (EP300, EZH2, RAD21, TAF1 and YY1) in a lymphoblastoid cell line (GM12878) was 
available for 8,872 genes (also called the “reference genes” below)12. Differentially expressed genes upon deletion 
of CEBPB were obtained directly from the Gene Expression Omnibus using the GEO2R tool (accession number: 
GSE54975). Differentially expressed genes upon deletion of MYC were obtained from Seitz et al.29.

The binding events (peaks) for six circadian regulators (Bmal1, Clock, Cry1, Cry2, Per1, Per2) and two RNA 
polymerase II states (8WG16 and ser5p) at six time points (1 hr, 4 hr, 8 hr, 12 hr, 16 hr and 20 hr) as well as the 
RPKM values of RNA sequencing data at the same time points from murine liver samples were obtained from 
Koike et al.28. A total of 2629 genes had both binding and RPKM data available for Per2. Differentially expressed 
genes upon deletion of Per2 in murine liver30 were obtained directly from the Gene Expression Omnibus using 
the GEO2R tool (accession number GSE30139; 2409 genes with fold change >1.5 and FDR corrected P-value 
<0.05).

From each source of data, we obtained a number of working sets of data where for each TF there exists con-
cordant data from binding, expression, and knockdown. For each TF and each peak-to-gene model there were 
three datasets. The ChIP and expression data were matrices with a row for each gene and a column for each con-
dition, containing respectively the number of peaks mapped to the TSS of that gene and its expression level. The 
knockdown data for ENCODE was an expression change P-value for each gene and for mouse circadian was a list 
of genes with significant expression change.

We also prepared ChIP data for the same factors with quantitative binding information (sum of peak magni-
tudes for each gene). Finally we prepared alternative datasets filtered for CpG-rich and CpG-depleted promoters, 
as obtained from the UCSC genome browser.

Prediction of functional TF target genes. The approach we took to predicting functional target genes 
looked at the correlation between binding and expression profiles over a range of cell-types or conditions. 
However, we found that correlation by any one method alone is a not necessarily a good predictor for any given 
factor or binding model. We found that different correlation methods identify different types of relation between 
binding and expression. To improve prediction we combined results from a number of correlation methods in a 
wisdom of crowds approach.

For each dataset (i.e. for each TF and each peak-to-gene model) we computed the correlation between the 
number of binding peaks and the expression of each gene across all conditions, using three correlation measures: 
the absolute Pearson correlation coefficient (PC), the absolute Spearman correlation coefficient (SC), and the 
absolute combined angle ratio statistic (CARS). CARS is our variant of the angle ratio statistic (ARS) of Marstrand 
and Storey25. The ARS was shown to have high power for detecting associations when both variables are restricted 
to a narrow relative range, with one or very few cell types appearing as distinct outliers25. Whilst ARS only con-
siders positive associations between variables (i.e. where an increased number of binding sites corresponds to 
increased expression of a target gene), CARS uses the same principle to test for both positive and negative associ-
ations. We define CARS as follows. Vector x is a vector of RNA-seq data and →y is a vector of ChIP-seq data (for the 
same cell-types). Both vectors have length t. Both vectors are then scaled: 





=
( )

xs x
xmax

 and likewise for ys. Both 
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vectors are then median centred:   ⁎ = − ( )x x xmeds s  and likewise for ⁎y . Outlier distance is measured for each 
point:
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quantifies the distance of each point from the medoid. We then take the angle of each point from the x-axis 
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This is where CARS differs from ARS, which only measures angular distance from the line =x y. The positive 
scores for each point are = ( , …, )+ + +ARS ARS ARSt1  where = ×+ ∆+ARS r ei i

c i  and the negative scores −ARS  
are formed in the corresponding manner, with <c 0 a fixed parameter of the method. The overall combined angle 
ratio statistic is then defined as
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where = ( )± ±ARS ARSmaxmax . The value of the parameter c was determined by requiring that empirical P-value 
s satisfied a correct null distribution (i.e. such that P-value s >0.5 had a uniform distribution), following the pro-
cedure of Marstrand and Storey25. In this study we used = − .c 0 01 which conformed to this requirement for all 
data sets.

For all three correlation measures, we kept track of whether the score originated from a positive or negative 
association. For comparison purposes, we also considered the number of binding peaks in the cell type where the 
knockdown experiment was performed (called “multiple binding”) as a functional target predictor.

Measures of performance. We used the knockdown data as our gold standard for defining a functional 
effect of TF-binding on target gene expression. We measured the predictive performance of each correlation 
method and multiple binding by computing the precision vs. recall (PR) curves (where precision is the propor-
tion of predicted genes that are in the gold standard and recall is the proportion of the gold standard set that was 
predicted) for each dataset. We then took, for each dataset, thresholds on both the level of multiple binding and 
the correlation scores, and genes with scores above the threshold were taken as positive predictions. To achieve 
comparable results between different TFs, we chose thresholds to give a specific fold increase in precision over 
the background proportion of bound genes with a knockdown effect (i.e., the proportion of genes bound in the 
knockdown cell type that have a significant functional effect in the knockdown). We recorded the positively 
identified genes and calculated the hypergeometric overlap P-value between the predicted gene set and gold 
standard set. We chose to make comparisons at a 1.5-fold precision increase over the background. In other words, 
if a fraction f of the reference gene set were differentially expressed upon knockdown of a particular TF, we deter-
mined thresholds for the PC, SC and CARS such that a fraction 1.5f of the genes exceeding the threshold were 
differentially expressed. For making predictions for TFs for which no gold standard set was available, we chose 
the threshold to be the top 1% of predictions.

Performance was measured on the intersection of genes with available knockdown differential expression 
data (the reference gene set) and real correlation scores (i.e., non-constant binding and expression profiles) or 
multiple-binding score (i.e., at least one peak in the knockdown cell type for the current peak-to-gene model); in 
the CARS method, outliers in one dimension (e.g. with constant binding profile) were penalized by the angular 
penalty but not excluded from the calculation, as recommended by Marstrand and Storey25 to ensure a correct 
null distribution. For the biological validation of the predicted target sets, all genes in the complete set of 24,392 
genes above the given score threshold were used, irrespective of the availability of knockdown data.

Results
Number of binding sites in a gene locus is a weak predictor of functional relevance of bind-
ing. In order to test the hypothesis that correlation between TF binding and gene expression across cell types 
can be used as a predictor of the functional relevance of binding events, we used data from the human ENCODE 
resource2. We selected eight TFs, each with ChIP-sequencing profiles in at least ten cell lines and corresponding 
RNA-sequencing data available for the same cell lines. We first assigned genome-wide binding locations (peaks) 
to putative target genes if they were within 5 kb of the transcription start sites (TSSs) obtained from GENCODE 
V12. We then defined the binding profile of a gene as the number of peaks associated to that gene across the 
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available cell types. We defined functional relevance of binding of a TF in a gene locus by whether or not the 
gene is differentially expressed upon knockdown of the transcription factor. Although a limited and stringent 
definition of functional relevance, this facilitated us to make a systematic and quantitative comparison of differ-
ent functional prediction methods. For five of the selected TFs (EP300, EZH2, RAD21, TAF1 and YY1), siRNA 
knockdown data in a lymphoblastoid cell line (GM12878) was available in the form of differential expression 
P-values for 8,872 genes12. The differentially expressed genes (P-value <0.05) were considered functional tar-
gets of the corresponding transcription factor (true positives) and the non-differentially expressed genes true 
negatives. This resulted in five datasets (one for each TF) with binding profiles for 24,392 genes, together with 
matching expression profiles for the same genes in the same cell types as well as true positive and true negative 
functional target gene lists (see Methods for details).

We first calculated for each TF the ratio of functional targets among genes bound by the TF in GM12878. 
These ratios showed only a very limited increase compared to the genome-wide background ratio of func-
tional targets, which was significant for only two factors (EP300 and RAD21, hypergeometric P-value <0.05, 
Supplementary Table 1). This result is consistent with the finding by Cusanovich et al.12 that only 12 of their 29 
knockdowns with available ChIP-sequencing data resulted in a significant overlap between binding and differ-
ential expression. We then tried to improve results by predicting targets only if multiple binding sites are present. 
For three factors (EP300, RAD21, and YY1), we could achieve a 1.5-fold increase in precision (i.e., percentage of 
known functional targets) with hypergeometric P-value <0.05. However, the threshold number of binding sites 
had to be large and consequently the predicted target sets were small (Supplementary Table 1).

Correlation across compendia of binding and expression profiles improves functional target 
prediction. To investigate the utility of correlation-based methods to predict functional targets, we consid-
ered three distinct association measures between binding and expression profiles across multiple cell types: the 
absolute Pearson correlation coefficient (PC), which tests for a positive or negative linear association (Fig. 1a), the 
absolute Spearman correlation coefficient (SC), which tests for a positive or negative monotonic trend (Fig. 1b), 
and the combined angle ratio test statistic (CARS), which tests for a non-linear “on-off ” relationship in a positive 
or negative direction (Fig. 1c) (see Methods).

We validated the predictive performance of each method for each TF independently using precision-recall 
(PR) curves. In all cases, high-scoring genes for any of the correlation measures were more likely to be differ-
entially expressed upon knockdown of the TF than low-scoring genes (Fig. 2). In particular, for four out of five 
factors (EP300, EZH2, RAD21, YY1) a small number of targets were predicted with a precision close to one. This 
enrichment (high-precision-low-recall region) translated into an improvement in the number of significant sets 
and the size of set predicted compared to using multiple binding in the knockdown cell type. To enable com-
parison of different methods across different factors, we determined for each method and each factor the score 
threshold resulting in a 1.5-fold increase in precision compared to the genome-wide background ratio of func-
tional targets, and calculated the significance of the overlap between all functional targets and targets predicted at 
this threshold using a hypergeometric test. We found significantly enriched target sets for each factor for at least 
one, and often multiple, of the methods, predicting significantly more target genes compared to using binding 
data from the knockdown cell type only (MB) (Fig. 3 and Supplementary Table 2). Interestingly, taking the union 
of the predicted gene sets for each method gave a further increase in overlap with the gold standard (Fig. 3 and 
Supplementary Table 2). This was explained by the fact that enriched target sets predicted by each method (PC, 
SC, and CARS) showed only a limited overlap (Fig. 4a), suggesting that all types of relations (linear, non-linear 
monotonic, on-off; cf. Fig. 1) do occur between binding and expression profiles of functional TF targets.

Since all three methods take into account both positive and negative associations between binding and expres-
sion, we asked whether specific TFs show a bias for either sign. For four out of five factors (EP300, RAD21, TAF1 
and YY1), positive interactions dominated the predicted target sets, suggesting that they mostly function as acti-
vators of expression. In contrast, for EZH2 most predicted interactions were negative (Fig. 4b), consistent with the 
fact that more than two thirds of the differentially expressed genes were up-regulated in response to EZH2 knock-
down12. EZH2 is indeed known to repress transcription by participating in histone mark H3K27me3 deposition 
as well as DNA methylation31, although it also functions as a double-faceted molecule in breast cancers, either as 
a transcriptional activator or repressor of NF-kB targets, depending on the cellular context32.

Figure 1. Characteristic scatter plots of binding and expression profiles for known differentially expressed 
targets, showing a linear relation favoured by Pearson correlation (a), a non-linear monotonic relation favoured 
by Spearman correlation (b), and an outlier relation favoured by CARS (c).
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Cell-type specific studies have previously used quantitative TF binding information (i.e. peak heights) to pre-
dict absolute expression levels8,9. We therefore also tested our method using ChIP-seq peak heights in place of 
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Figure 2. Precision vs. Recall curves for functional binding of EP300, EZH2, RAD21, TAF1 and YY1 
in the 5 kbTSS peak to gene model predicted by each method, using 8,872 reference genes (true positive 
and true negative functional targets). The top scale on the x-axis shows the number of true positives for the 
corresponding recall value.

Figure 3. Functional target set enrichment significance (negative log hypergeometric P-value) (a) and size 
(b) for each method and TF at a predicted 1.5-fold precision over background. This is compared to using 
binding data from the knockdown cell type only (MB). Significance was determined by analysing the 8,872 gold 
standard reference genes, whereas sets sizes refer to subsets of the complete set of 24,392 genes with correlation 
score exceeding the 1.5-fold precision threshold derived from the gold standard.
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counts. However we found no significant improvement in prediction using quantitative information. Precision 
levels varied, but were similar to results obtained via on-off binding (see Supplementary Figures 3 and 4—com-
pare with Fig. 3). Cheng et al.9 also found that the cell-type specific expression of CpG-rich promoters was easier 
to predict than CpG-depleted promoters. We therefore partitioned the gene set in the same way, and compared 
results. Here too, the results showed that there is no significant difference on the precision overall between 
CpG-rich and CpG-depleted genes (see Supplementary Figure 5), even after correcting for the difference in the 
number of CpG-rich and CpG-depleted genes (see Supplementary Figure 6). However some improvement is 
shown for EZH2; this is not unreasonable, given that EZH2 is known to target CpG-island promoters33.

To understand the functional relevance of the predicted target sets, we performed gene ontology enrichment 
analysis using BiNGO34. The target gene sets of each factor (Supplementary Data 1) were enriched for distinct 
and specific functional categories, such as “inflammatory response” (EP300; P-value <  1.2 ×  10−7), “generation 
of neurons” (EZH2; P-value <  1.6 ×  10−12). In contrast, the sets of genes bound a factor in the knockdown cell 
type (Supplementary Data 2) were enriched for metabolic processes for all factors. Furthermore, of the 2,618 
predicted functional target genes across all five TFs, 70% were predicted to be target of only one factor. In con-
trast, 82% of the 5,764 bound genes were bound by more than one TF. Taken together, these results suggest that 
the correlation-based method is able to select smaller and more specific sets of functional target genes from the 
hundreds to thousands of genes bound by a given factor in a given cell type.

Full target sets are available in Supplementary Data sets 59–93.

Correlation between binding and expression predicts functional targets in non-ENCODE cell 
types. In the previous analyses, the gold standard validation data (differential expression results) were 
obtained in a cell type that was also present as one of the ENCODE cell lines used to predict targets. Next we 
asked whether correlation of binding and expression across a compendium of cell types is also informative for 
predicting targets in cell types not present in the compendium.

Firstly, we predicted functional targets for three additional transcription factors (MYC, CEBPB and REST) 
where binding and expression information was available in ten or more ENCODE cell types, but not the pertur-
bation data. These TFs typically bind to a few thousand gene loci in any given cell type, but the correlation-based 
method enabled us to select only a few hundred high-confidence functional targets by taking the union of top 
1% predictions from each method. The predicted targets of CCAAT/enhancer binding protein beta (CEBPB) 
were specifically enriched for the Wnt signalling pathway (P-value =  7.9 ×  10−4). CEBPB has a demonstrated role 
in the suppression of Wnt/β-catenin signaling during adipogenesis35. CEBPB targets were also enriched for the 
functional category “positive regulation of cytokine production during immune response” (P-value =  9.1 ×  10−2), 
in line with the well characterised role of CEBPB in the regulation of immune and inflammatory response genes36. 
Since the ENCODE cell types are cancer-related rather than immunological or adipogenesis-related, this demon-
strates the strength of the correlation-based approach to find the most functionally relevant targets of a tran-
scription factor. Similarly, the predicted targets of REST were enriched for functions specific to neurons, such 
as presynaptic membrane (P-value =  4.1 ×  10−3). REST is identified as a key regulator to protect neurons in 
parts of the brain from oxidative stress, as well as protein aggregations characteristic of many neurodegenerative 
diseases37.

Figure 4. Overlap of functional target sets for each factor predicted by each method at a predicted 1.5-
fold precision over background (a). Number of positively and negatively correlated targets predicted by each 
method for each factor at a predicted 1.5-fold precision over background (b). Set sizes in both panels refer to 
subsets of the complete set of 24,392 genes exceeding the 1.5-fold precision threshold determined by analysing 
the 8,872 reference genes.
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Next, having confirmed that the correlation-based method is able to identify the most functionally relevant 
targets, we investigated whether the high-confidence predicted targets are also valid in other cell types. Reschen et 
al.38 systematically investigated the role of CEBPB in macrophage differentiation in an in vitro model for coronary 
artery disease. By performing ChIP sequencing for CEBPB before and after macrophages differentiate into foam 
cells, they identified 5866 genes where CEBPB was bound at significantly higher levels in foam cells. Of these 
differentially bound genes, 16% (935) were differentially expressed between foam cells and macrophages. Of the 
749 predicted CEBPB targets using our correlation-based method across ten ENCODE cell lines, also 16% (119) 
of genes were differentially expressed between foam cells and macrophages. Similarly, Seitz et al.29 studied the 
role of MYC in Burkitt Lymphoma (BL) and identified 7054 MYC binding sites (6169 within 5 kb of a TSS) in 5 
BL cell lines. 530 (8.5%) of these bound genes were differentially expressed after siRNA-mediated knock-downs 
of MYC in BL cell lines. Our method predicted 728 MYC targets using the ENCODE data, which showed 9% 
overlap with genes differentially expressed after siRNA-mediated knock-downs of MYC in BL cell lines. These 
two analyses demonstrate that predictions derived using our approach have a precision that is comparable to the 
ChIP sequencing performed in the exact cell line of interest. The recall on the other hand is limited at this point 
due to the limited availability of cell types with matching binding and expression data to build functional target 
predictions, and the possibility of missing cell type specific targets.

Full target sets are available in Supplementary Datasets 3–58.

Different binding target models work better for different TFs. To investigate whether assigning 
genome-wide binding locations (peaks) to putative target genes using different peak-to-gene models results in 
improved performance, we considered seven peak-to-gene models: 1 kb, 5 kb, 10 kb or 50 kb around the transcrip-
tion start sites (TSSs) obtained from GENCODE V12; 1 kb or 5 kb around the TSS and within the gene body; or 
the nearest TSS. We then predicted the targets using the union of correlation methods for each of the gene models. 
We noted that different peak-to-gene association models performed best for different factors (Fig. 5). Promoter 
proximal binding has previously been associated with the functional relevance of binding39. Accordingly, for 
all five TFs, the 5 kbTSS correlation gave significant enrichment of functional targets (Fig. 5). EZH2 and YY1 
performed best when TSS proximal peaks were considered. This suggests that EZH2 and YY1 are involved in 
transcriptional control through promoter proximal elements only. To note, both EZH2 and YY1 predominantly 
bind in promoter proximal regions2. Given that overall the 5 kbTSS model performed better than the 1 kbTSS 
model, this suggests the presence of alternate cell type specific promoters within 5 kb of the consensus annotated 
promoter. For EP300, the farther the peaks from the TSS were considered, the better the predictions, such that the 
best results were obtained when all peaks were associated to the nearest TSS (Fig. 5). As the presence of EP300 is 
associated with active enhancers40, it is not surprising to find that the nearest TSS model works best for EP300. 
Similarly, the 10 kb peak-to-gene model was the best performer for RAD21.

Among the three correlation measures, CARS predicted the highest number of targets at the 1.5-fold preci-
sion threshold for most peak-to-gene models, with the exception of the nearest gene model for EP300, where PC 
performed significantly better, indicating that linear interactions dominate in this case (Supplementary Figures 
1 and 2).

Correlation across time points of a defined biological process is also predictive of func-
tional effects. We have demonstrated that correlation between binding patterns and expression values 
of genes across multiple cell types can be used to predict functional targets. We then investigated whether the 
correlation-based approach can be extended to other data types, such as time series. The mammalian circa-
dian clock is a cell-autonomous process with a period of about 24 hours. It controls the sleep-wake cycle, blood 
pressure and hormone secretion by regulating key processes such as metabolism, the cell cycle and DNA repair 
through feedback loops of transcriptional regulators (Clock, Bmal1, Cry1, Cry2, Per1 and Per2) essential for the 
rhythmicity41. We obtained genome-wide binding patterns (ChIP-sequencing data) for the six transcription fac-
tors listed above, as well as gene expression profiles (RNA-sequencing data) at six time points (1, 4, 8, 12, 16 and 
20 hours) in murine liver28. We predicted high confidence correlated genes by considering the top 1% predictions 
of the union of correlations between binding and expression across this time series, using the 5 kbTSS promoter 
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Figure 5. Functional target set significance (hypergeometric P-value) predicted by the union of all 
correlation methods for all peak-to-gene models at a predicted 1.5-fold precision over background. Set sizes 
refer to subsets of the complete set of 24,392 genes exceeding the 1.5-fold precision threshold determined by 
analysing the 8,872 reference genes.
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proximal peak-to-gene model. A gold standard set of genes differentially expressed upon TF-perturbation in liver 
was available only for Per230. As before, the PR curve showed that targets predicted by correlation, but not multi-
ple binding, were enriched for known functional targets (Fig. 6).

The high-confidence predicted Per2 targets were highly expressed at 16 and 20 hours, similar to the gene 
expression pattern of Per2 itself, and were more likely to be bound by Cry1/Cry2 than Clock/Bmal128. They were 
enriched for the functional category “regulation of RNA metabolic process” (P-value =  4.3 ×  10−3). Although 
10% of the liver transcriptome follows a circadian rhythm, only about half of it can be explained by de novo 
transcription, suggesting that mRNA processing may play a key role in the circadian rhythmicity. Per2 is associ-
ated with RNA processing through the RNA-dependent methylation process42. This again demonstrates that the 
correlation-based approach enables the identification of a small set of highly-relevant functional targets among 
the tens of thousands of genes bound by a given transcription factor.

Discussion
In this study, we have applied the guilt-by-association principle to predict functional targets of 
transcription-associated factors by testing if a gene’s TF-specific binding profile across multiple cell types cor-
related (positively or negatively) with its expression profile across the same cell types, using three distinct cor-
relation measures (Pearson and Spearman correlation and the combined angle ratio statistic) and a range of 
cumulative regulatory models for mapping TF-binding peaks to transcription start sites. Compared to the tra-
ditional approach where target genes are inferred from the presence of one or more binding sites in a gene locus 
in a cell type of interest, the three correlation-based methods showed improved prediction of functional targets, 
defined here as genes differentially expressed upon TF knockdown, especially when used in combination.

It is known that TFs function in a condition-specific manner, and it may not be obvious that correlation-based 
measures across multiple cell types are able to identify functional targets. However, it is precisely the presence of 
binding and associated change in a target gene’s expression level in the cell type(s) where the TF is active, and the 
absence of this signal in other cell types, which leads to a high-confidence prediction. The angle ratio statistic was 
developed precisely to detect such cell-type specific effects with high specificity25, and was indeed found to predict 
a significantly higher number of functional targets at the same enrichment threshold compared to the Pearson 
and Spearman correlation, which predominantly select linear or monotonic trends, respectively. Furthermore, if 
binding of a factor varies across a compendium of cell types, then the correlation between binding and expression 
was found to be predictive of functional effects even in cell types that were not part of the compendium. Although 
more work is needed to investigate the condition-specific properties of predicted functional target genes, our 
results suggest that correlation-based predictions capture both condition-specific and condition-independent 
targets of a TF.

Interestingly, these results were confirmed using a time course of matching binding and expression data in 
a single cell type, showing the wide validity of the guilt-by-association principle for functional TF-binding pre-
diction. In contrast to the ENCODE results, only the Pearson and Spearman correlation predicted significantly 
enriched target sets in this case, whereas the CARS outlier detection method did not perform well. This is con-
sistent with the fact that samples from the same tissue at different time points are more similar to each other 
than samples from highly distinct cell types, and emphasizes the importance of combining different correlation 
methods to detect all types of signal present in a dataset.

Four limitations affect the current study and need to be taken into account. Firstly, our definition of a gold 
standard of true positive and true negative functional target genes from differential expression data following 
knockdown of a TF is only a proxy for true functional binding events, namely when the binding of a TF in a gene 
locus significantly affects the gene’s rate of transcription. However no large-scale data of changes in transcription 
rates following TF knockdowns is currently available. Secondly, although the human ENCODE ChIP-seq matrix 
currently reports data for nearly 200 TFs and more than 80 cell types, it is very sparse. Indeed, only eight TFs 
had ChIP-seq profiles available in more than ten cell types with matching RNA-seq data, which we considered a 
minimum to perform a correlation-based analysis. Of the eight factors considered, half were sequence-specific 
TFs (CEBPB, MYC, REST and YY1) and half were general factors: two promoter-associated (EZH2 and TAF1), 

Figure 6. Precision vs. Recall curves for functional binding of PER2 in the 5 kbTSS peak-to-gene model by 
each method, using 21200 reference genes (true positive and true negative functional targets). 
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one enhancer-associated (EP300) and one involved in three-dimensional DNA organization (RAD21). Of the 
sequence-specific TFs, only one (YY1) had knock-out data available in the lymphoblastoid cell line and could 
thus be validated directly. As more data will become available, it will be important to establish if the reported 
results also hold for a wider range of sequence-specific transcription factors. Thirdly, predicting the effect of a 
particular TF on a particular gene naturally depends on the reliability of the ChIP-seq experiments for that TF, 
but even within the ENCODE resource, with its high standards for technical quality control, the biological quality 
of samples is not always guaranteed43. Lastly, we only considered the presence of binding sites and expression 
data to investigate the improvement in functional prediction by correlation-based methods compared to using 
the presence of binding sites only. Although we found that taking into account binding peak height or promoter 
CpG content did not improve our predictions, we did not consider the presence of sequence motifs or various 
chromatin features. These have been shown to improve prediction of cell-type specific variation in expression 
among genes8,9, and will likely also improve prediction of functional targets. Having established the validity of the 
correlation-based method, future work will be aimed at building functional target gene predictors that combine 
this approach with additional data types and existing knowledge. Despite these limitations, we believe that the 
use of correlated features in compendia of binding and expression profiles with matching conditions is a powerful 
novel method to predict functional TF target genes, which is able to identify high-confidence functional target 
genes among the thousands of genes bound by a given transcription factor.
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