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ABSTRACT
We present the first measurement of individual cluster mass estimates using weak lensing size
and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy
Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in
the supercluster at high significance using magnification alone. We discuss the application of a
fully Bayesian inference analysis, and investigate a broad range of potential systematics in the
application of the method. We compare our results to a previous weak lensing shear analysis
of the same field finding the recovered signal-to-noise of our magnification-only analysis to
range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-
case basis we find consistent magnification and shear constraints on cluster virial radius, and
finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than
the shear measurements.

Key words: gravitational lensing: weak – methods: data analysis – galaxies: clusters: gen-
eral – dark matter.

1 IN T RO D U C T I O N

Galaxy clusters comprise the largest known gravitationally bound
objects in the Universe. They can give information on the formation
of structure and the cosmological model through knowledge of the
underlying density field. In order to interpret galaxy clusters in a
cosmological scenario, one must have knowledge of the individual
masses of the clusters that enter into the sample. Many different
observables are commonly used as a proxy for cluster mass, includ-
ing cluster member counts (cluster richness) which rely on discrete
observable sources as tracers of the underlying matter distribution,
or X-ray luminosity and temperature and the Sunyaev–Zeldovich
effect which utilize the effects of hot gas in the vicinity of the clus-
ter. In each of these cases, one must make simplifying assumptions
about how these tracers follow the underlying dominant dark matter
distribution, and take this into account when interpreting the mea-
surement as a proxy for the mass of the cluster. For the use of cluster
members in the optical this requires knowledge of the galaxy bias.
For X-ray-derived masses one must assume hydrostatic equilibrium,
although recent studies suggest that X-ray-derived masses may be
biased low (Simet et al. 2015). By contrast, gravitational lensing

� E-mail: cajd@roe.ac.uk

uses measurements of background galaxy size, shape or luminosity
to probe the lensing total matter distribution, and is insensitive to
the nature of the lensing matter itself.

The use of gravitational lensing measurements as a method of
mass reconstruction to date have predominantly dealt exclusively
with the shape distortion of distant sources and as a result much
time has been invested in developing the tools to accurately use
shear measurements. As an example, competitive analyses of the
accuracy and precision of weak lensing observable measurement,
such as the STEP (Heymans et al. 2006; Massey et al. 2007) and
GREAT (Bridle et al. 2009; Kitching et al. 2010; Mandelbaum
et al. 2014) programmes, have primarily focused their attention
on testing the ability of particular algorithms in measuring source
ellipticity with estimates of source size a secondary concern. Ideally,
one would like to utilize the maximum number of probes in weak
lensing analyses, as a means of reducing the statistical errors on
measurements for a given source sample, but also as a means of
mitigating systematics in each individual analysis.

There has been a recent increasing trend to investigate the use of
other weak lensing observables, including numerous convincing de-
tections of fluctuations in source counts due to lensing by foreground
matter, most frequently dubbed ‘flux magnification’ or ‘magnifica-
tion bias’. These analyses measured angular correlation functions
between radially separated bins (Myers et al. 2003; Scranton et al.
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2005; Hildebrandt, Waerbeke & Erben 2009; Morrison et al. 2012),
and around stacked foreground overdensities as a means of mea-
suring stacked mass profiles (Bauer et al. 2011; Hildebrandt et al.
2011; Ford et al. 2014, 2015; Umetsu et al. 2015) or determin-
ing dust profiles (Ménard et al. 2010; Hildebrandt et al. 2013). Of
particular note, the analyses of Hildebrandt et al. (2011, 2013) mea-
sure the mass profiles for high-redshift lenses, using a high-redshift
background source sample where shape determination would be
expected to fail, and thus utilizes one of the main strengths of a
number-counts magnification analysis.

Contemporaneously, there have been a series of theoretical inves-
tigations into the use of the magnification signal to measure cosmo-
logical parameters, through the clustering of a photometric sample
in Duncan et al. (2014), Joachimi & Bridle (2010), van Waerbeke
et al. (2010) and van Waerbeke (2010) or as part of a joint analy-
sis using a photometric and spectroscopic sample (Gaztañaga et al.
2012; Eriksen & Gaztanaga 2015). It is generally found that whilst
magnification alone is uncompetitive with shear when an unknown
galaxy bias must be simultaneously measured with the data, the
combination of clustering and shear can give a significant increase
in constraining power over the shear-only signal through degener-
acy lifting between the clustering, shear and galaxy–galaxy lensing.
Further, Joachimi & Bridle (2010) found that the addition of exist-
ing number density information to a shear analysis on a photometric
sample can successfully counteract the loss of information due to
the marginalization over a flexible intrinsic alignment model. Such
a combined analysis was adopted as part of the primary science
driver in Euclid (Laureijs et al. 2011); however, in Duncan et al.
(2014) it was shown that systematic uncertainties in the magnifica-
tion signal can lead to catastrophic biases in cosmological model
parameters.

Similarly, there has been a recent uptake in investigations into
the direct use of size and magnitude measurements to infer lens-
ing properties, either through a comparison in statistics of lensed
samples to unlensed samples (Casaponsa et al. 2013; Heavens, Als-
ing & Jaffe 2013; Alsing et al. 2015), or through the use of the
Fundamental Plane relation (Bertin & Lombardi 2006; Sonnenfeld,
Bertin & Lombardi 2011; Huff & Graves 2014). In each case, ma-
jor astrophysical systematics, similar to intrinsic alignments for a
shear analysis, may be present through intrinsic size–density cor-
relations (Ciarlariello, Crittenden & Pace 2015), or the correlation
between Fundamental Plane residuals and density (Joachimi, Singh
& Mandelbaum 2015).

In Heavens et al. (2013) it was demonstrated that substantial
gains could be made in the combination of size magnification with
shear, particularly when noise dominated, and noted that the noise-
free size measurement can be made to be uncorrelated to the shear
measurement provided that the size is measured as the square root
of a measured source area.

Rozo & Schmidt (2010) forecast an improvement of ∼50 per cent
in cluster mass estimates from a joint size magnification, cluster-
ing and shear analysis over shear-only. Eifler et al. (2014) found
that constraints on a set of cosmological parameters from a non-
tomographic COSEBI shear analysis were significantly improved
with the addition of projected clustering information, but that the
further inclusion of direct magnification did not give significant
further improvement.

In Alsing et al. (2015) the authors forecast using a theoreti-
cally motivated linear alignment and intrinsic size–density correla-
tion model that the combination of size and magnitude magnifica-
tion with shear can give improvements in dark energy parameters
of ∼25 → 65 per cent, whilst quantifying the typical dispersion on

the inferred convergence field using an intrinsic size–magnitude
distribution measured with CFHTLenS.

In Casaponsa et al. (2013) it was shown through the use of image
simulations that size measurements using LENSFIT (Miller et al. 2007)
could estimate the convergence field in an unbiased way provided
the source sample was selected to be above a flux signal-to-noise
ratio of 10, and the galaxies are larger than the point spread function
(PSF). They concluded that high-resolution space-based imaging is
ideal for a size-magnification analysis.

A recent observational application of the use of the size and
magnitude magnification effect is the application in Schmidt et al.
(2012) to stacked group lensing in the COSMOS field. In this pa-
per, authors claim a detection of the magnification effect with a
signal-to-noise ratio of ∼40 per cent of the shear using a maximum-
likelihood estimator based around the assumption of lognormality
in the size distribution and Gaussianity in the magnitude distribu-
tion. In this paper, we instead apply our method of mass estimation
using galaxy sizes and magnitudes to individual large clusters of
M = O(1014) M� h−1 in the STAGES (Space Telescope A901/902
Galaxy Evolution Survey) supercluster.

In Section 2 we detail relevant weak lensing theory, and detail
a Bayesian method for determining cluster model parameters for a
given lens from source size, magnitude and ellipticity measurements
whilst avoiding some of the simplifying assumptions of previous
analyses. We discuss how a joint analysis using all three observ-
ables could be combined in a self-consistent way. In Section 3 we
describe the STAGES data set and selection of the source sample.
In Section 4, the method is applied to mock catalogues designed to
reflect the main features of the data set, and conclusions are drawn
on the ability to utilize the method to measure cluster model param-
eters on different mass lenses, and quantify the effect of limitations
in the data set and simplifying assumptions. Finally, in Section 5
the method is applied to the STAGES data set, and results are pre-
sented for the STAGES clusters and compared to pre-existing shear
measurements. We conclude in Section 6.

Throughout this paper we assume a flat fiducial cosmology with
w = −1, �M = 0.3, �λ = 0.7 and h = 0.7. Magnitudes are given
in the AB system.

2 TH E O RY A N D M E T H O D

2.1 Weak lensing theory

As photons propagate past a foreground matter density contrast, its
path is deflected according to the Jacobian mapping between the
source plane and the observed sky as

A = (1 − κ)

(
1 − g1 −g2

−g2 1 + g1

)
, (1)

in the linear limit. The convergence (κ) and complex reduced shear
(g = g1 + ig2 = γ /[1 − κ]) vary with angular position on the sky
and are functions of gravitational potential of the lens and geometry
of the lens–source system. Both the convergence and the shear (γ )
can be related to the projected surface mass density of the lensing
matter as

κ(ξ ) = �−1
Crit�[ξ ], (2)

γ (ξ ) = �−1
Crit[〈�〉(< ξ ) − �(ξ )], (3)

MNRAS 457, 764–785 (2016)
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766 C. A. J. Duncan et al.

Figure 1. Illustrative figure showing the effect of lensing on a body of sources whose sizes and magnitudes are sampled from a multivariate Gaussian. Blue
crosses correspond to unlensed sources, whilst red crosses (left-hand panel only) show lensed counterparts after a constant convergence field of κ = 0.3 is
applied. Dashed lines (and arrows) show the direction of shift in the size–magnitude parameter plane after the application of the convergence field. Horizontal
and vertical lines show limits on the observed source size and magnitude, respectively. The right-hand panel shows the equivalent local change in enforced
source size and magnitude limits: red (dot-dashed) areas show regions of parameter space now unobservable on the lensed patch of sky, whilst green (solid)
areas show regions only observable due to the action of the local convergence field. Sources in the red and green patches are therefore removed or added to the
observed source sample respectively.

where ξ is the distance between the source and lens centre on the
source plane, and the mean surface mass density within ξ is given
by 〈�〉( < ξ ). The critical surface mass density is given by

�Crit = c2

4πG

Ds

DdDds
, (4)

where Ds and Dd are the angular diameter distance to the source and
lens, and Dds is the angular diameter distance between the source
and lens.

The convergence denotes an isotropic stretching of the source im-
age, with a corresponding change in the observed size of the source.
As a result of the applicability of Liouville’s theorem, this change
in source size corresponds directly to a change in the observed flux
of the source. Consequently, the lensed size and flux of a source can
be related to its unlensed quantities according to

R = μ
1
2 R0, (5)

S = μS0, (6)

m = m0 + 2.5 log10 μ, (7)

where R, S and m represent the source size,1 flux and magnitude,
respectively, subscript ‘0’ denotes intrinsic (or unlensed) quantities
and the local magnification factor μ is given by

μ = [det(A)]−1 = [(1 − κ)2 − γ 2]−1. (8)

The action of a magnification field is therefore to alter the size and
brightness of a lensed source, or locally shift the size–magnitude
distribution for the source sample. Equivalently, one may consider
the action of the magnification field as a local shift in the imposed
source size and flux limits of the analysis or data: together with
changes in the observed position of the sources, this forms the basis
of flux-magnification analyses through clustering statistics.

1 The source size is typically defined as the square root of the area of the
source.

Fig. 1 shows as an example the action of a constant positive con-
vergence field (associated with a lensing foreground overdensity)
on a model size–magnitude distribution in the presence of a bright
magnitude limit, and large and small size limits. The action of such
a field is to make the observed sources larger and brighter than their
intrinsic values (blue crosses to red on the left-hand panel), conse-
quently locally removing or adding sources to the sample (red and
blue regions in the right-hand panel).

2.2 Bayesian mass profile reconstruction

2.2.1 Motivation

In Heavens et al. (2013), Alsing et al. (2015), Casaponsa et al. (2013)
and Schmidt et al. (2012) the authors presented the framework for
the use of a frequentist estimator based method of probing the mag-
nification field in differing contexts. Generally, in such an analysis,
one constructs an estimator based on the magnification relations
given in equations (5)–(7). For example, for the size information
one can construct an estimator as

μ̂ =
(

R

〈R〉 field

)2

, (9)

where the numerator corresponds to the size of the source or the
mean of a locally selected source sample, and the denominator
corresponds to the mean size over the whole field, assumed to be an
unbiased estimator of the mean of the distribution of intrinsic sizes
for the sample considered.

The use of such an estimator requires special care. First, one
must take into account the presence of size of flux/magnitude cuts
requires an alteration of the relations in equations (5)–(7) using
magnification ‘responsivity’ factors to account for sources being
boosted outside these limits, and these factors must be themselves
estimated from the data (see Schmidt et al. 2012; Alsing et al.
2015, for further discussion). Secondly, the estimator relies on the
assumption that the field mean (〈R〉field in this example) is represen-
tative of the unlensed mean of the source sample. This can occur

MNRAS 457, 764–785 (2016)
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when the ‘field’ sample is chosen over an area where the average
magnification is not unity, and can be avoided by calculating the
field mean over a large area or on a blank field. Thirdly, where a
single source is considered, or the source sample is chosen within
flux of size ranges, any intrinsic size–luminosity relation must be
considered to account for the flux-lensing of the sample, and to en-
sure that the estimator compares mean sizes of equivalent samples.
Finally, such an estimator gives an estimate for the average mag-
nification factor for the source sample. Its physical interpretation
is therefore only straightforward where the sources are selected lo-
cally, or on a region where they are expected to experience the same
magnification, such as in an annulus around a spherically symmetric
lens mass distribution.

This paper motivates a departure from such a formalism, and in
the next section we detail a Bayesian interpretation of the mag-
nification field similar to that detailed in Alsing et al. (2015), but
with an emphasis on inferring the mass model parameters for an in-
dividual lens assuming knowledge of the intrinsic size–magnitude
and redshift distributions of the source sample. We discuss in detail
the advantage of such a method, and extend it to include elliptici-
ties, as well as discussion the application of a full joint shear and
magnification analysis within this framework.

2.2.2 A joint size and flux-magnification analysis

Consider a single observation of the size and magnitude (R, m) of a
lensed source, from which we want to place constraints on the mass
profile of the lensing medium. In Bayesian nomenclature, we wish
to construct a posterior distribution for a set of parameters which
define the lensing cluster mass profile (hereafter denoted using α)
from an observation of lensed quantities. Applying Bayes’ theorem,
this can be formulated as

p(α|R,m) = p(R,m|α)p(α)

p(R,m)
∝ p(R,m|α)p(α). (10)

The likelihood [p(R, m|α)] describes the probability of making such
an observation given a model for the lensing mass profile, and prior
knowledge on the cluster mass profile may be set using p(α). For
the remainder of this discussion we assume a flat prior, and the
evidence [p(R, m)] is taken as a normalizing constant; however, this
can be easily relaxed.

The likelihood can be related to intrinsic quantities by marginal-
izing over these quantities as nuisance parameters:

p(R,m|α) =
∫

dm0 dR0 dz p(R,m|α, R0, m0, z)

×p(R0, m0, z|α), (11)

=
∫

dm0 dR0 dz p(R,m|α, R0, m0, z)

×p(R0, m0|α)p(z|R0, m0, α). (12)

By integrating over an assumed redshift distribution where the
source redshift is not known, the method automatically takes into
account the possibility the source lies radially close to or in front
of the lens. The intrinsic size, magnitude and redshift (R0, m0, z)
of the source are taken to be independent of the lensing foreground
so p(R0, m0|α) → p(R0, m0) and p(z|R0, m0, α) → p(z|R0, m0). By
enforcing this simplification, one assumes that there are no intrinsic
size–density, magnitude–density nor redshift–density correlations
which could cause a general change in size or magnitude of a pop-
ulation of sources physically close to the lens. This assumption

should give accurate results if the source sample is selected to be
radially distant from the lens so that the lensing effect dominates;
however, such separation is not always possible. The implications
of such correlations are taken to be outwith the scope of this work;
however, one may note that given a suitable model for this re-
lation, one can naturally incorporate this model into the intrinsic
size–magnitude relation by keeping the α dependence of this term
explicit.

Where the intrinsic size, magnitude and redshift of the source
are known, the final line of equation (12) is described by a prod-
uct of Dirac delta functions centred on these values. In this case the
magnification factor associated with that lens–source system is well
known. In practice, such quantities are not observable, and one may
instead marginalize over the distribution of true properties condi-
tioned on observed values. This distribution must be representative
of the source sample considered, and therefore accurately reflect the
selection criteria in producing the source sample being considered
to ensure parameter values are unbiased: for example, where the
sample is considered in a tomographic redshift bin, the redshift dis-
tribution should reflect this choice. The extension to tomographic
samples is trivial; however, this comes with the caveat that the for-
malism presented here assumes that the redshift distribution is that
of the true redshift for the sample: where an uncertainty is associated
with the measured redshift, this can be incorporated by integrating
over a latent variable (discussed further in Section 2.2.6).

In the absence of measurement noise, the former term in
equation (12) contains information on the lensing of the source and
can be determined using the relations given in equations (5)–(6) as

p(R, m|α,R0, m0, z) = δD(R − R0μ
1
2 [α, ξ, z])

× δD(m − m0 + 2.5 log10{μ[α, ξ, z]}),
(13)

where ξ denotes the physical transverse separation of the lens and
source and is suppressed for the remainder of this text for clarity.
Using a change in variables, the marginalization over the intrinsic
size and magnitude can be carried out so that the likelihood takes
the form

p(R, m|α) =
∫

dzμ− 1
2 p[R0,m0|z]

(
μ− 1

2 R, m + 2.5 log10 μ
)

× p[z|m0,R0](z|m + 2.5 log10 μ, μ− 1
2 R), (14)

where the notation p[x](y) denotes the probability density function
of x evaluated at x = y. The likelihood for each galaxy is then
constructed by sampling the intrinsic size–magnitude distribution
along a ‘delensing’ line, i.e. taking the probability that the source
has an intrinsic size and magnitude given by its measured quantities
corrected for the modelled local magnification field given by cluster
parameters α. A similar result is given in equation 9 of Alsing
et al. (2015) where the likelihood is constructed for the convergence
assuming the linearization of the lensing relations.

The posterior on lens mass profile parameters can then be con-
structed for a single source by reapplication of Bayes’ theorem (as
in equation 10), and joint constraints using the whole source sam-
ple can be obtained by multiplying single-source likelihoods (or
summing log-likelihoods) in the usual way.

2.2.3 Normalization of the likelihood

If the source sample is chosen using some selection based on pa-
rameters altered by the magnification field (e.g. size, magnitude or
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flux signal-to-noise) this must be taken into account in the evalua-
tion of the likelihood to avoid inaccurate parameter measurements.
In such a case, the application of a non-zero magnification factor
will shift the true underlying intrinsic size–magnitude distribution
in the size and magnitude planes, altering the normalization of the
likelihood (see Fig. 1). Where hard size and magnitude cuts are used
the likelihood must be normalized such that∫ mu

ml

dm

∫ Ru

Rl

dR p(R,m|α) = 1, (15)

where the integrals are understood to extend over lensed quanti-
ties, between lower and upper limits denoted by subscript l and
u, respectively. By substituting the form of the likelihood in equa-
tion (14) and assuming a deterministic relationship between the
measured size and magnitude and their unlensed counterparts, the
magnification-dependent nature of the normalization can be made
more explicit:∫

dz μ− 1
2

∫ mu

ml

dm

∫ Ru

Rl

dR p[R0,m0|z]

(
μ

1
2 R, m + 2.5 log10{μ}

)

×p[z|m0,R0]

(
z|m + 2.5 log10{μ}, μ 1

2 R
)

,

=
∫

dz

∫ mu+2.5 log10{μ}

ml+2.5 log10{μ}

× dm0

∫ μ
− 1

2 Ru

μ
− 1

2 Rl

dR0 p (R0,m0) p(z|m0, R0) = 1.

The normalization varies with magnification factor, and conse-
quently with the set of cluster mass profile parameters (α) for a
given source. In contrast to the case where no cuts are applied, such
a normalization will change the shape of the recovered likelihood,
and thus neglecting this effect will bias recovered cluster profile
parameters.

Here, we have considered only hard cuts on the data; however,
in reality it may often be the case that a smooth selection function
is applied to the data. Such a case is considered in more detail
in Alsing et al. (2015) and can be easily extended to the analysis
presented here where the form of the selection function is known.

2.2.4 Analysis using sizes or magnitudes only

Where only reliable magnitude information is available, posteriors
may be produced by marginalizing the likelihood given in equation
(14) over the full range of source sizes considered in the sample:

p(m|α) =
∫

dz

∫ μ
− 1

2 Ru

μ
− 1

2 Rl

dR0

μ
1
2

p[R0,m0]

(
R0, m + 2.5 log10{μ})

×p[z|m0,R0](z|m + 2.5 log10{μ}, R0), (16)

and∫ mu+2.5 log10{μ}

ml+2.5 log10{μ}
dm0 p(m0|α) = 1. (17)

In the final relation, we have again assumed a deterministic, lensing-
only relation between observed magnitude and intrinsic magnitude,
to make the magnification-factor-dependent nature of the normal-
ization explicit.

Similarly, a size-only likelihood may be formed by marginalizing
over the lensed magnitude, giving

p(R|α) =
∫

dz μ− 1
2

∫ mu+2.5 log10{μ}

ml+2.5 log10{μ}
dm0

×p[R0,m0]

(
μ− 1

2 R, m0

)
p[z|m0,R0](z|m0, μ

− 1
2 R), (18)

with∫ μ−1/2Ru

μ−1/2Rl

dR0 p(R0|α) = 1. (19)

2.2.5 Extension to ellipticities

Where ellipticity information is also available, the above formalism
can be extended to construct a joint shear and magnification anal-
ysis of the lens mass profile. The likelihood can be constructed by
integrating over intrinsic quantities as nuisance parameters:

p(R, m, e|α) =
∫

dz dR0 dm0 d2e0 p(R,m, e|α, R0, m0, e0, z)

×p(R0, m0, e0)p(z|R0, m0, e0), (20)

where e denotes the set of both ellipticity components in a given
coordinate frame. As before, the second term gives the redshift
distribution of the population from which the source was a sam-
pled, and any redshift dependence of the intrinsic ellipticity, size or
magnitude can be incorporated into this term. The first term in this
equation gives the relation between the observed quantities and the
intrinsic quantities, which is assumed to be deterministic and solely
due to lensing in the limit of negligible measurement errors

p(R, m, e|α,R0,m0, e0, z) = δD(R − R0μ
1
2 [α, ξ, z])

× δD(m − m0 + 2.5 log10{μ[α, ξ, z]})
× δD(e − E[e0, g]), (21)

where E denotes the action of the lensing reduced shear on
the nuisance intrinsic ellipticity parameter considered, such that
E−1(e, g) = e0 and E(e0, g) = e. In the weak lensing limit, the ob-
served ellipticity may be related to the intrinsic ellipticity of the
source and the applied shear field by way of a Taylor expansion:

eα(e0, g) = eα
0 + ∂eα

∂eβ

γβ + O(|γ |2) = eα
0 + P

γ
αβγβ, (22)

where the coefficient of the linear term is frequently referred to
as the ‘shear responsivity’, and details how the measured elliptic-
ity responds to the applied shear field, and Einstein summation is
assumed. In the parlance used here, this can be expressed as

Eα = eα
0 + P

γ
αβγβ

E−1
α = eα − P

γ
αβγβ.

Similar expressions can be determined where the weak lensing limit
has not been applied, as in Seitz & Schneider (1995, 1997). Using
these expressions, the likelihood is then given by

p(R, m, e|α) =
∫

dz

(
2∏

i=1

∂E−1

∂ei

)

× p(μ− 1
2 R, m + 2.5 log10 μ, E−1)

× p(z|μ− 1
2 R, m + 2.5 log10 μ, E−1). (23)

MNRAS 457, 764–785 (2016)

 at U
niversity of E

dinburgh on June 16, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Cluster mass profiles with magnification 769

When ellipticity measurements only are considered, this can be
reduced to

p(e|α) =
∫

dz

(
2∏

i=1

∂E−1

∂ei

)
p(E−1)p(z|E−1) (24)

and the posterior for the source sample constructed as before.

2.2.6 Including measurement noise

So far, we have considered the case where the data is considered
exact; however, in reality the data will consist of noisy estimators
of the true underlying quantity of interest. In this case, the relation
between the observed size, magnitude, ellipticity or redshift and the
intrinsic values associated with the source galaxies is no longer a
deterministic relationship dependent only on the lensing mass, and
the relations given in equations (21) and (13) no longer hold.

Noise in the data can be integrated within this formalism by
marginalizing over a latent variable which denotes the true lensed
quantity. For the source size, magnitude and ellipticity, this requires
that

p(R,m, e|α, R0, m0, e0, z) =
∫

dm̂ dR̂ d2ê p(R,m, e|R̂, m̂, ê)

× p(R̂, m̂, ê|α, R0, m0, e0, z), (25)

where variables with a hat denote latent variables which are
marginalized over. In this relation, the p(R, m, e|R̂, m̂, ê) there-
fore reflects the uncertainty in the measured data, and the latter
relation gives the usual lensing relations (given by equation 21).

Similarly, uncertainty in the redshift estimate can be absorbed
into the analysis taking

p(z|R0, m0, e0) →
∫

dẑ p(z|ẑ)p(ẑ|R0, m0, e0). (26)

Where the measurement noise is additive on the quantity of inter-
est, each of these cases considers the convolution of the noise-free
likelihood with a distribution describing the uncertainty on the pa-
rameter of interest, where the width of the distribution varies with
each source. As such, the application of such a marginalization in
brute force will extend the run-time of the likelihood evaluation by
a factor of N for each noisy redshift, size or magnitude estimator per
source, where N describes the number of times that the noise-free
likelihood must be sampled to ensure convergence of the convo-
lution. Where the noise-free likelihood is expensive to calculate
(for example due to a large source sample, or the requirement to
marginalize over many latent variables), this may result in a pro-
hibitively long run-time which requires more advanced techniques
to overcome.

A limitation in the extension to such a marginalization lies in the
fact that the noise-free likelihood has a high dimensionality, as it
depends on the source position and cluster model parameters as well
as latent size, magnitude and redshift, so that the evaluation of the
noise-free likelihood on a grid which can be applied to all sources
(removing this as a bottle-neck) is intractable. Alternatively, the de-
pendency on cluster model parameters, source position and redshift
can be absorbed into the local magnification factor, thus signifi-
cantly reducing the dimensionality of the problem and allowing the
measurement-noise-free likelihood to be evaluated on a grid of la-
tent lensed size, magnitude and local magnification factor (and red-
shift if unknown) which can be referenced for each cluster model pa-
rameter choice and source considered. Whilst the evaluation of such
a grid is expensive where the evaluation of the likelihood per source

is also expensive, such a case could speed-up the application when
applied to large source samples since the convolution itself is fast
using Fast Fourier Transform, giving a run-time scaling faster than
that detailed here.

2.2.7 Advantages and caveats

We have motivated a way to produce full posterior distributions
of cluster parameters based on the assumption of an underlying
mass profile model which can be related to lensing observables,
and a priori knowledge of the intrinsic size–magnitude distribution.
The main strengths in utilizing such a technique lies in the flex-
ibility of the method: complications and extensions can be easily
added through explicit marginalization of latent variables provided
they can be related to the observables and intrinsic quantities, and
this is done explicitly in the marginalization over an a priori red-
shift distribution. In contrast to the frequentist analysis described
in Section 2, in this formalism any intrinsic correlation between
the size and magnitude measures is encompassed in the intrinsic
size–magnitude distribution, negating the need for any correction.
Further, the method can be applied to produce lens mass profile con-
straints for each source individually, simplifying the interpretation
of the measurements for a chosen sample of sources.

The use of a priori distributions means that the method can be eas-
ily implemented using well-motivated theoretical models, or using
measurements from the data where available. As such, the appli-
cation can be entirely self-consistent. However, where the model
is measured from data, one must be aware that noise or systematic
uncertainties in the measurements can enter the analysis through
their effect on the a priori distributions themselves. Where this is
the case, only systematic errors in the measured intrinsic quantities
which vary in a spatially dependent way will be problematic, as
constant offsets across the whole field will cause an identical shift
in both the a priori distributions and the sample, provided they are
both equally affected. This will therefore not affect the recovered
mass profile parameter interpretation. Noise in the measured dis-
tributions can be dealt with by smoothing, or fitting a theoretically
motivated model to the data. Similarly, the intrinsic distributions
should be constructed from a sample which is representative of the
delensed source sample. This can be done by constructing the distri-
bution across a large area, where the average magnification is unity,
or using a sample of field galaxies.

A particular advantage of the use of this method is the fact that
posteriors can be constructed individually for each source galaxy,
and individually for each foreground lens before further combina-
tion. As such, for an analysis which aims to maximize signal-to-
noise by stacking lenses, the application of this method allows one
to fit the chosen mass profile model to each lens individually and
produce model parameter constraints for the lens sample by com-
bining these likelihoods. This therefore avoids the need to fit a mass
profile to the stacked measurement, whose shape can be affected
by systematics in each individual lens measurement. An example
would be in smearing out the profile towards the centre caused by
mis-centring on each lens of the stack. With our approach, the un-
certain centroid can be taken as a free parameter in the fit for each
individual cluster in the sample.

In the application of this method, we choose to work with full
recovered model parameter Probability density functions until the
final stage where a maximum-posterior estimator is used to visualize
the results in different contexts. Doing so increases the run-time over
the case where statistics are formed from frequentist estimators. Es-
pecially in the case where multiple latent variables are marginalized
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over, this can be computationally expensive; however, we note that
recent work in advanced statistical techniques such as hierarchical
Bayesian inference (e.g. Schneider et al. 2015; Alsing et al. 2016)
and advanced sampling methods can go some way to reducing the
necessary run-time.

3 TH E HST STAG ES SURV EY

The STAGES survey (Gray et al. 2009) utilized the F606W filter
of the Advanced Camera for Surveys (ACS) of the Hubble Space
Telescope (HST) to image a quarter square degree centred on the
A901/2 supercluster. The supercluster is made up of four structures
at redshift z = 0.165: A901a and A901b in the north and A902
and the SW group in the south. In addition, there is a background
cluster (CB1) seen in projection with A902 at redshift z = 0.46,
determined with the application of a 3D lensing analysis in Taylor
et al. (2004). STAGES images are complemented by optical imag-
ing using COMBO-17 (Wolf et al. 2003) with five broad-bands and
12 narrow bands, and which provides high-quality photometric red-
shifts, with the precision σ z ∼ 0.02(1 + z) for about ∼10 per cent
of the brightest galaxies (RVega < 24) in the STAGES sample. Wolf
et al. (2004) recommend that the limit of RVega < 24 is applied
in order to keep the photometric redshift error scatter at less than
7 per cent. In Hildebrandt, Wolf & Benı́tez (2008), an analysis of
the COMBO-17 data in the magnitude range 23 < RVega < 24,
showed that excluding the narrow band data causes the redshift
scatter to increase by 30 per cent and the catastrophic outlier rate to
increase by 20 per cent. This shows the importance of the narrow-
band information in accurate redshift estimation, and also suggests
that there would be little gain in using only broad-band informa-
tion to extend the photometric redshift range beyond RVega = 24.
STAGES provides deep (mF606W � 27.5), high-resolution HST im-
ages of ∼70 000 extended sources, from which a large sample set of
robust galaxy shapes, sizes and fluxes can be obtained. The masked
observational footprint of the survey covers ∼0.22 deg2, giving a
global number density of sources of ∼85 gal arcmin−2 using the
whole sample of extended sources. Observations were taken within
a small observational time frame, with greater than 50 per cent of
the tiles observed in one five-day period, and over 90 per cent within
21 d, whilst seven tiles were observed six months later, minimizing
temporal (and therefore spatial) variation in the PSF across the field.
The mosaic of 80 ACS tiles which constitutes the STAGES field is
shown in Heymans et al. (2008), grouped in colour by observation
period.

The application of the analysis outline in Section 2.2 to the
STAGES data provides a unique set of idiosyncratic complications.
The biggest complication is the lack of redshift information for
approximately 90 per cent of the source sample. This affects the
analysis as presented in two ways: first, the lack of multiband pho-
tometry for this sample complicates the removal of cluster members,
detailed further in the next section; and secondly, without redshift
information we must marginalize over an a priori redshift distribu-
tion for the sources to convert lensing observables to cluster mass
profile parameters. Following the shear application in Heymans
et al. (2008), we model the redshift distribution as

p(z|mF606W ) = 3

2z0(2)

(
z

z0

)2

e−(z/z0)1.5
, (27)

with z0 = zmedian/1.412, and using the median-redshift–magnitude
relation of Schrabback et al. (2007):

zmedian = 0.29[mF606W − 22] + 0.31. (28)

3.1 Mass profile modelling

We model the mass profile of the lensing clusters as spherically
symmetric NFW profiles (Navarro, Frenk & White 1997), and re-
late the profile parameters to lensing parameters by projecting along
the line of sight using the analytic relations of Wright & Brainerd
(2000). The base model profile is a function of four parameters,
namely the position of the centre of the profile (centroid), the red-
shift of the lens, the virial radius/virial mass and the concentration.
With the exception of CB1 at z = 0.46 (Taylor et al. 2004) all lenses
are placed at a fixed redshift z = 0.165 (Gray et al. 2009). Following
the shear analysis, we use the mass–concentration relation of Dolag
et al. (2004), and take the cluster centre positions to be those quoted
in Heymans et al. (2008). As a result, the NFW fit is a function only
of the virial mass/virial radius. Whilst we note that more recent
mass–concentration relations exist, and emphasize that the centroid
position and concentration could be simultaneously fitted using this
method, the overriding aim of this analysis is to compare cluster
profile estimates between the shear and magnification analyses, and
so we choose to set up the analysis using the same assumptions as
Heymans et al. (2008) to facilitate comparison.

3.2 Source selection

We analyse the source catalogue used in the analysis of Hey-
mans et al. (2008, hereafter referred to as H08), matched to the
publicly available STAGES catalogue (Gray et al. 2009, hereafter
G09). The H08 catalogue consists of 79 366 sources (ngal = 96.5
sources arcmin−2) with SEXTRACTOR (Bertin & Arnouts 1996)
MAG_BEST magnitude information, whilst the G09 source cat-
alogue with a higher detection threshold contains a total of 46 471
sources (ngal = 56.5) with SEXTRACTOR and GALFIT (Peng et al. 2002)
size and magnitude measures, as well as COMBO-17 redshift esti-
mation for 10 790 sources after matching.

An investigation into size measurement with quadrupole mo-
ments (detailed further in Appendix A) found that model-fitting
methods provide a more accurate size determination for low surface
brightness sources in comparison to non-parametric measures such
as quadrupole moments or aperture sizes which cannot distinguish
between faint large galaxies and bright small galaxies. The final
source sample therefore consists of the SEXTRACTOR aperture mag-
nitude information (MAG_BEST) as given in the H08 catalogue,
chosen to give the largest source sample with magnitude informa-
tion, with GALFIT half-light radius determined using the GALAPAGOS

data pipeline and sky subtraction Barden et al. (2012) used as the
source size where available (see H08 and G09 for further details on
the source catalogue and the source magnitude and size determi-
nation). It is assumed that galactic dust variation across the field is
negligible due to the small survey area.

The a priori size and magnitude distributions are constructed from
the full catalogue after masking conservative 3 arcmin apertures
around the brightest central galaxy (BCG) cluster centres to remove
cluster members. The measured distribution is given in Fig. 2, and
forms the a priori distribution for this analysis. The bottom panel
of Fig. 2 shows the marginalized magnitude distribution between
the H08 and G09 catalogues. One can see that the marginalized
magnitude distribution for the H08 catalogue extends to fainter
magnitudes than the public G09 catalogue, reflecting the different
selection of the source sample, where the H08 catalogue includes
smaller and fainter sources used in the shear analysis of H08.

In the application of the method, the a priori size–magnitude
distribution is constructed and smoothed using Kernel Density
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Figure 2. The joint size–magnitude (upper left) and marginalized size (upper right) and MF606W magnitude (lower) distributions used to for the a priori
size–magnitude distribution. Black solid lines show the distributions obtained from the sources in the matched H08 and G09 catalogues, whilst the blue dashed
line shows the magnitude distribution for the H08 catalogue only.

Estimation (KDE), using a bivariate-Gaussian smoothing window
in size and magnitude, with covariance equal to 0.01 times the co-
variance of the data sample. KDE-smoothed apparent magnitude
and size distributions constructed in this manner compare well to
histograms of the same quantities.

The inadvertent inclusion of cluster members in the source sample
can introduce a bias in the derived cluster model parameters, as they
are mistakenly interpreted as lensed sources in the analysis. This is
a particular problem in the application to the STAGES data set, as
COMBO-17 redshift information is only available for ∼10 per cent
of the sample, meaning a simple redshift cut is unlikely to remove
all cluster members from the sample. We cut source with z < 0.2
where redshift information is available, and sources brighter than
m = 23, corresponding to a median redshift of z = 0.6 in the median-
redshift–magnitude relation of equation (28), following H08. The
lower panels of Fig. 3 show the number density contrast of sources
in annular bins around the BCG for each of the four main clusters
considered, after the application of redshift and magnitude cuts on
the sample. One can see that even after the application of such cuts,
the number density of sources is higher than the field average to-
wards the centre of the cluster, most noticeably for A901b and SW,
with an amplitude larger than can be accounted for from magnifi-
cation bias alone. This suggests that the applied bright magnitude
and redshift cuts are insufficient to fully remove cluster members.
The top panels of Fig. 3 show the difference between the mean
magnitude in radial bins around the BCG of each cluster to the
field mean (after the masking of the four clusters) as a function

of varying the faint limiting magnitude of the source sample. Each
magnitude difference can be related to the average magnification
factor for sources within that annulus; however, one must note that
this measure has not been corrected for the application of size and
magnitude cuts, and is therefore not an unbiased estimate of the
cluster mass. However, the use of this estimate can give a useful
diagnostic on the behaviour of the signal around the cluster centre.
One can see that, for A901a, A902 and SW the magnitude differ-
ence in radial bins is well behaved at large radii, with a general trend
towards more negative values as the faint limit used is relaxed. This
behaviour may be attributed to the lack of correction for the use
of a magnitude cut: where a global faint cut is applied, the mean
measured around a magnification field will be underestimated. By
contrast, for A901b, the use of a brighter faint cut shows the opposite
trend, and we see that for A901b the magnitude difference using the
m < 26 sample is discrepant with more relaxed cuts. This indicates
that the signal around A901b is sensitive to the limiting magnitude,
and provides a flag to the reliability of the magnitude estimation
of the faint sources in that region. We note that A901b shows the
largest extended X-ray emission on the STAGES field, and conse-
quently the reliability of the magnitude determination of the faint
sources could be compromised by the presence of unaccounted-
for intracluster light erroneously adding flux to the galaxies behind
A901b. As a result, the sources chosen around A901b are taken to
be those which satisfy m < 26 such that the extra intracluster light is
subdominant to the galaxy flux. In this case, the sample of sources
around A901b are considered as a separate sample to the remaining
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Figure 3. Plot showing the difference between the mean magnitude and fractional number overdensity of sources in radial bins from the BCG against the field
mean, for A901a (top left), A901b (top-right), A902 (bottom-left) and SW (bottom-right), as a function of limiting faint magnitude.

sample, and the application of a stricter magnitude cut requires that
the posteriors obtained for each of these galaxies must be correctly
normalized to account for this.

Motivated by the trends described here, we therefore apply core
cuts on the sample of 1.2, 1.2, 0.5 and 0.9 arcmin around the A901a,
A901b, A902 and SW BCGs, respectively (shown as dot–dashed
vertical lines in Fig. 3). Sources are selected in 3 arcmin apertures
around the cluster BCG, taken from table 1 of H08. In the case
of A901b the number overdensity of sources extends across the
whole angular scale considered here suggesting that cluster member
contamination may persevere in spite of the application of source
removal within this aperture; however, stricter cuts will remove
progressively more of the source sample, and will leave only those
sources furthest from the cluster centre which are least lensed and
whose lensing parameter determination is expected to be most noisy.

The application of the mask around the cluster core provides a
natural minimum physical length scale on source-cluster separation,
as the removal of the cone around the centre of the cluster means
that no source can be closer than the physical distance between
the cluster centre and the edge of the masked region on the cluster

redshift plane. As well as limiting cluster members, such a cut has
the further advantage of reducing the effect of any intrinsic size–
density or magnitude–density correlations in addition to the redshift
and magnitude cuts applied to limit the presence of sources radially
close to the lens.

The application of such cuts removes a significant fraction of
the sources for which the lensing signal will be strongest, remov-
ing 402, 515, 70 and 282 galaxies from the source sample around
each cluster, respectively, with a further 1194 faint sources removed
around A901b after the application of a faint cut of m < 26. The
need to apply such strict core cuts should be considered a particular
limitation of the data set used, and cluster model parameter values
would be constrained to higher significance in a data set with more
complete redshift information by allowing the sample to be suffi-
ciently cleaned of sources close to the lens without the application
of conservative blanket cuts, or allowing the application of a model
to account for the presence of unlensed cluster members or intrin-
sic size–density and magnitude–density correlations. Alternatives
to the source selection criteria here which avoid the removal of
sources from the sample are considered in Appendix B.
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4 A P P L I C AT I O N TO M O C K S

In this section, the method described in Section 2.2 is applied to
mock catalogues, to ascertain the level of statistical error expected
of an application of the method to HST data, and to quantify any
inherent biases in the analysis.

4.1 Mock catalogue construction

Mock catalogues are constructed to mimic the STAGES data set
using the following process.

(i) Galaxies are randomly positioned in the mock survey field.
(ii) Each mock galaxy is assigned an intrinsic magnitude, size

and signal-to-noise ratio randomly sampled simultaneously from
the STAGES catalogue. This preserves the form of the size and mag-
nitude distributions in the STAGES field, including any size, magni-
tude and signal-to-noise ratio correlation. We consider two samples
here: the ‘GALFIT sample’ samples GALFIT sizes and SEXTRACTOR

magnitudes directly from the Master catalogue, and as such consid-
ers the case where a subset of the STAGES sources have valid size
measurements, and therefore most closely reflects the application to
the STAGES field; the ‘All Sizes’ sample samples quadrupole mea-
sured sizes (see Appendix A) and SEXTRACTOR magnitudes from the
H08 catalogue, and considers the idealized case where all sources
have valid size measurements.

(iii) Each galaxy with m > 23 is assigned a redshift randomly
sampled from a redshift distribution given by equation (27) with
median redshift given by the median-redshift–magnitude relation
of Schrabback et al. (2007) measured on the GOODS field.

(iv) Unlensed distributions are output, where all redshifts are
discarded for the unlensed STAGES mock catalogue, and where
a mock ‘COMBO’ subset of galaxies is constructed by randomly
sampling a subset of 10 per cent of the full STAGES mock. The
COMBO mocks will therefore vary qualitatively from the observed
COMBO-17 subsample of STAGES galaxies with redshift informa-
tion: in the observations, redshifts are obtained only for the brightest
galaxies, whilst no magnitude cuts are applied in the construction
of the COMBO mock catalogue; as such the mock will have an
overall larger median redshift than the observations. The COMBO
mock catalogues considered here are constructed with the purpose
of testing the sensitivity of the method to the change in number
counts and redshift knowledge that results from the application of
the method to the subset of STAGES galaxies with COMBO-17 red-
shift information, and are not constructed to be fully representative
of that sample.

(v) Each galaxy has its size and magnitude altered according to
the lensing relations given in equations (5) and (7), respectively. The
weak lensing limit is therefore not enforced for the magnification
relations. Each galaxy is assigned a local magnification due to a
set of foreground clusters, modelled as NFW profiles, where the
redshift information from the previous step is retained and used to
evaluate �Crit (equation 4) for each galaxy. Each lensing cluster
is placed at a redshift of zlens = 0.165, which is the measured
redshift of the four largest STAGES clusters. Where only a single
mock cluster is considered, the cluster is placed with its centre
on the BCG of the A901a cluster. No limitations on the size of
the magnification factor are enforced. The rare occasional source
which lies within the caustic of the cluster, and therefore experience
a negative magnification equivalent to a flip in parity, are removed
from the sample.

Unless otherwise stated, the intrinsic size–magnitude distribution
is constructed from the unlensed catalogue, using the full STAGES
data set even when the COMBO redshift subsample is considered,
to reduce noise. No size–redshift relation is enforced; however, a
redshift–magnitude dependence is enforced by sampling source red-
shift using the median-redshift–magnitude relation of Schrabback
et al. (2007) in point (iii).

Mock clusters are modelled as spherically symmetric NFW pro-
files, where the �-cold-dark-matter mass–concentration relation of
Dolag et al. (2004) is enforced: thus the model assumed for the mass
profile parameter recovery is exact in the application to the mock
sample.

4.2 Application of the method

The application of the method is chosen to match its later use on
the STAGES field. Results are shown using a mask of 0.5 arcmin
around each cluster BCG: whilst the use of a core mask is unnec-
essary for the idealized cases presented here, this masking of the
cluster centre is the smallest of the core cuts used in the application
to the STAGES field to remove cluster contaminants, and is in-
cluded here for consistency. No cuts are imposed on source size, or
on faint magnitudes. Source sizes and magnitudes have negligible
measurement error, and as such the method detailed in Section 2.2
can be applied exactly. This application therefore constitutes an
idealized case, and one must note that the application of size cuts,
PSF confusion or measurement error may cause a decrease in the
constraining power of the analysis.

Posteriors are evaluated on the virial radius by default, and pos-
teriors on the virial mass determined from these results using con-
servation of probability:

p(M200) ∝ p(r200)

r2
200

∝ p(r200)

M
2
3

200

, (29)

where M200 ∝ r3
200 was assumed. As a result, even where mass con-

straints are presented, a flat prior on virial radius has been assumed:
this translates to a prior on virial mass which downweights large
clusters. An extension to this analysis could evaluate virial mass
posteriors using a prior motivated from a halo mass function, which
would also downweight large clusters. Error bars are calculated
as the region above a common posterior threshold which includes
68 per cent of the probability on either side of the mode of the
posterior on α, assuming a uniform prior for r200 ≥ 0.

For simplicity a single cluster is modelled on the field, and the
posterior distribution can therefore be sampled directly over a grid.
In the application to STAGES data, the application of the analysis
will utilize a Markov Chain Monte Carlo (MCMC) algorithm to
sample the multidimensional likelihood parameter space that results
from the need to simultaneously fit masses and centroid positions for
multiple clusters on a single field. The application on this MCMC
algorithm has been compared to mock realizations used as part of
this analysis, and has been verified to return the same posteriors as
the simplified case presented here.

Fig. 4 shows a comparison plot for four different analyses using
mock STAGES data sets, where single NFW clusters have been
modelled. The plot considers four different data sets for the analysis.

(i) COMBO, Size–Mag: posteriors are constructed using infor-
mation on both galaxy size and magnitude. The data set is limited
to only those galaxies with redshift information.

(ii) STAGES, Size–Mag: as above, using the full STAGES data
set, with redshifts for ∼10 per cent of sources. Where no galaxy
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Figure 4. Comparison plot between the size-only, magnitude-only and
size–magnitude analyses for both mock COMBO and the mock STAGES
data sets. The top panel shows example analyses for each case. In all cases, a
single cluster was modelled on the field to avoid bias due to overlap between
clusters, and the prior was constructed on the unlensed STAGES data set.
Errors are 68 per cent confidence limits of the recovered posterior about the
mode position. Dashed lines show the input mass for each case. The bottom
panel shows signal-to-noise, calculated as the mode point divided by half the
total error width for each comparison. One can see that the size–magnitude
analysis with the full STAGES set gives the largest signal-to-noise of all four
cases, motivating its use on the full STAGES data set. In the latter case, we
show the average signal-to-noise ratio for the case when the source sample
reflects only the subsample with valid GALFIT size estimates (labelled ‘GALFIT

sample’), and when the magnitude information of the sources without sizes
are combined with the size–magnitude analysis of the sources with sizes
(labelled ‘SM+M’).

redshift information is present, the likelihood is constructed by
marginalizing over a redshift distribution. We also consider the case
where only a fraction of sources have valid size information (as in
the STAGES data, and labelled the ‘GALFIT sample’) giving a reduc-
tion in the total source count, and with the addition of magnitude
information for these sources (labelled ‘SM+M’).

(iii) STAGES, Mag-Only: as above, using only magnitude in-
formation – galaxy size information is marginalized, as detailed in
Section 2.2.4.

(iv) STAGES, Size-Only: as STAGES, Size–Mag, using galaxy
sizes only – magnitude information is marginalized, as detailed in
Section 2.2.4.

The top panel of Fig. 4 shows example single runs for each
analysis type for two different input masses. Whilst there is some
expected statistical variation between runs, in all cases the input
mass is well reproduced. The bottom panel shows an estimate of the
signal-to-noise, constructed as the mode point of the recovered mass
posterior for the largest input mass divided by half the total error
width, averaged over 10 independent realizations for each data set
considered. From this one can see three main features: first, one sees
a significant increase in the signal-to-noise when the full STAGES
data set is used, rather than the subset of sources with COMBO
redshift information. This is a result of the decrease in statistical
noise as a consequence of the increase by a factor of ∼10 in the
number density of sources in the full STAGES data set. Secondly,
we find that using the STAGES data set, there is a small increase
in signal-to-noise as one moves from a magnitude- to size-only

Table 1. The average width of 1σ error bars taken over 10 mock realizations,
for each probe considered in Fig. 4.

Input: r200 = 1.2 h−1Mpc; M200 ∼ 20 × 1013 h−1 M�
Experiment σ̄r200 (h−1Mpc) σ̄M200 (1013 h−1 M�)

COMBO Size–Mag 0.14 6.6

STAGES Mag-Only 0.07 3.5

STAGES Size-Only 0.07 3.1

STAGES Size–Mag 0.05 2.4

analysis, with a significant increase when both are used. This latter
point is expected as both the size and magnitude information contain
complementary information on the magnification field which results
from the presence of the lensing cluster. Finally, we note that the
‘GALFIT sample’ gives a much reduced signal-to-noise compared to
the full sample: this results from the reduction in the total number
density of sources when the number of sources with size information
is chosen to most accurately reflect the application to STAGES data,
and one can see that the further addition of magnitude information
for those sources without size information recovers much of the lost
information. These results are summarized in Table 1, which shows
the average uncertainty in each probe over these mock realizations,
for a 2 × 1014 h−1 M� cluster similar to A901a or A901b.

Fig. 5 shows the fractional bias, given as

f = MML
200 − M

Input
200

M
Input
200

, (30)

where M
Input
200 is the input mass and MML

200 is the mode point of
the combined posterior across 10 mock catalogue realizations, and
error bars give the 68 per cent confidence interval on either side of
the mode-point of the combined posterior. We see no evidence for
significant bias in the application of the method to the simplified case
presented here. Posterior construction using the size-magnification
or flux-magnification effects individually have also been verified to
be similarly unbiased, but as the expected signal-to-noise is largest
for the joint analysis, we will focus on the use of the joint size–
magnitude analysis on the full STAGES data set for the remainder.

Figure 5. Plot showing fractional bias in cluster mass in the application of
the joint size-magnification analysis on the STAGES data set for four input
cluster masses. No significant bias in recovered halo mass is evident for the
ranges of masses considered here.
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The results presented here suggest that the use of the joint size
and flux-magnification signals can probe the large clusters of the
STAGES field to high significance for the idealized case considered
up to this point. Stricter core cuts such as those motivated for the
data will reduce the number density of the sample and result in an
increase in statistical noise and subsequent reduction in signal-to-
noise ratio over those presented here, where cluster contamination
has been largely neglected.

The presence of cluster members in the source sample, and non-
negligible measurement error on source size and magnitude may
also introduce bias in the recovered posteriors. We consider the
effect of such contamination on the accuracy of the method in the
next two sections.

4.2.1 Bias due to cluster member contamination

In Section 3.2, we noted that the presence of cluster members in the
source sample can introduce a bias in the recovered cluster when
not accounted for in the a priori redshift distribution of the sources.
In that section, we detailed the methods by which the source sample
was selected to minimize this effect, including the application of
core cuts around the main overdensities in the field, and the use of
a bright magnitude cut as well as a redshift cut where the source
also falls into the COMBO-17 sample. In this section, we consider
the effect of cluster contamination on the recovered mass for the
STAGES clusters after the application of such cuts.

Cluster contamination is modelled in the mock catalogues by
constructing a cluster member catalogue according to the cluster
contamination profile shown in Fig. 3, where each annulus bin is
assigned a number of cluster contaminants given by

NContaminant = f nmock
global� − NPoisson

annulus , (31)

where f = nannulus/n
data
global as measured from Fig. 3, nmock

global is the
global number density of sources in the uncontaminated mock cat-
alogue, � labels the area of the annulus, and where NPoisson

annulus is the
number of sources in that annulus in the uncontaminated mock cata-
logue. Where f ≤ 0, no cluster members are added to the catalogue.
Thus, the cluster catalogue is constructed such that the contami-
nation fraction of the mock is equal to that measured in the data
where f ≥ 0. The cluster members are randomly placed within the
annulus, with a size and magnitude jointly randomly sampled from
the reference data catalogue with m ≥ 23 (to mimic the data cuts
used in the construction of the contamination profile of Fig. 3), and
assigned a redshift of z = 0.165. This cluster catalogue of unlensed
members is concatenated with the original source catalogue after
the source catalogue has been lensed by a model NFW profile. Each
cluster is modelled individually, and a core aperture mask of 1.2 ar-
cmin around A901a, 1.2 arcmin around A901b, 0.5 arcmin around
A902 and 0.9 arcmin around SW is applied in the application of the
cluster mass measurement to mimic the application to data.

Fig. 6 shows the average signal-to-noise and fractional bias on the
recovered virial radius using a joint size–magnitude analysis over 10
mock realizations using the above method of mock construction. In
each case, the cluster is modelled individually to avoid overlap bias,
and is positioned on the measured BCG of A901a. Cluster contami-
nants are added in annuli up to 3 arcmin from the centre of the clus-
ter. Typically, A901a contains 140 contaminants (∼7 per cent of to-
tal sources within 3 arcmin), A901b contains ∼300 (∼16 per cent),
A902 ∼60 (∼3 per cent) and SW ∼80 (∼4.5 per cent) when core
masking is not used. The top panel shows the fractional bias for
each modelled cluster as a function of input cluster virial radius.

Figure 6. Figure showing the effect of a sample of cluster contaminants on
the recovered posterior on the cluster virial radius, showing the fractional
bias in virial radius for the contaminated catalogue as a function on modelled
virial radius. Data points are slightly offset in the x-value to aid visualization.
All values are calculated over 10 mock realizations of the catalogue, where
each cluster is modelled individually to avoid overlap bias. The posterior is
calculated for each cluster using the core masking for that cluster detailed
in Section 3.2, with number of contaminant clusters chosen to match the
profile of Fig. 3 where an overdensity is observed.

We see that in the presence of cluster contaminants, there is no
strong evidence for bias amongst all modelled clusters, with the
possible exception of A901b which shows evidence of a small neg-
ative bias of a few per cent, particularly at larger virial radius where
the statistical noise is smallest.

Fig. 6 indicates that the choice of core masking aperture applied
to the data is sufficient to remove any bias caused by cluster con-
tamination of the sort considered here. However, one must note
that these results consider a particular simplified form of cluster
contamination, with only the inclusion of an unlensed contaminant
sample, and does not account for intrinsic magnitude–density or
size–density correlations due to physical processes during galaxy
formation. The scale of such correlations is subject to current in-
vestigation, with seemingly contradictory results presented using a
variety of surveys and source selection methods complicating the
choice of an appropriate model (see Alsing et al. 2015, for a short
review of recent measurements). The investigation into the impact
of these effects is therefore considered outwith the scope of this
investigation, and left to future work.

4.2.2 Bias due to measurement noise

In Section 2.2, we noted that the pipeline as detailed does not
explicitly account for measurement error on measured source size
and briefly detailed how one may edit the likelihood evaluation to
account for measurement noise in any of the observed quantities. In
this section, we quantify the expected bias due to unaccounted-for
error in the measured size and magnitude in the idealized STAGES
catalogue.

In the method of mock catalogue construction detailed in Sec-
tion 4.1, it is assumed that the measured sizes are exact, and that
any variation in measured size is due only to lensing by foreground
structure. Measurement noise is included in the mock catalogue
construction by adding an uncertainty sampled from a Gaussian
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Figure 7. Plot detailing the bias in recovered virial radius from a joint
size–magnitude analysis resulting from noise in the size and magnitude
measurements, when this is not taken into account in the analysis. Red circles
correspond to the application of Gaussian noise on size with mean zero and
σR = 0.2R, blue crosses a constant Gaussian noise on magnitude with
σm = 0.08, and green squares the combination of both. Coordinate values
are offset for ease of visualization, and each group of three corresponds
to simulated NFW clusters with virial radii of r200 = 0.4, 0.8, 1.2, 1.6
h−1Mpc, respectively. The fractional bias for the ‘size’ and ‘both’ cases for
r200 = 0.4 h−1Mpc correspond to −1, equivalent to the maximum-posterior
point of the combined posterior occurring at r200 = 0.

distribution with width σ R = 0.2R and σ m = 0.08, after sizes and
magnitudes have been sampled from the master catalogue and be-
fore lensing by the simulated cluster. The size uncertainty used
approximately corresponds to the measured uncertainty in PSF-
corrected quadrupole sizes for the high signal-to-noise sources con-
sidered in Appendix A, and the average measured uncertainty in
the GALFIT scaleradius in bins of measured scaleradius taken di-
rectly from the G09 catalogue. The magnitude uncertainty is taken
from the mean MAG_BEST uncertainty across the entire field. The
measurement noise is included in the unlensed catalogue, which is
used to construct the a priori size distributions for the application
to mocks, as well as the source sample in the measurement with the
pipeline.

Fig. 7 shows the fractional bias in recovered virial radius over 10
mock realizations, for four input cluster masses. We see that there
is evidence for a negative bias in the recovered radius, whose ab-
solute value decreases with increasing cluster mass, corresponding
to decreasing bias with increasing signal-to-noise. In practice, this
would suggest that the measurement of cluster mass for A902 and
the SW group should be more affected by noise bias than the larger
clusters, with a predicted ∼10 per cent bias in virial radius. This bias
is smaller than but comparable to the expected uncertainty on the
recovered radius for each of these clusters. In practice, one may take
the uncertainty on the measured size and magnitude into account
using the method presented in Section 2.2 by marginalizing over a
latent variable which describes the distribution of the measured size
or magnitude around the true underlying value.

Section 2.2.6 describes how the method as applied can be ex-
tended to naturally account for uncertainty in the size, magnitude
and redshift which may reduce the level of bias in cluster parame-
ters predicted here, with a consequent increase in run-time that can
easily cause the analysis to take a prohibitively long time to com-
plete without the use of advanced techniques, and is therefore left

to future projects. We note however that where the source sample
is complete in redshift, or where the source sample can be smaller
(for example in the application to smaller or more isolated lenses
which do not require simultaneous fitting, such as in galaxy–galaxy
lensing), the increased run-time may be less limiting, and can there-
fore instead be considered idiosyncratic to the application on large,
spatially close clusters with low source redshift completeness con-
sidered here.

5 A PPLI CATI ON TO STAGES

In Section 4, we have shown that the application of the proposed
method of cluster model parameter determination detailed in Sec-
tion 2.2 provides a means to accurately measure the mass of mock
clusters with a STAGES-like data set, and quantified any biases
resulting from simplifications in the pipeline, or limitations in the
data. In this section, we apply the method to the STAGES data
sets detailed in Section 3.2. We have quantified cluster model pa-
rameter constraints for the STAGES clusters, with a comparison
to existing measurements using shear estimates in H08. Following
H08, we consider a fit using four clusters (A901a, A901b, A902
and SW), and a 7-cluster fit (where NFW models are placed on
A901b, A901a and the infalling X-ray group A901α, A902 and
the background cluster CB1, and the SW group are split into two
component clusters named SWa and SWb motivated by peaks in
the shear parameter-free mass reconstruction).

The source sample is split into two independent samples: the first
contains those sources for which a reliable source size is available
and is used for a full joint size–magnitude analysis; the second
corresponds to those sources for which size information is either
unavailable or considered unreliable and is therefore considered
only as part of an analysis using measurements of source magnitude
only. In all cases a lower size cut of ln R = 0.78 is used to remove
the smallest sources for which the correction of the PSF is least
robust, and are considered only as part of the second sample. This
corresponds to a cut of R < 2.2 pixels (≈0.11 arcsec), which is
equivalent to the cut used in Schmidt et al. (2012). The final result
is presented as the combination of independent analysis of both
samples.

After source selection as detailed in Section 3.2, the source sam-
ple consists of 7966 sources, with 2189, 1230, 2437 and 2110 galax-
ies around A901a, A901b, A902 and the SW group, respectively, for
4-cluster case. Of these, 4288 are used as part of a size–magnitude
analysis, whilst 3678 are used in a magnitude-only analysis. For
the seven-cluster case, the source sample consists of 2189, 2102,
1230, 2437, 2232, 2110 and 2043 sources in 3 arcmin apertures
around A901a, A901α, A901b, A902, CB1, SWa and SWb, respec-
tively, giving a total source sample of 10 112 sources after subtrac-
tion of doubly counted sources. Of this total 5408 are used for a
size–magnitude analysis, and 4704 are used in a magnitude-only
analysis.

5.1 Mass reconstruction of the stages clusters

Unless otherwise stated, the cluster virial radii are allowed to vary
independently for considered clusters. Constraints are produced us-
ing a Metropolis Hastings MCMC method, and convergence of the
recovered posteriors is verified by requiring that the marginalized
posteriors for each free parameter satisfy R < 1.03, where R is the
Gelman–Rubin statistic (Gelman & Rubin 1992).

Fig. 8 shows the result where four NFWs are fitted, centred on
the BCGs. Diagonal panels show the one-dimensional marginalized
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Figure 8. Weak lensing magnification constraints on the virial radius for the A901/902 supercluster modelled as four structures (A901a, A901b, A902, SW)
centred on their BCGs. Diagonal plots show the marginalized distribution for the virial radius on each cluster, and the vertical red lines show the mean (solid)
and 1σ uncertainty (dashed) for the shear analysis given in H08. Off-diagonal plots show points from a thinned MCMC chain, and blue and red lines show the
95 and 68 per cent confidence regions for the 2D marginalized distributions, respectively.

posteriors for each single model parameter for each cluster, whilst
off-diagonal panels show the two-dimensional marginalized pos-
teriors between two model parameters, with all other parameters
across all clusters marginalized over. Vertical lines show the quoted
mean (solid) and 1σ uncertainty for the shear analysis of H08. We
immediately see that the magnification measurement detects all four
clusters, with a signal-to-noise ratio on the virial radius of 9.3, 5.4,
3.5 and 5.1 for A901a, A901b, A902 and SW, respectively.

Fig. 9 shows the result in the 7-cluster case. In this case, the
seven clusters are detected to a signal-to-noise of 7.3, 5.1, 5.4,
3.5 and 5.3 in virial radius for A901a, A901α, A901b, A902 and
SWb, respectively. CB1 and SWb show a maximum-posterior point
which is consistent with the presence of a cluster, but with a reduced
significance in comparison to the other groups.

These results are summarized in Table 2, including mass esti-
mates for each cluster considered, and Fig. 10 shows the virial
radius of each cluster in the ‘7-cluster’ case superimposed on the
shear mass reconstruction signal-to-noise map of H08.

In contrast to the application to the mock catalogues which as-
sumed a flat prior on virial radius in all cases considered, mass
estimates here are presented assuming a flat prior on the mass.
As a flat prior on the virial radius corresponds to a prior on the
mass which diverges as the recovered mass tends to zero (see
equation 29), where the recovered posterior does not tend to zero
faster than M

2
3 , the data is not strong enough to overcome the prior

and giving prior-dominated posteriors peaking at M = 0. We see
that this is the case for A902 and SW in the 4-cluster case, and
A902, CB1 and SWa in the 7-cluster case, and note that improved
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Figure 9. Weak lensing magnification constraints on the virial radius for the A901/902 supercluster modelled as seven structures (A901a, A901α, A901b,
A902, CB1, SWa, SWb) centred on their BCGs. Diagonal plots show the marginalized distribution for the virial radius on each cluster, and the vertical red
lines show the mean (solid) and 1σ uncertainty (dashed) for the shear analysis given in H08. Off-diagonal plots show points from a thinned MCMC chain, and
blue and red lines show the 95 and 68 per cent confidence regions for the 2D marginalized distributions, respectively.

data may avoid this issue in future applications. However, the ap-
plication of a flat prior on mass in this case also allows the direct
comparison between these results and those of H08.

Fig. 11 shows the comparison between the maximum-likelihood
estimate of the cluster virial radius from the shear analysis of H08
against the maximum-posterior results presented here. The top panel
shows the recovered virial radius and 68 per cent confidence limit
for each cluster, whilst the bottom panel shows the ratio of the to-
tal width of the 68 per cent confidence region in the magnification
analysis to the shear analysis. We see good agreement between the
magnification and shear results; however, the magnification analysis
typically produces lower virial radii than the shear analysis, partic-
ularly for A902 and the SW group, which represent the smallest
modelled overdensities on the field in this case.

We see also that for A901a, A902 and SW the magnification es-
timate is produced with a comparable statistical uncertainty to the

shear signal, with the magnification analysis producing estimates
with a purely statistical uncertainty less than 20 per cent larger than
the shear analysis in all three cases. This result is promising, par-
ticularly as one recalls due to limitations in the data we have ap-
plied core removal on all four clusters to reduce contamination by
cluster members, thus reducing the source sample over that used
for the shear analysis. Further, we do not have size measurements
for the whole source sample. For A901b, the error on the magnifica-
tion analysis is approximately twice as large as the equivalent-mass
A901a, consistent with the reduction of the source sample around
A901b through the application of a more strict faint magnitude cut
(see Section 3.2).

Fig. 12 shows the same for the 7-cluster case. We see similar
trends to the 4-cluster case, with the mode recovered virial ra-
dius from the magnification analysis typically lower than the shear
results. For all clusters considered, the error on the virial radius
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Table 2. Measurements of the virial radius and virial mass of the STAGES clusters, taken to be the mode and 1σ

uncertainty on either side of the mode taken from the marginalized posterior distributions on r200 for each cluster. RA
and Dec. label the centroid of each cluster considered, and are taken directly from H08. The ‘4-cluster’ and ‘7-cluster’
cases are chosen to mimic the analysis of H08, and to allow for easier comparison between masses derived using shear
and magnification measurements, and centroid positions are taken from that analysis. For both the virial radius and virial
mass, a flat prior on each is considered.

Structure RA Dec. M200 r200 SNR
(deg) (deg) (h−11013 M�) (h−1 Mpc) (r200/σr200 )

4-Cluster

A901a 149.1099 − 9.9561 14.95+3.12
−4.32 1.11+0.07

−0.12 9.30

A901b 148.9889 − 9.9841 21.96+11.34
−10.15 1.26+0.19

−0.23 5.35

A902 149.1424 − 10.1666 2.78+1.45
−1.78 0.63+0.10

−0.18 3.47

SW 148.9101 − 10.1719 5.27+2.50
−2.52 0.78+0.11

−0.15 5.11

7-Cluster

A901a 149.1099 − 9.9561 12.60+3.37
−4.50 1.05+0.09

−0.14 7.29

A901α 149.0943 − 9.9208 1.90+0.95
−0.90 0.56+0.08

−0.11 5.19

A901b 148.9889 − 9.9841 24.86+11.52
−10.48 1.31+0.18

−0.22 6.0

A902 149.1424 − 10.1666 2.96+1.43
−1.95 0.65+0.09

−0.19 3.33

CB1 149.1650 − 10.1728 0.48+0.43
−0.43 0.35+0.08

−0.18 1.95

SWa 148.9240 − 10.1616 0.67+2.26
−0.61 0.39+0.25

−0.22 1.82

SWb 148.9070 − 10.1637 2.22+1.12
−1.0 0.59+0.09

−0.10 5.55

Figure 10. Figure showing the cluster centre (shown as stars) and recovered
virial radius from the magnification analysis (circles), superimposed over the
shear mass reconstruction signal-to-noise plot of H08. The circle denoting
the virial radius of CB1 is coloured off-white to indicate that the structure
exists at a higher redshift to the other structures on the field.

estimate from the magnification is comparable to that of the shear,
with the exception of A901b resulting from the stricter cuts used
around this cluster.

5.2 Comparison to other results

In comparing the results presented here to the shear measurements,
one must be aware of a few effects which can complicate such a
comparison. First, in Section 4 we have shown that the presence
of measurement noise in the data may introduce a low bias which

Figure 11. Plot comparing the maximum-posterior estimates and uncer-
tainties between the described size–magnitude magnification analysis and
the shear analysis of H08, in terms of the recovered virial radius, for the
one-halo case where the four main clusters (A901a, A901b, A902 and SW)
are modelled on the field. Top shows the shear results on the ordinate axis,
with the results of this investigation on the coordinate axis. The dashed
diagonal line shows a one-to-one correspondence. Bottom shows the ratio
of half the total 68 per cent confidence level for the magnification analysis
to the shear result for each cluster.

primarily affects the smallest structures, but is smaller than the
expected error on recovered cluster parameters. Secondly, in this
analysis we have applied core subtraction on the source sample,
which was not applied in the shear analysis. This can have multiple
effects on the final result: as well as cluster member contamina-
tion such a subtraction should make the magnification analysis less
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Figure 12. As Fig. 11, but in the ‘7-cluster’ case.

susceptible to contamination of the signal by intrinsic size–density
and magnitude–density correlations by removing sources close to
the cluster; however, equivalent intrinsic ellipticity–density correla-
tions may be present in the shear analysis; further, in both analyses
it is assumed that the underlying dark matter mass profile is well
described by an NFW profile with a fixed mass–concentration re-
lation. If this is not true, then the subtraction of the core sample
may introduce a discrepancy between the results through a model
bias as the shear analysis is more sensitive to the core of the true
lensing mass distribution than the core-subtracted magnification
analysis. Finally, in both cases the mass profile centre has been
fixed to the values used in the shear analysis, which may introduce
a centroid bias which will be more significant in the directional
spin-2 shear analysis than the scalar magnification field (see John-
ston et al. 2007, for a description on how mis-centring may affect
each measurement).

Ford et al. (2015) present measurements for a sample of 3D-
Matched Filter clusters in the CFHTLenS survey using magnifi-
cation bias (where the number density contrast of a distinct back-
ground source sample forms the estimator for the magnification
field) and shear found that the magnification-derived cluster masses
were systematically lower as a function of richness in comparison
to shear mass measurement, similar to the trend we find here. In
that analysis, the authors also find that the recovered mass of the
magnification analysis is larger than the shear in the redshift range
of the STAGES clusters, in contrast to the trend seen here; how-
ever, it is noted that in that range their analysis may be affected
by low-redshift contamination of the Lyman-break source sample.
Such low-redshift contamination may cause a positive bias due to
the positive correlation between magnification due to an overdensity
and physical clustering. In the case presented here, the subtraction
of sources around the BCG should limit the equivalent effect due to
size–density and magnitude–density correlations. The authors also
discuss a range of other possible contaminants to the magnification
signal which could cause the observed bias, including source ob-
scuration, varying survey depth and seeing, galactic dust and stellar

contamination. Source obscuration by cluster members (see Simet
& Mandelbaum 2015) causes a reduction in the observed number
density of distant sources, and is thus idiosyncratic to the study of
magnification through source number density. Stellar contamina-
tion and noise in size and magnitude determination occurring from
varying depth across the survey would require a correlation between
these effects and cluster position, and is therefore not expected to
be a source of bias in this analysis. Finally, systematic bias in size
or magnitude measurements due to galactic dust are not expected
to translate to bias in cluster parameters in this analysis due to the
small area covered by the STAGES field, as systematic shifts across
the field will affect both the source sample and the field sample in
which the a-priori distributions are constructed. Thus whilst (with
the exception of source obscuration) each effect has a counterpart
in the type of analysis presented here, we do not expect that any
will translate to significant bias in this analysis.

In Schmidt et al. (2012), the authors presented a joint magnitude
and size analysis on stacked groups in the COSMOS field, and found
that the projected surface mass density from the magnification anal-
ysis was consistent with a shear analysis within the uncertainties,
but with a signal-to-noise approximately 40 per cent of the shear
value. In this analysis, we also find that the magnification analysis
returns the cluster mass to a typically lower signal-to-noise than the
shear; however, the reduction here is less severe (with magnification
signal-to-noise ranging from ∼53 per cent of the shear equivalent
for A901b to 80 per cent for A901a), and primarily driven by a
lower recovered cluster mass in the magnification measurement,
rather than driven by statistical uncertainties except in the case of
A901b where particularly conservative cuts are enforced. We note
that in Schmidt et al. (2012), the authors used quadrupole measures
to determine the size of their source galaxies. In Appendix A, we
find that the use of such a measure is complicated by the application
of a weight function which introduces systematic bias in the size
measure as a function of PSF and source ellipticity is uncorrected
for. Further, we find that quadrupole moment-based measures of
size are unable to distinguish between large, low surface-brightness
sources and small, large surface-brightness sources except for high
signal-to-noise images. As a result, we conclude that the use of
such a measure is likely to introduce inaccuracies in the recov-
ered size measure for the smallest of faintest sources. Whilst the
application of a small source cut may limit the effect of the PSF
on the recovered size, the dependence on ellipticity and intrin-
sic surface brightness will remain, which are likely to introduce
noise to the source sample of galaxies. In such a case, the majority
of the information may still be provided by the magnitude esti-
mation, thus limiting the impact of the inaccurate size measure in
the form of a bias, but with an increasing statistical error. Finally,
we note that the application of Schmidt et al. (2012) assumes a
multivariate Gaussian in log-size and magnitude for the underlying
size–magnitude distribution. Whilst we find the log-size is approx-
imately Gaussian in this application (see Fig. 2), this is not the case
for the magnitude distribution. Enforcing such an assumption is
likely to introduce a bias in the recovered cluster mass; however,
the level of such a bias is non-trivial to quantify. In the method
motivated here, such an assumption can be avoided with an appro-
priate model for the a prior intrinsic size–magnitude distribution,
or if this distribution is measured directly from the data, as in this
application.

In Alsing et al. (2015) the authors consider the application of a
similar Bayesian size-magnification inference on CFHTLenS data,
and find that the convergence field can be recovered with uncertainty
σκ ∼ 0.8, compared to σ e ∼ 0.4 for the ellipticity distribution. The

MNRAS 457, 764–785 (2016)

 at U
niversity of E

dinburgh on June 16, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Cluster mass profiles with magnification 781

authors then investigate the ability of a size–magnitude analysis to
provide forecast constraints on cosmological parameters through
the use of convergence power spectra with shot noise contribution
determined by this value. They find that magnification alone is less
powerful than shear, but that the addition of magnification to a shear
analysis can provide valuable additional information, particularly in
the presence of shear systematics which must be taken into account
with flexible models whose model parameters are then marginalized
over. Whilst the shear and convergence share the same second-order
statistics, they probe the mass distribution in subtly different ways:
the shear is sensitive to the differential mass profile, whilst the
magnification is a direct probe of the local mass distribution. As
such, it is not obvious that the reduced constraining power of the
magnification analysis in cosmological situations mirrors exactly
its ability at direct mass estimates. In Rozo & Schmidt (2010)
the authors forecast the ability of an ellipticity, size or number
density analysis to probe the mass–concentration plane and find that
size measurements produced tighter constraints on mass than shear
alone. That analysis does not take into account the differing number
density between the size and shear sample, as is the case here, nor
a joint size–magnitude analysis, but the seeming equivalence of the
shear and size signals agrees with the trend we see here, and this
application is supportive of those results.

6 C O N C L U S I O N S

In this paper, we have demonstrated the use of a joint size and
flux/magnitude magnification analysis as a probe of the dark matter
profile of a single lens. To do so, we have used a Bayesian formal-
ism which allows one to produce a posterior probability distribution
on lensing mass distribution model parameters for each individual
source cluster, and which can be combined to give a joint distribu-
tion using the full source sample. To do so, one must have a priori
knowledge of the intrinsic size and magnitude distributions of the
source sample. Whilst this is not directly possible, we argue that
one can acquire this information directly from the data by consid-
ering a source sample across the whole field, provided the average
magnification is unity across the field. The method allows for the
natural inclusion of a redshift distribution for sources whose red-
shift is not known, as well as a natural method of accounting for
cluster members in the source sample, and intrinsic size–magnitude
correlations, as well as measurement uncertainty in the source size
and magnitude.

By applying the method to mock catalogues, we showed that the
method can give unbiased mass estimates across a range of masses
provided that the size and magnitudes of the source sample are
well-measured. We argue by comparison with the measured shear
values on the STAGES field that the size–magnitude analysis could
provide competitive constraints on the cluster mass, in the idealized
case where sizes are known for the full sample, measurements are
exact and no additional source cuts must be used; however, we note
that in the application to the data we must account for the fact that
these simplifications no longer hold.

We find that the method is robust to a variety of possible sys-
tematics, but note that noise bias resulting from uncertainty in the
measurement of source size and magnitude may produce a signifi-
cant low bias in the recovered lens mass if not accounted for. Whilst
the inclusion of a method to account for this uncertainty is straight-
forward theoretically, it is restricted by computational limitations
in the current analysis.

We applied the method to the STAGES data, and produce poste-
rior distributions on the cluster virial radius for the four main struc-

tures on the STAGES field. We find that the magnification analysis
provided a detection of A901a, A901b, A902 and the SW group to a
signal-to-noise of 9.3, 5.4, 3.5 and 5.1 when reported in terms of the
virial radius. This compares well with the shear signal-to-noise for
the same clusters, with the magnification analysis giving a signal-
to-noise ranging from 64 per cent (for A901b) to 80 per cent (for
A901a) of the shear result, and largely driven by the lower recovered
virial radius values. When the SW group is split into two overdensi-
ties, and additional overdensity around A901a (named A901α) and
the background cluster of CB1 is modelled, as motivated in H08,
we find that A901a, A901α, A901b, A902 and SWb are detected
to a signal-to-noise ratio of 7.3, 5.1, 5.4, 3.5 and 5.3, respectively,
whilst CB1 and SWa have a maximum-posterior which is non-zero
to a 2 and 1.9σ . In this case, the signal-to-noise ratio of the mag-
nification analysis ranges from 45 per cent of the shear result for
CB1, to 110 per cent for SWb, with A901a, A901α and A902 giv-
ing 77, 73 and 63 per cent, respectively. We find that the statistical
uncertainty on cluster mass for considered clusters is comparable
between the shear and magnification analyses, with the exception of
A901b where a strict faint magnitude cut must be applied to ensure
the accuracy of the measurement, and that the reduction in signal-
to-noise in the magnification analysis is driven instead by a low
recovered virial radius for the majority of the clusters. Accounting
for the fact that a core subtraction was necessitated for the mag-
nification analysis to limit contamination by cluster members and
the effect of intrinsic size–density and magnitude–density correla-
tions, thereby significantly reducing the size of the source sample,
we conclude that the magnification analysis provides a competitive
way to constrain lens mass profiles, with the caveat that the lower
recovered values compared to shear must be better understood in
the future.

As we move to larger and more expensive surveys, with progres-
sively more stringent science requirements, it will become increas-
ingly important to use the full range of information available to us to
produce scientific results. For lensing surveys where shear analysis
is already de rigueur, this can be easily achieved using magnification
as a probe, where the size, magnitude or number density measure-
ments required for a magnification analysis are already produced as
an off-shoot of the main science drivers. With the burgeoning list of
investigations which show that there is vital information in the mag-
nification signal in a cosmological context (Gaztañaga et al. 2012;
Duncan et al. 2014; Eifler et al. 2014; Alsing et al. 2015; Eriksen &
Gaztanaga 2015) and in lens reconstruction (Rozo & Schmidt 2010;
Bauer et al. 2011; Hildebrandt et al. 2011; Schmidt et al. 2012; Ford
et al. 2014, 2015; Umetsu et al. 2015), it is more clear than ever that
time spent developing the means to use this information, through
producing accurate size and magnitude measurements or modelling
systematics, will be well spent.
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APPENDI X A : A PPLI CATI ON TO
QUA D RU P O L E SI Z E S

In the main body of this text, we use the GALFIT size measures from
the publicly available STAGES source catalogue. In this appendix,
we investigate the use of an alternative quadrupole moment-based
estimator, as used in Schmidt et al. (2012), in order to measure the
galaxy size for every source with a quadrupole-based measurement
of shear. If one could measure galaxy size for each source with a
quadrupole shear estimate in the H08 catalogue, one would increase
the size of the source size sample and therefore minimize statistical
uncertainty in the recovered cluster profile parameters. As part of
this analysis, we investigated the use of such a measure as part of
the analysis, and found complications in its use. In this section, we
present an investigation into the use of quadrupole size measures,
applying the PSF correction of Rhodes, Refregier & Groth (2000,
hereafter RRG) to multiple runs of the GREAT 10 image simulation
suites, for a range of input Sérsic scaleradii and signal-to-noise ratio.
The PSF is modelled as an isotropic Moffat profile, with width
σ PSF = 3.3 pix, corresponding to the isotropic width of the PSF
measured on the STAGES field through the measurement of stellar
images. Galaxy images are taken to be randomly orientated, with an
ellipticity sampled from the ellipticity distribution of Miller et al.
(2013).

Using quadrupole moments, galaxy size is determined through
combinations of the quadrupole moment, defined as the integral of
the weighted surface brightness profile of the image:

Jij =
∫

d2θ θiθjW [I (θ)]I (θ)∫
d2θ W [I (θ)]I (θ)

, (A1)

where W[I(θ )] is a window function, normalized to unity over all
space whose inclusion ensures convergence of the integral over
noisy images, or where galaxies are not isolated on the image, and
for convenience of notation, we have defined the origin of the angle
θ from the centroid of the image. Following RRG, the window
function is chosen to be a Gaussian, whose width is set by the
measured Source Extractor (Bertin & Arnouts 1996) flux radius of
the source. Source size can then be defined as

S1 = det(J )
1
4 = (J11J22 − J 2

12)
1
4 (A2)

S2 = (J11 + J22)
1
2 , (A3)

so both definitions have the units of length. Under the action of a
foreground lens, it can be shown that each size measure is trans-
formed as

S1 =
[

J s
11J

s
22 − (J s

12)2[
(1 − κ)2 − |γ |2]2

] 1
4

= μ
1
2 Ss

1, (A4)

S2 = [(J s
11 + J s

22)[1 + 2κ] + 2(J s
11 − J s

22)γ1 + 4J s
12γ2]

1
2 . (A5)
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Thus, the transformation of S1 is exact for a noiseless image,
whereas S2 only transforms according to the standard lensing equa-
tion (5) when the weak lensing limit is enforced. As a result, the size
measure of S2 can be expected to be biased for those sources chosen
near the centre of the cluster, where the weak lensing limit is least
applicable. Whilst S1 transforms exactly, the measurement of size
using this definition is noisier due to the non-linear combination
of quadrupole moments, complicating the following application of
calibration on galaxy size using image simulations. Consequently,
for the remainder of this text, we will use the size measure given as
S2, which will frequently be referred to using the label ‘Tr(J)’.

The use of the RRG correction to the measured quadrupole mo-
ments on the field image allows for the determination of a source
size which has been corrected for the effects of the PSF and op-
tical distortion of the telescope; however, the method provides no
means for the correction of the image due to the use of a weight
function. The application of such a weight function downweights
the noisy surface brightness profile towards the wings, and as such
the measured size using such a quadrupole moment is dependent
on the choice of the weight function width when carrying out the
measurement. As typical applications of such measures in source
ellipticity determination take the weight function width to be an
initial guess of the source size (such as Source Extractor flux ra-
dius), the quadrupole determined size is dependent on the accuracy
of the initial guess, and in this case the ability of SEXTRACTOR it-
self to accurately measure source size: as such, even though the
RRG method provides a means of correcting the moments for the
measured PSF, the moments themselves may still be affected by
the PSF through the use of the uncorrected flux radius to set the
weight width, particularly for the intrinsically smallest bodies. In
addition there will be biases in SEXTRACTOR-derived sizes due to the
source ellipticity and low signal-to-noise ratio. The calibration of
measured sizes must therefore be initially correct for the use of the
weight function.

In the absence of a mathematically motivated correction for the
weight function, we used an initial empirical calibration, measured
from high signal-to-noise simulated images. In this application,
by sampling the absolute ellipticity from the distribution of Miller
et al. (2013), we implicitly marginalize over an intrinsic elliptic-
ity distribution and thus the results include the effect of implicit
bias in measured size due to the use of biased SEXTRACTOR flux-
radius initial guess. As such, these results will hold where the
underlying ellipticity distribution is given by that of Miller et al.
(2013); however, the calibration may not be exact where the under-
lying distribution is different. For the conclusions presented here,
this assumption is enough to determine trends, but care would be
needed in the application to data. Further, it is also clear that this
effect is likely to induce a size–ellipticity correlation which must be
taken into account where the full size–magnitude–ellipticity anal-
ysis detailed in the main text is used, and a such one can already
surmise that the quadrupole-based measures complicate such an
application.

A high signal-to-noise image can be calibrated to an equiv-
alent ‘unweighted’ size measurement as D → GD(w), where
G = D(∞)/〈D(w)〉, and D(w) here is used to label quadrupole mea-
sured size using a Gaussian weight function with width w. 〈D(w)〉 is
measured from image simulations at high flux signal-to-noise ratio
(SNR = 200), whilst D(∞) is calculated analytically in the noise-
free case of a circularly symmetric Sérsic profile. Fig. A1 shows the
ratio of unweighted quadrupole size to the average measured size for
a set of simulated galaxy images as a function of measured source
size. One can see that the ratio of unweighted size to measured size

Figure A1. Calibration of measured source sizes, measured from high
signal-to-noise ratio image simulations, to account for the sensitivity of
RRG-derived sizes to the width of the Gaussian weight function used, in
this case taken to be the flux radius, as measured by SEXTRACTOR

decreases quickly as D(w) → 0, whilst the ratio becomes linear for
larger sizes. The decrease at small sizes results from the effect of the
PSF on the measured SEXTRACTOR flux radius: since the flux radius
is not corrected for the PSF, the PSF causes the measured flux radius
for the smallest sources to be biased high. Consequently, the weight
function applied to these galaxies has a, respectively, larger width
for these sources than for those much larger than the PSF, resulting
in a measured quadrupole size which is systematically larger due
solely to the choice of setting the weight function width to be the
flux radius.

It is important to note that it is the change in the correction with
measured size which is important in the application of this cor-
rection: if a flat relation was observed for all weighted sizes, the
resulting a priori intrinsic size distribution and source sample would
have their measured size shifted by the same amount, causing no
qualitative change in the measured size distribution nor the mea-
sured magnification factor. It is worth noting, however, that even at
larger weighted sizes, the corrective factor is not flat: even without
the effect of the PSF on the weight function width, larger galaxies
would require a relatively larger correction to their size than smaller
galaxies which is likely to change the properties and statistics be-
tween the corrected and uncorrected size distributions. For sources
whose measured weighted size is larger than the range considered
here, the correction factor is taken from linear extrapolation.

Fig. A2 shows the measured quadrupole size for a series of
input Sérsic scaleradii and measured signal-to-noise bins, where
the measured signal-to-noise is taken as the ratio of SEXTRACTOR

FLUX_BEST to its equivalent error, colour coded by intrinsic sur-
face brightness. The measured size has been corrected using the
above window function calibration. One can see that for the range
of scaleradii considered here, the relation between the measured
size and input size is linear where the signal-to-noise is large, sug-
gesting that for high signal-to-noise sources the quadrupole size is
unbiased with respect to the intrinsic size of the source. It is worth
noting that even at high signal-to-noise, the respective increase in
measured size due to effect of the PSF on weight function width
is not evident in these plots, suggesting that the application of the
first level of calibration has successfully accounted for this trend.
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Figure A2. Plot of quadrupole measured size against input size, binned by measured signal-to-noise ratio (SNR). Each panel corresponds to a given signal-
to-noise bin, the ordinate axis gives the mean measured size using quadrupole moments for simulated Sérsic galaxies with scaleradius given by the coordinate
axis. Coloured points correspond to the measurement in bins of intrinsic surface brightness, whilst the blue dashed line gives the combination of all surface
brightness bins. All sizes are given units of pixel size, and surface brightness (SB) is given in units of counts per pixel squared.

For low signal-to-noise sources, one can see that the quadrupole-
measured size does not follow the input size linearly, with a turnover
seen for the largest simulated galaxies in that bin. As the measured
signal-to-noise increases, this turnover is pushed to larger values
of input size and recovered size, to the point where it is no longer
observable on the input scales seen here. Conversely, one can see
that the point of turnover trends to smaller sizes with decreasing
signal-to-noise ratio.

This turnover results from the fact that one observes only the
tip of the surface brightness profile for the largest sources above
the noise: these sources are intrinsically large and are observed

as faint, with a low surface brightness. The wings of the surface
brightness profile for an intrinsically large galaxy fall below the
noise level of the image, and the observed boundary containing a
given fraction of the total flux of the noisy image is smaller than
in the noise-free case, causing a systematic underestimation of the
source’s size. As a result, the relation between measured size and
input size is non-monotonic, and it becomes impossible to distin-
guish between an intrinsically small galaxy, and an intrinsically
larger body for which only the central section of the profile is ob-
served above Poisson noise. This affects the RRG measured size
in two ways: first, the SEXTRACTOR flux radius is underestimated
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causing a respective decrease in the width of the weight function
used; and secondly, beyond the point where the galaxy surface
brightness profile is subdominant to the background, any addition
to the quadrupole moment is noise dominated. Since the quadrupole
moment integrates beyond the measured flux radius, the downturn
is less pronounced than observed in the flux radius measurement
itself (not shown here).

Fig. A2 therefore suggests that size measurements using
quadrupole moments are not reliable at low signal-to-noise, where
the method cannot distinguish between faint large sources and
bright small sources. At larger signal-to-noise, where the turnover
is pushed to larger intrinsic sizes, the distinction is reinforced by
the reduced probability of observing a source with such a large
intrinsic size. It is worth noting that Fig. A2 suggests that in part
this degeneracy can be alleviated by implementing a cut on surface
brightness, thereby removing the low surface brightness sources at
low signal-to-noise; however, the measured surface brightness is it-
self affected by the same effect, complicating the effective removal
of these sources from the sample.

This investigation suggests that the use of quadrupole moments
is inappropriate for accurate size measures without complicated
calibration on realistic image simulations. In contrast, the use of
model-fitting methods like GALFIT will avoid most of these problems,
as the model may still be fitted to the peak of the surface brightness
profile over the background, and thereby giving information of the
profile out to the wings. Further, such a method will not require the
use of a complicated weighting function which is itself a function
of the measured size, and will therefore not need calibration to
remove the window function (and secondary effects such as PSF
and ellipticity bias), as done here. In Häussler et al. (2007), the
authors show through the application to image simulations that
GALFIT size measures using the sky estimates from the GALAPAGOS

routine recover the galaxy size well over a wide range of magnitudes,
with only a small deviation in the magnitude ranges considered in
this analysis.

A P P E N D I X B : A LT E R NAT I V E S TO SO U R C E
SE LECTION CRITERIA

In Section 3.2, we detailed the use of magnitude, redshift and core
cuts as a means of limiting the impact of cluster member con-
tamination of the source sample and ensuring the accuracy of the
individual source measures. This section couched the discussion on
the accuracy of the results in a frequentist way, using discussion
of possible bias in the recovered cluster profile parameters. In that
sense, the bias instead can be interpreted as an acknowledgment of
the limitations of the forward modelling process used. In this appli-
cation, we try to clean the data to fit the model used in the analysis
(that is, one that does not account for the presence of such contam-
inants); however, an alternative approach is to use a more realistic
model which attempts to account for these systematics, simplifying
the interpretation of results in a physical way and maximizing the
available source sample.

An extension to the applied method has already been discussed
in Section 2.2.6 to account for uncertainty in individual source size

and magnitude measurements, by integrating over a latent variable
which describes noisy estimators of the intrinsic values of these
quantities. The application of such a method is complicated by the
need to know the relation between the estimate and the intrinsic
quantity, which must account not only for pure statistical errors on
the measurement, but also systematic uncertainty due to limitations
of the data or measurement itself, for example through subject
blending, foreground masking, or ability to only measure the peak
of the surface brightness profile in faint sources (see Appendix A).

In Velander, Kuijken & Schrabback (2011) the effect of cluster
contamination is mollified by weighting close lens–source pairs ac-
cording to their assigned lensing efficiency, taken as the mean for
that source sampled from an expected redshift distribution. Such a
weighting would reduce the contribution from sources expected to
be radially close to the lens. The implementation of such a weighting
is non-trivial in the analysis we have presented here, without reduc-
ing the measurement from individual source posteriors to statistics.

A natural method to include the presence of unlensed cluster
members in the sample would be to edit the a priori redshift distri-
bution to include the presence of a fraction of cluster contaminants.
The redshift distribution chosen in this application is expected to
accurately represent the distribution of field galaxies, but does not
account for the local overdensity of galaxies at a certain angular
position and redshift due the presence of a cluster at that position.
The distribution could be made to better represent the source sample
including cluster members by the addition of a spike in the redshift
distribution, centred on the mean redshift of the cluster members
and with width representative of the uncertainty in the photometric
redshifts at that redshift. Such a modification would only account
for cluster contamination of this type provided the size–magnitude
distribution for the cluster members is accurately described by that
measured for the field sample, and provided any size–density or
magnitude–density correlations were small. If the former assump-
tion does not hold, the a priori size–magnitude distribution would
need to account for whether the source is a field galaxy or a clus-
ter member: since such a distinction is not possible in this case,
such a situation could not be easily rectified. If the latter assump-
tion did not hold, the method could be generalized to include a
magnitude–density or size–density correlation through a modifica-
tion to the relationship between the observed and intrinsic sizes and
magnitudes, given in equation (13) where the relation presented is
assumed to be due to the magnification effect only. Similarly, the
modification to the redshift distribution would need to be spatially
varying if the sources are selected in a region on which the total
projected number density of cluster members varies on a length
scale which is shorter than the source selection region.

The use of such techniques may allow for the use of less stringent
core cuts, maximizing the sample size and consequently minimizing
the statistical noise of the analysis. The investigation of this is left
to future work.
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