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Abstract
The Acute Respiratory Distress Syndrome (ARDS) is a devastating clinical condition that is

associated with a 30–40% risk of death, and significant long term morbidity for those who

survive. Mesenchymal stromal cells (MSC) have emerged as a potential novel treatment as

in pre-clinical models they have been shown to modulate inflammation (a major pathophysi-

ological hallmark of ARDS) while enhancing bacterial clearance and reducing organ injury

and death. A systematic search of MEDLINE, EMBASE, BIOSIS and Web of Science was

performed to identify pre-clinical studies that examined the efficacy MSCs as compared to

diseased controls for the treatment of Acute Lung Injury (ALI) (the pre-clinical correlate of

human ARDS) on mortality, a clinically relevant outcome. We assessed study quality and

pooled results using random effect meta-analysis. A total of 54 publications met our inclu-

sion criteria of which 17 (21 experiments) reported mortality and were included in the meta-

analysis. Treatment with MSCs, as compared to controls, significantly decreased the overall

odds of death in animals with ALI (Odds Ratio 0.24, 95% Confidence Interval 0.18–0.34, I2

8%). Efficacy was maintained across different types of animal models and means of ALI

induction; MSC origin, source, route of administration and preparation; and the clinical rele-

vance of the model (timing of MSC administration, administration of fluids and or antibiotics).

Reporting of standard MSC characterization for experiments that used human MSCs and

risks of bias was generally poor, and although not statistically significant, a funnel plot
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analysis for overall mortality suggested the presence of publication bias. The results from

our meta-analysis support that MSCs substantially reduce the odds of death in animal mod-

els of ALI but important reporting elements were sub optimal and limit the strength of our

conclusions.

Introduction
The Acute Respiratory Distress Syndrome (ARDS) was first recognized in the 1960s as a clini-
cal syndrome of severe acute respiratory failure. Although definitions have been recently
revised, the consistent hallmarks are the acuity of presentation, and the presence of severe hyp-
oxemia and bilateral pulmonary infiltrates[1]. It is a devastating clinical condition with approx-
imately 200 000 new cases identified per year in the United States and a case fatality rate of
approximately 30–40%[1]. Those who do recover experience a significant decrease in quality of
life with long term physical, physiological, and emotional dysfunction[2]. Over the last several
decades many novel therapeutics have been evaluated for the treatment of ARDS yet none have
proven efficacious, and thus supportive care strategies including institution of antibiotics, low
tidal volume mechanical ventilation, and fluid restriction remain the mainstays of therapy[1,3].
Critiques of novel therapeutics have highlighted inadequate clinical trial design and conduct,
and more recently inadequacies of preclinical design and conduct as reasons for failure of
translation[4–6]. Recent advances in the study and knowledge of stem cells has allowed for
stem cell therapy to emerge as a potential novel therapeutic for the treatment of ARDS. Mesen-
chymal stromal cells (MSCs) are immune-modulatory and pre-clinical studies in animal mod-
els of acute lung injury (ALI) (the pre-clinical correlate of human ARDS) suggest MSCs reduce
inflammation, augment tissue repair, enhance pathogen clearance, and reduce death[7–11].
This systematic review was conducted to better inform a decision to translate MSC therapy for
pre-clinical ALI into a human clinical trial. We aimed to systematically summarize all pre-clin-
ical studies to examine the efficacy of this treatment as compared to a diseased control group
across different animal and ALI induction models; MSC origin, source and preparation; and
the clinical relevance of ALI models on the clinically relevant outcome death.

Results

Study Characteristics
Our search yielded 3810 citations to screen. After preliminary screening a total of 358 citations
were pulled for full text review; 54 publications met our pre-defined eligibility criteria and were
included in the review (Fig 1)[7,10–62] These reported 70 experiments (Table 1, S1 File, S1
Table), of which 21(from 17 publications) reported our primary outcome death and were
included in the meta-analysis.[7,10,15–18,29,31,32,34,37,41,43,44,46,47,59]

Of the 70 experiments the majority originated from Asia (51%, n = 36)[10,12,15–18,20–
22,26–28,32–35,37–39,43,48,49,52–56,58–60,62], with 27% (n = 19) from North America
[7,11,13,24,25,29,36,40–42,47,50,51,57], 11% (n = 8) from Europe[19,23,30,44,46], 4% (n = 3)
from Australia or New Zealand[14,45], and 6% (n = 4) from a collaboration between countries
(n = 2 Italy/United States, n = 2 Canada/Brazil) (S1 Table)[31,61]. Rats and mice were studied
in 47% (n = 33)[12,15–21,23,24,26–28,30,32,34–36,40,42,43,48,52,53,56,60] and 46% (n = 32)
[7,10,11,13,14,22,25,29,31,33,37,41,44–47,49–51,57–59,61] of experiments, respectively, while
7% (n = 5) of experiments were conducted on rabbits[38,39,54,55,62]. Two experiments
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Fig 1. PRISMA flow diagram.

doi:10.1371/journal.pone.0147170.g001
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Table 1. Summary of baseline characteristics.

Group Subgroup Analysis All Experiments (n = 70) N (%) Experiments that Reported |Mortality (n = 21) N (%)

Animal Model Mouse 32 (46) 13 (62)

Rat 33 (47) 8 (38)

Rabbit 5 (7) 0 (0)

Gender Male 39 (56) 13 (62)

Female 16 (23) 5 (24)

Not reported 11 (16) 3 (14)

Mixed 4 (6) 0 (0)

ALI Experimental Model Direct Infection/Inflammation 20 (29) 5 (24)

Indirect Infection/Inflammation 22 (31) 11 (52)

Direct Chemical Injury 7 (10) 2 (10)

Indirect Chemical Injury 7 (10) 2 (10)

Combination 1 (1) 1 (5)

Trauma 6 (9) 0 (0)

Pulmonary ischemia/reperfusion 2 (3) 0 (0)

Ventilation 5 (7) 0 (0)

MSC Origin* Syngeneic 38 (54) 9 (43)

Xenogenic 26 (37) 9 (43)

Allogeneic 6 (9) 3 (14)

Autologous 2 (3) 1 (5)

MSC Source Bone Marrow 54 (77) 13 (62)

Adipose Tissue 8 (11) 3 (14)

Umbilical Cord 8 (11) 5 (24)

MSC Preparation Fresh# 17 (24) 4 (19)

Cryopreserved 3 (4) 2 (10)

Unclear 50 (71) 15 (71)

Route of Administration* Intratracheal 10 (14) 6 (29)

Intravenous 52 (74) 12 (57)

Intraperitoneal 4 (6) 3 (14)

OA 4 (6) 0 (0)

IPL 1 (1) 0 (0)

IM 2 (3) 0 (0)

Timing of Administration* 0 h 14 (20) 2 (10)

>0 h to �1 h 23 (33) 8 (38)

>1 – �6 h 23 (33) 11 (52)

>6 h 12 (17) 3 (14)

Multiple Times 10 (14) 0 (0)

Unclear 2 (3) 0 (0)

Not Reported 1 (1) 0 (0)

Resuscitation None 62 (89) 15 (71)

Antibiotics 1 (1) 1 (5)

Fluid 5 (7) 3 (14)

Fluid and antibiotics 2 (3) 2 (10)

Control Group* Fibroblast 15 (21) 5 (24)

Cell 1 (1) 0 (0)

Normal saline 22 (31) 8 (38)

Phosphate buffered saline 28 (40) 9 (43)

Vehicle 7 (10) 1 (5)

(Continued)
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included animals with compromised immune systems (severe combined immune-deficient
(SCID) mice)[14,45]. Several methods were used to induce ALI in the animals. These included
direct (29%, n = 20)[7,10,11,13,21,22,25,29,33,37,49,50,55,57,58,61] and indirect (31%, n = 22)
[12,15,17,31,32,34,40–42,46,47,51–53,59,61] lung infection or inflammation, direct (10%,
n = 7)[14,43–45,48,56] and indirect (10%, n = 7) [18,20,26,28,60] chemical induction, trauma
(9%, n = 6) [24,36,38,39,54,62], induction by the ventilator (7%, n = 5)[19,23,30], pulmonary
ischemia and reperfusion (3%, n = 2)[27,35], and a combination of the above methods (1%,
n = 1)[16]. Of the 11 experiments that were infectious pre-clinical ALI models
[7,10,11,17,31,41,46,47,59], 17% (n = 2) involved the administration of fluids to the animals
[41,59], 8% (n = 1) the administration of antibiotics[10], and 17% (n = 2) the administration of
both fluids and antibiotics[41,47].

To treat pre-clinical ALI, the majority of experiments (54%; n = 38) used syngeneic MSCs
[7,16,19–30,32–34,38,39,41,43,48–51,54,56,57,61,62], 37% (n = 26) used xenogenic cells
[10–15,18,31,37,40,42,45,46,52,53,57–59], 9% (n = 6) allogeneic cells [36,44,46,47,55,60], and
3% (n = 2) used autologous MSCs[17,35]. The source of MSCs included bone marrow (77%,
n = 54)[7,11,13,14,16,19–34,36,38–44,47–51,53–56,59–62], adipose tissue (11%, n = 8)
[12,17,35,46,52,57,58], and umbilical cord (11%, n = 8)[10,15,18,37,45]. MSCs were most often
administered as a single dose (89%, n = 62)[7,10–16,18–29,31–34,36–56,58–62] and via an
intravenous route (74%, n = 52)[12–16,18,20,22–24,26–28,30–36,38,39,41,43,45,47–56,58–62].
In 71% (n = 50) of the experiments it was unclear if the MSCs infused were fresh or cryopre-
served[7,10,12,15,16,19–30,32–34,36–39,43–49,51–56,58–62]; 24% (n = 17) indicated the
cells infused were fresh[11,13,14,17,31,35,40–42,50,57] and 4% (n = 3) indicated the cells were
cryopreserved[18]. The dose of MSCs administered varied between 5.0 x 104 and 3.6 x 107.
The majority (84%, n = 59) of experiments included 1 MSC intervention arm[7,10–19,21–45,
48–52,54–56,58–62]. Eleven (16%) of the experiments included more than one MSC arm
[13,18,20,32,46,47,53,57]. Phosphate buffered saline (40%, n = 28)[7,10,11,13,21–23,26,29–31,
33,37–39,42,44,47,54,58,59,62], normal saline (31%, n = 22)[12,14–18,34,36,41,45,49,50,52,55,
61], and fibroblasts (21%, n = 15)[10,13,15,23–25,29–31,45,47,51] were the most common con-
trol agents used in the experiments.

Risk of Bias
Risk of bias[63] (S2 Table) was evaluated for the 21 experiments that reported death and were
included in the meta-analysis [7,10,15–18,29,31,32,34,37,41,43,44,46,47,59]. None of the 21
experiments were considered low risk of bias across all domains and none were considered low
risk of bias for each of randomization, allocation concealment, and blinding. Although 48%
(n = 10)[10,15,17,18,32,34,41,59] of the experiments indicated the group allocation was ran-
domized, none described the randomization procedures or that personnel conducting the

Table 1. (Continued)

Group Subgroup Analysis All Experiments (n = 70) N (%) Experiments that Reported |Mortality (n = 21) N (%)

Medium 4 (6) 2 (10)

Fibroblast Conditioned Media 1 (1) 0 (0)

Unclear 1 (1) 1 (5)

Nothing 9 (13) 1 (5)

*Percentages don’t equal 100% as some experiments are multi-arm

#Fresh includes thawed and cultured MSCs, in addition to newly extracted MSCs

doi:10.1371/journal.pone.0147170.t001
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experiments were blinded to the study groups [7,10,15–18,29,31,32,34,37,41,43,44,46,47,59].
For 71% (n = 15) of the experiments, animals were either allowed to die or assessors for the
mortality outcome were blinded to the study groups (low risk)[7,10,16,18,29,31,34,41,44,46,
47]; blinding of the mortality outcome was unclear for the remainder (29%, n = 6)[15,17,32,37,
43,59]. For assessment of the 'incomplete outcome data risk of bias domain, most of the experi-
ments were either of unclear or high risk of bias (67%, n = 14)[7,10,29,31,37,41,43,44,46,47,59],
while 33% (n = 7) were low risk[15–18,32,34]. The death outcome was considered selectively
reported (high risk of bias) in 10% (n = 2)[43,44] of publications, with 90% of studies being
assessed as low risk of bias (n = 19)[7,10,15–18,29,31,32,34,37,41,46,47,59]. Other potential
sources of bias (source of funding, conflict of interest and pre-specified sample size calcula-
tions) were evaluated; 1 publication was considered at low risk of bias for all three variables[17]
(S3 Table).

Meta-Analysis: Primary Outcome Mortality
Mortality was reported as an outcome in 33% (n = 23) of the 70 experiments[7,10,15–19,29,31,
32,34,37,41,43,44,46,47,59,60]. One experiment was not included as it did not have an ALI dis-
eased control group as a comparison[19], and another experiment did not present data in a
form that allowed for number of events to be analyzed[18]. Therefore, data from 21 experi-
ments (17 publications) were included in the meta-analysis [7,10,15–18,29,31,32,34,37,41,
43,44,46,47,59].

Treating pre-clinical ALI with MSCs significantly decreased the overall odds of death (Odds
Ratio (OR) 0.24, 95% Confidence Interval (CI) 0.18–0.34) compared to diseased controls with-
out substantial heterogeneity (I2 8%) (Fig 2). The odds of death were also reduced when exam-
ined at pre-specified death time points (death at less than or equal to 2 days (OR 0.31, 95% CI
0.21–0.44, I2 16%), between 2 to 4 days (OR 0.32, 95% CI 0.18–0.54, I2 23%), and greater than
4 days (OR 0.18, 95% CI 0.09–0.35, I2 0%) (Fig 3A). The treatment effect was examined for
pre-specified sub groups (animal gender and species, ALI experimental model, MSC origin and
source, route of administration, and MSC preparation) (Fig 3B and 3C). All of these sub
groups suggested a similar protective treatment effect of MSCs with exception of one “MSC
origin” subgroup that originated from one experiment[17]. In this experiment autologous adi-
pose-derived MSCs were administered to a rat model of indirect infection model via an intra-
peritoneal route (OR for death 2.78, 95% CI 0.66–11.62).

Publication Bias
Visually, the funnel plot suggested some degree of asymmetry (e.g., possible publication bias)
although this was not confirmed by Egger regression (p-value of 0.16) (Fig 4).

MSC Characterization
We evaluated reporting of standard MSC characterization criteria according to the Interna-
tional Society for Cellular Therapy guidelines[64] for the 18 of 54 publications that included
the administration of human (xenogenic) MSCs (S4 Table)[10–
15,18,31,32,37,40,42,45,46,52,57–59]. None of these reported all three criteria (plastic adher-
ence, differentiation potential, and cell surface antigen expression). The ability for MSCs to
adhere to plastic was reported in 39% (n = 7)[10,12,15,37,45,57,59] of publications. MSC differ-
entiation into 3 cell lineages (adipocytes, osteoblasts and chondroblasts) was reported in 6%
(n = 1)[10]; whereas differentiation into one or two cell lines (adipocytes and or osteoblasts)
was reported in 6% (n = 1)[45] and 28% (n = 5[15,37,42,46,57] of the publications respectively.
One publication (6%) reported the proportion of cell surface antigen expression in accordance
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with the recommended International Society for Cellular Therapy guidelines[18]. MSCs were
purchased from another manufacturer in 39% (n = 7) publications[11,13,14,18,31,40,42]; none
of these reported all three MSC characterization criteria according to Dominici et al[64].

Discussion
To the best of our knowledge this is the first systematic review to examine the effect of MSCs
on mortality in pre-clinical ALI. The results show that treatment of pre-clinical ALI with MSCs
reduces the odds of death compared to untreated diseased control animals. This was true for
overall mortality, as well as mortality at pre-defined time intervals (�2,> 2 to� 4, and> 4
days). Subgroup analyses according to the species, gender, and ALI experimental model; MSC
origin, source, route and preparation of MSCs; and clinical relevance of the ALI model (timing
of MSC administration, administration of fluids and/or antibiotics in relevant models) all
found MSCs, as compared to controls, were associated with reductions in death. Visualization
of funnel plots suggested the presence of publication bias, although this was not statistically
significant.

Results of our systematic review suggest that MSCs are beneficial across a range of animal
models and experimental conditions and it is encouraging that the protective effects of MSCs
appeared to be sustained even when more clinically relevant animal models were studied. For
example, MSCs reduced death as compared to diseased controls even when the initiation of
MSC therapy was delayed to longer than 6 hours post pre-clinical ALI induction. Although not
statistically significant, the magnitude of reduction in the odds of death was less the longer
MSC administration was delayed suggesting at least in animal models of ALI that time to

Fig 2. Forest plot of mesenchymal stem cellson the odds of mortality in preclinical models of acute lung injury. Letters indicate two separate
mortality experiments within one publication.

doi:10.1371/journal.pone.0147170.g002

Treatment of Preclinical ALI with MSCs

PLOSONE | DOI:10.1371/journal.pone.0147170 January 28, 2016 7 / 16



Fig 3. Subgroup analyses of mesenchymal stem cellson the odds of mortality in preclinical models of
acute lung injury. Fig 3A: Forest plot of mesenchymal stem cells on the odds of mortality at a priori
determined time points. Fig 3B: Forest plot of mesenchymal stem cells on the odds of mortality according to
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treatment may impact the magnitude of effect. Antibiotics were administered in only 3 of the
11 experiments that were infectious models of ALI. The conduct of clinically relevant experi-
ments is important in the evaluation of MSC efficacy especially when the therapeutic approach
is being considered for clinical evaluation.

We found that some characteristics of study reporting were inadequate. For example,
reporting on the 3 standardized characterization criteria for human MSCs[64] was poor; no
publication reported on all 3 criteria. Investigators should provide more detailed reporting on
the characterization of the MSCs to enable adequate comparisons across different research
experiments as well as the conduct of future meta-analyses according to these variables. Empir-
ical evidence suggests that use of reporting guidelines are effective to improve the completeness
of reporting[65] and the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guide-
lines are one way to help improve the reporting of animal studies[66].

Reporting of risk of bias domains[63] was also generally poor. None of the 21 experiments
were considered a low risk of bias for all domains. Reporting these domains in pre-clinical
studies is important as the methodological shortcoming that bias the treatment effects in clini-
cal trials[67,68] may also apply to pre-clinical studies. Some pre-clinical interventional research

animal species, gender and experimental model of acute lung injury. Fig 3C: Forest plot of mesenchymal
stem cells on the odds of mortality according to MSC origin, source, preparation, and route of administration,
as well as comparator control groups. Subgroup analyses conducted to examine the robustness of the
treatment effect according to the clinical relevance of the ALI model (timing of MSC administration in relation
to ALI induction and resuscitation of the animals) (Fig 3D) indicated a reduction in the odds of death
regardless of the timing of administration of the cells, although the protective effect of MSCs appeared less
the longer the delay in treatment initiation. There were no significant differences in the treatment effect of
MSCs with more clinically relevant animal models (e.g. use of antibiotics, resuscitation fluid, or the
combination of resuscitation fluid and antibiotics). Analyses conducted according to selective outcome
reporting and incomplete outcome reporting did not reveal substantial differences in the estimate of effect
(Fig 3E). Fig 3D: Forest plot of mesenchymal stem cells on the odds of mortality according to timing of MSC
administration and method of resuscitation. Fig 3E: Forest plot of mesenchymal stem cells on the odds of
mortality according to domains of the Cochrane Risk of Bias.

doi:10.1371/journal.pone.0147170.g003

Fig 4. Funnel plot of standard error by log odds ratio for overall mortality indicates the possibility of
publication bias.

doi:10.1371/journal.pone.0147170.g004
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in stroke and emergency medicine suggest that methodological weaknesses may be associated
with inflations in the estimates of the effect size for different treatments[69]. As one example,
although approximately 50% of experiments included in our review were reported as random-
ized, none explained the randomization method and none indicated that the allocation lists
were concealed from personnel involved in the conduct of the experiment. Both of these
domains are important measures of internal validity in randomized trials. We submit that
when comparative efficacy pre-clinical MSC studies are being conducted, they should aim for
the same methodological rigor as clinical trials to ensure a non-biased estimate of the true
treatment effect.

Our systematic review has several strengths. We included a systematic and transparent
search of the literature and involved an independent review of our search strategy to ensure
identification of all eligible citations. We reported a primary outcome that is relevant in the
clinical domain and several pre-specified sub group analyses to examine heterogeneity of the
treatment effect. However, our review is limited by the publication of pre-clinical studies that
are available in the public domain. Furthermore, since visualization of the funnel plot and the
Egger's regression test suggested some evidence of publication bias, we cannot rule out that the
treatment effect of MSCs could be less strong, not effective, or harmful in certain animal sub
groups of unpublished data. However, the consistency of effect of MSCs observed across several
subgroup analyses in the published literature is encouraging and we included a systematic
search that was PRESS reviewed[70] to identify both published and unpublished studies.

In conclusion, MSCs appear substantially to reduce death in pre-clinical models of ALI and
across many sub groups. Our review suggests that this therapy could provide a potential future
treatment for many different types of acute lung injury and provides supportive evidence for
moving toward their evaluation in human clinical trials. However, we also found that certain
reporting elements related to risk of bias domains and MSC characterization were inadequate
which could be improved substantially with use of a pre-clinical reporting guideline such as
ARRIVE (Animal Research: Reporting of In Vivo Experiments).

Methods
Our protocol was registered on the CAMARADES website in March 2014 (http://www.dcn.ed.
ac.uk/camarades/files/MSCs%20in%20preclinical%20models%20of%20acute%20lung%
20injury.pdf) and published in Systematic Reviews[67]. Our methods are in accordance to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)[71] and are
briefly described here (S5 Table).

Inclusion/Exclusion Criteria
We included randomized and non-randomized studies that examined an in vivo model of
experimentally induced ALI compared to a diseased control group, where MSCs were adminis-
tered during or after the experimental induction of ALI. We excluded neonatal animal ALI
models (i.e., mice or rats less than 10 days of age); MSC prevention studies (i.e. mesenchymal
stromal cells administered prior to lung injury); studies where MSCs were differentiated,
altered, or engineered to over or under express particular genes; or where MSCs were adminis-
tered with another therapy or cell type (not including co-interventions such as antibiotics or
steroids).

Literature Search
We searched Ovid MEDLINE (1946 onwards), Ovid MEDLINE In-Process & Other Non-
Indexed Citations (1946 onwards), and Embase Classic + Embase (using the OVID platform)
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(1947 onwards), as well as BIOSIS (1926 onwards) andWeb of Science (using Web of Knowl-
edge) (1900 onwards) until June 5, 2013 with no language restrictions. The search was designed
by an information specialist and used key words such as “Mesenchymal Stem Cells”, “Adult
Respiratory Distress Syndrome”, “Acute Lung Injury”, and “Animal Experimentation” and was
modified according to the database searched for best results. Prior to execution, the MEDLINE
search strategy was peer reviewed using the PRESS tool (Peer Review of Electronic Search Strat-
egies)[70]. All references were de-duplicated manually within Reference Manager prior to
screening.[72]

A grey literature search of targeted conferences and animal research organizations not cov-
ered in these electronic databases was also performed. Additional references were sought
through hand-searching the bibliographies of reviews and a random sample of included
studies.

Screening
All citations were screened for inclusion with 2 trained systematic reviewers using a liberal
accelerated method[73]. Screening occurred at two levels; title and abstracts were screened at
level 1 and full-texts were screened at level 2. Disagreements were resolved by consensus and
by consultation with a third member of the team when necessary.

Data Extraction
Data was collected on general study characteristics(e.g. study design, region of origin, funding
sources, etc.), MSC characterization criteria (e.g. MSC source, tissue origin, dose, etc.), risk of
bias (e.g. random sequence generation, blinding, etc.), and outcome measurements including
death (primary) and serum/plasma inflammatory cytokines, organ function, and bacterial
clearance for infectious ALI models (secondary). All data extracted were verified by a second
reviewer. Disagreements during extraction were resolved by consensus or third party consulta-
tion. Data for the mortality outcome was collected as number of events. For two experiments,
the sample size of the animals studied was presented as a range (n = 11–12[29]and n = 8–10
[46]); authors were contacted for clarification and both responded with the actual sample size.
When the number of deaths could not be ascertained, the report was excluded from further
analysis (n = 1)[60].

Primary and Secondary Endpoints
Overall mortality was defined as death that was reported at the latest follow up point. Mortality
was also reported at pre-specified time intervals: less than 2 days, between 2–4 days, and greater
than 4 days after induction of ALI to quantify the effect of MSC treatment in pre-clinical ALI
over time. This paper presents the results of the primary outcome analyses. The secondary out-
come analyses will be reported in a future paper.

Assessing Risk of Bias
Risk of bias was assessed using the Cochrane Risk of Bias tool for experiments that reported
mortality[63]. The Cochrane assessment examines seven domains of bias: 1) Sequence genera-
tion, 2) Allocation concealment, 3) Blinding of participants and personnel, 4) Blinding of out-
come assessors, 5) Incomplete outcome data, 6) Selective outcome reporting, and 7) Other
sources of bias. Other sources of bias were assessed based on the source of funding, a conflict of
interest statement and sample size determination. Assessment was done in duplicate, with
disagreements resolved through consensus or consultation with a third party.
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Since death maybe a subjective assessment in pre-clinical experiments when it is defined
according to physiological endpoints[74], for assessment of the 'blinding of the outcome' risk
of bias domain we considered the experiment to be of low risk if animals were allowed to die or
if it was reported in the manuscript that the assessors of this outcome were blinded to the study
groups (applicable when death was defined according to a physiological endpoint).

Assessing MSC Characterization Criteria
Experiments that included the administration of human MSCs were assessed for the recom-
mended minimal characterization criteria for multi-potent human MSCs, as defined by the
International Society for Cellular Therapy (ISCT)[64]. The ISCT proposed a total of three crite-
ria to define human MSCs: 1) the ability for MSCs to adhere to plastic in standard tissue culture
flasks, 2) demonstration of multipotent differentiation potential into osteoblasts, adipocytes
and chondroblasts under standard in vitro differentiating conditions, and 3) expression of spe-
cific surface antigens on the MSCs:� 95% of the cells must express CD105, CD73 and CD90;
� 2% can express CD45, CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR[64].

Analysis
Mortality data was pooled across included studies using a random effects model and described
according to odds ratios and 95% confidence intervals. To allow for meta-analysis, when an
experiment included multiple MSC intervention arms or diseased control arms, the mortality
data were pooled into a single intervention and control value. Forest plots were utilized to visu-
alize the data. Statistical heterogeneity of the included studies was assessed using the I2 test
with 95% confidence intervals. Publication bias was assessed visually using a funnel plot and
analytically using Egger’s regression test.

Planned subgroup analyses were performed to examine the heterogeneity of the treatment
effect of MSCs on overall mortality (Table 1). Pre-specified subgroups included analyses
according to the animal model and gender; ALI model; MSC origin, source, and preparation,
route of administration; clinical relevance of the model (timing of MSC administration in rela-
tion to ALI induction and resuscitation (as defined by administration of fluids, antibiotics or
fluids and antibiotics for infectious ALI models)), and risk of bias domains.
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