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ABSTRACT

We explore the use of maxout neuron in various aspects of acous-

tic modelling for large vocabulary speech recognition systems; in-

cluding low-resource scenario and multilingual knowledge transfers.

Through the experiments on voice search and short message dicta-

tion datasets, we found that maxout networks are around three times

faster to train and offer lower or comparable word error rates on

several tasks, when compared to the networks with logistic nonlin-

earity. We also present a detailed study of the maxout unit internal

behaviour suggesting the use of different nonlinearities in different

layers.

Index Terms— deep neural networks, maxout networks, multi-

task learning, low-resource speech recognition

1. INTRODUCTION

Neural network acoustic models (AMs) [1, 2] and its recent resur-

gence in the form of deep neural networks (DNNs) [3] have been

successfully applied across a range of different automatic speech

recognition (ASR) tasks. Some contemporary examples include i)

initial work on phone classification [4], ii) conversational-style large

vocabulary speech recognition (LVSR) systems [5, 6, 7, 8], iii) noise

robust applications [9], iv) various aspects of multi– and cross– lin-

gual learning schemes [10, 11, 12, 13, 14] and v) distant and multi-

channel LVSR of meetings [15].

All of the above examples share similar feed-forward multi-layer

network architectures where each hidden layer implements a linear

affine operation followed by an element-wise logistic non-linearity.

Indeed, smooth and continuously differentiable activation functions

were considered to be a crucial component of training DNNs allow-

ing for a seamless flow of back-propagated gradients and the dis-

covery of highly non-linear features. Recently however, it has been

shown experimentally that semi-hard functions which break many

of these conventional design mainstays can be not only very accu-

rate but also easy and fast to learn. An example of such activation

functions are rectified linear units (ReLU) [16, 17] implementing

the lower bounded operation max(0, x). Such a piece-wise linear

function causes the network to saturate at 0 only (for x ≤ 0) enforc-

ing sparse activations and preserving sufficient gradients dynamics

on the positive slope to mitigate the vanishing gradients problem in

deeper networks [18], and improving convergence.

In the prior work ReLUs in the context of acoustic models have

been already studied in several papers. Toth [19] applied recitify-
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ing units to phone classification, Dahl et al. [20] investigated Re-

LUs combined with dropout [21] and a modified variant of restricted

Boltzmann machine pre-training on a 50 hour broadcast news tran-

scription task. Zeiler et al. [22] found ReLUs to be useful in training

acoustic models on hundreds of hours of speech for very deep net-

works while Maas et al. [23] proposed a leaky variant of the rectified

non-linearity where a small portion of the gradient is allowed to flow

through negative activations making them more likely to become ac-

tive again.

Inspired by the promising application of semi-hard nonlineari-

ties for LVSR in this work we extend the study to maxout neural

networks (MNN) proposed recently by Goodfellow et al. [24] and

evaluated on image processing tasks. MNNs, instead of making a

prior assumption about parametric form of non-linearity, try to build

it automatically from a number of linear components. While this

work was under review two additional papers were published on

maxout activation for ASR [25, 26]. As a result, contributions of

this work overlap to some extent with one or the other and we will

refer to those in text when necessary. An explicit added value of

this paper is a detailed analysis of internal maxout behaviour. The

remainder of this paper presents the study on using MNNs from an

acoustic modelling perspective.

2. (MAXOUT) NEURAL NETWORKS FOR ASR

Context-dependent deep neural network hidden Markov model (CD-

DNN-HMM) systems use DNNs to classify the input acoustics into

classes corresponding to the HMM tied states. After training, the

output of the DNN is an estimate of the posterior probability P (s|ot)
of each state s given the acoustic observations ot at time t. The

computation performed in a forward pass of the conventional L-layer

network may be summarized as:

z
l = W

l
h

l−1 + b
l,

h
l = f(zl),

for 1 ≤ l < L (1)

v
L = W

L
h

L−1 + b
L, (2)

P (s|ot) =
exp{vL(s)}

P

s′ exp{vL(s′)}
, (3)

where h
l is the input to the l + 1-th layer, with h

0 = ot; Wl is the

matrix of connection weights between l − 1-th and l-th layers; bl is

the additive bias vector at the l-th layer; v
L is the activation at the

output layer; and f(x) is an activation function which most often is

chosen to be either sigmoid f(x) = 1/(1 + exp(−x)), hyperbolic

tangent f(x) = tanh(x) or ReLU f(x) = max(0, x).

The recogniser uses a pseudo log-likelihood of state s given

observation ot; log p(ot|s) ∝ log P (s|ot) − log P (s), where
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Fig. 1. A scheme of a single maxout layer with pool size K = 3.

Layers can be stacked on each other to form deeper structures.

P (s) is the prior probability of state s calculated from the train-

ing data [1]. We use stochastic gradient descent (SGD) to train

DNNs, minimising a negative log posterior probability cost func-

tion over the set of training examples O = {o1, . . . ,oT }; θ∗ =

arg minθ −
PT

t=1
log P (st|ot; θ), where st is the most likely state

at time t obtained by a forced-alignment of the acoustics with the

transcript and θ = {W1, . . . ,WL,b1, . . . ,bL} is the set of pa-

rameters of the network.

The maxout network [24] rather than applying any explicit

form of non-linearity f(·) as in equation (1), groups the linear

activations in detection layer z
l and passes forward the maxi-

mum value within each group (Figure 1) – we will refer to this

operation as maxpooling [27]. In mathematical terms, having

z
l = [zl

0, z
l
1, . . . , z

l
j , . . . , z

l
M×K−1] and assuming non-overlapping

pools of size K, an i-th maxout unit can be computed by the follow-

ing formula

hl
i =

K−1
max
k=0

(zl
j+k), where j = i · K (4)

Note, in contrast to standard element-wise non-linearities as in eq.

(1), for MNNs when h
l is in R

M , the underneath z
l ∈ R

M×K and

accordingly the trainable layer’s parameters are W
l ∈ R

M×K×D

and b
l ∈ R

M×K , where D is an input layer dimensionality.

The architecture of a maxout network allows a single neuron

to automatically learn a piecewise linear approximation of any con-

vex function, while the groups of maxout neurons can then approx-

imate any continuous function [24]. The activations produced by

the neurons are unbounded (unless the neuron learned to do it) so

the optimisation process does not suffer from vanishing gradients.

Additionally, larger gradients than in sigmoid networks complement

dropout training regime [21], where each sub-model selected by dif-

ferent dropout masks contributes more towards the final solution,

which may have a positive effect in building acoustic models with

limited data. Finally, the maxpooling mechanism sparsifies the gra-

dients which, as argued by Bengio in [28], may be a desirable prop-

erty from an optimization standpoint – since SGD relies on an in-

valid assumption that one can modify the parameter θi in gradient

direction ∂C
∂θi

ignoring contributions introduced to ∂C
∂θi

when other

parameters θj change, sparse gradients – by zeroing many such θj –

mitigate this effect.1

1In maxout networks the partial differential
∂hi

∂z·
= 1 so gradients flow

through all units h regardless of their actual value. This is different from
other non-linearities in which the gradient is coupled with the value of hi

by differential form of f(·) i.e. for sigmoid the error signal is multiplied by
hi(1−hi). Essentially, when hi fires at 0 (or has been deliberately dropped)
the gradient in this unit will be zero. For MNNs we found that better values of
optimised cross-entropy objective function were obtained when the gradients
for dropped units were ’manually’ set to zero. Although it remains unclear
whether it is the case of optimisation or more effective model-averaging.

Table 1. WERs (%) for the VS task. The VS test set consists of

31830 words. Notation 1536/2x4 means four maxout layers each

having 1536 maxout units and pool size 2. Note: 1 epoch constitutes

to one third of the full-sweep over dataset.

System Test-VS Convergence

Sigmoid (+RBM) 31.8 21 epochs

Sigmoid (rand) 32.9 23 epochs

Maxout 1536/2x4 + dropout 32.2 12 epochs

Maxout 1536/2x4 32.1 6 epochs

Maxout x3 + Sigmoid x2 31.6 6 epochs

Table 2. WERs (%) for different maxout architectures on VS task.

#maxouts / #pool size #Hidden Layers

2 3 4 5

1536 / 2 33.2 32.3 32.1 32.8

1024 / 3 33.6 32.4 32.3 -

768 / 4 34.4 32.8 32.4 32.3

3. EXPERIMENTS

In this paper all models were trained on 52 dimensional mel fre-

quency cepstral coefficients features (statics + up to third deriva-

tives) which were presented to the network’s input in 11-frame con-

text windows (central frame ± 5 context frames). Unless explicitly

stated otherwise, the baseline sigmoid networks were pre-trained in

stacked restricted Boltzmann machine fashion (RBM) [29] and had 5

hidden layers with 2048 units in each layer. On the other side maxout

models were always randomly initialized and, to make training sta-

ble, were further regularized by imposing a maximum norm on each

weight vector [30]. Both networks were finetuned with exponen-

tially decaying learning rates controlled by accuracy on a held-out

cross-validation set. Dropout (when used) was configured to disable

hidden units with probability 0.2. A similar configuration of dropout

has been recently found to give good results for speech applications

[14]. The number of tied-states is similar across the tasks and is

around 1800.

3.1. Maxout networks and LVSR

To evaluate how well MNNs deal with LVSR tasks we use a Mi-

crosoft internal American English voice search (VS) dataset com-

prising around 72 hours of transcribed audio for training purposes.

More details regarding VS or baseline systems can be found in [31].

Table 1 presents the results of various DNN AMs. The max-

out network performs better than a comparable randomly initialized

sigmoid network (0.75% absolute WER reduction). Moreover, it

requires less than a third of time to converge (6 epochs versus 23

epochs). As a comparison, the sigmoid network after 6 epochs (2 full

sweeps) scored 34.13% WER, which is around absolute 2% worse

than the maxout net at the same epoch and in the same ballpark as a

discriminatively trained Gaussian mixture model HMM system [31].

Also as expected for larger amounts of training material and model

sizes we worked with, the use of dropout did not bring further im-

provements and MNNs with and without dropout got similar WERs.

Note we do not use dropout with sigmoids for larger amounts of data

since it has been already reported to be unnecessary [20, 14]. On the

other side, the sigmoid model still benefits from RBM pre-training

what suggests applying similar technique for MNNs. Since MNNs

cannot be initialised using probabilistic models one may use stacked



Table 3. WERs (%) for different mono— and multi— lingual models trained on limited 30-hour partitions of the original training sets. MT

prefix denotes the models trained in multi-task fashion jointly on all four languages. Results for networks trained on whole partitions are

given for comparison. The number of words in the test sets is: DEU 40k, FRA 37k, ITA 31k and ESP 18k.

System Test-DEU Test-FRA Test-ITA Test-ESP

Sigmoid (all data) [10] 24.08 (195h) 27.16 (138h) 23.66 (93h) 27.97 (63h)

Sigmoid 27.45 29.88 25.58 28.77

Maxout 1536/2x4 + dropout 27.04 29.19 24.78 27.56

MT.Sigmoid 26.12 28.30 24.23 27.81

MT.Maxout 1536/2x4 + dropout 26.07 28.11 24.41 27.71

auto encoders [22, 14]. Finally, we also trained a mixed-type layer

variant where we put three maxout layers on the bottom and two sig-

moid layers on the top. The major motivation was the network will

not suffer from vanishing gradients in lower layers while the logistic

non-linearity in top layers will help to break symmetry while train-

ing. Interestingly, such a network converged as fast as a pure MNN

giving at the same time the best result. This suggests the reason

of slow convergence in sigmoid networks is mainly caused by poor

learning dynamics in bottom layers.

Table 2 gives more insight into how the architecture of maxout

network affects the quality of AMs. We compare the MNNs with dif-

ferent numbers of maxout units and pool sizes keeping the number

of detection activations constant. First of all, deeper MNN structures

benefit from stacking additional hidden layers while the number of

components building a maxout unit seem to be less crucial. Also, one

could hope the fact that MNNs are able to better approximate contin-

uous functions will enable shallow networks with less parameters to

give good results. However, in a control experiment a 2 hidden layer

pre-trained sigmoid network scored 33.7% WER which is similar to

the results obtained with MNNs. Another observation is that the gain

of adding more layers is more obvious for units of larger pool size,

and this aspect will be further investigated in Section 4.

3.2. Multi-task learning and low-resource conditions

The experiments within this section made use of the multilingual

short message dictation (SMD) Microsoft dataset. In particular, fol-

lowing [10] we used Spanish (ESP), French (FRA), Italian (ITA),

German (DEU) and American English (ENU). The first four lan-

guages were used to train the models in multi-task (MT) fashion and

due to time constraints were limited to have 30 hours each giving

in total 120 hours of speech. The ENU partition, for the purpose

of evaluating MNNs in under-resourced and transfer learning condi-

tions, was artificially limited to have 3 hours of training material.

The results of MT experiments are presented in Table 3 where

the first row contains the reference WER results on full partitions

(the amount of training data ranges from 63 to 195 hours) as reported

in [10]. Then in two successive rows we present the corresponding

baselines for sigmoid– and maxout– based models trained on 30-

hour subsets. Similar to the VS task sigmoid models were initialized

with RBMs while maxout networks started from random parameters

and MNNs were trained with dropout since in a control experiment

on Spanish we were able to obtain a small gain i.e. 27.56% versus

27.74% WER. For all four languages MNN models gave superior

results, in particular for ESP data MNNs (27.56%) outperformed an

RBM initialized sigmoid network trained on full-partition with twice

as much data (27.97%). The last two rows present similar numbers

for the models trained in multi-task fashion where the hidden part

of the networks is shared and collaboratively learned with other lan-

Table 4. WERs for 3-hour under-resourced training conditions and

multi-lingual knowledge transfers on SMD ENU task. The SMD

ENU test set consists of 18k words. Top #L - # of adapted top layers.

System Test-ENU

Sigmoid 35.87

Sigmoid + dropout 34.43

Maxout 1536/2 + dropout 34.32

SHL Sigmoid + Top 1L 29.87

SHL Sigmoid + Top 2L 29.46

SHL Maxout 1536/2x4 + Top 1L 29.74

SHL Maxout 1536/2x4 + Top 2L 29.33

guages. For multi-task learning, maxout and sigmoid networks per-

form similarly.

Table 4 presents the results for 3-hour under-resourced train-

ing conditions and multi-lingual knowledge transfers on SMD ENU

task. First of all, we can see dropout working for both sigmoid2 and

maxout models reducing WER by more than 1.5% absolute for 3

hours case. Second, MNNs with random initialization gave similar

results to sigmoid networks with RBM-style pre-training. Given the

observations that dropping neurons and pre-training are complemen-

tary to each other under low-resource conditions for both sigmoid

[14] and maxout [26] nonlinearities, it suggests the potential of fur-

ther improvement once the maxout model is pretrained. Finally, we

were interested in how well maxout shared hidden layers (SHL) can

transfer the knowledge across languages. To investigate this scenario

we extracted SHL part of the MT models (Tab. 3), stacked a new lo-

gistic regression layer on top and finetuned either 1 or 2 topmost

layers using the target low-resource ENU data. Note, since MNNs

in MT experiments were finetuned with dropout while DNNs not, to

make a fair comparison, both maxout and sigmoid SHL models in

table 4 are adapted to the low-resource task without dropout3. For

both models SHL gave large gains in accuracy when compared to

in-domain-only models and, as expected, adapting an additional top

hidden layer brought further improvements. We did not retrain all

layers since that was found harmful in a recent study [10] and WER

as a function of adapted top #layers is expected to be U-shaped.

4. INSIDE A MAXOUT LAYER

It would be interesting to see what happens in the maxout unit in-

ternally. For example, by looking at some pool-related statistics we

2Note, to make dropout effective for sigmoid we had to increase learning
rate 6-fold – from an initial 0.08 to 0.5

3Prior to this operation MNNs were transformed to mean models by mul-
tiplying the relevant weight matrices W by (1 − dropout rate).
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Fig. 2. (Top) Histograms of activations of detection linear units z1 to z4 building the first maxout unit. (Bottom) histograms of mean square

errors between the first and remaining components within a pool, (z1−z2)
2, (z1−z3)

2 and (z1−z4)
2, obtained in an example-wise fashion.

could say how well the model uses its parameters and if one of detec-

tion units z1...K dominates the pool producing the maximum output

all the time for any input, an additional parametrisation of K − 1
units remains highly redundant. The effect of wasting parameters

would also take place if the units within the given pool for the same

input computed similar outputs - which means the angle between

linear components building a pool is small.

To investigate the above issues we collected the required pool

statistics on 10k frames from the VS development set using one of

the models (4 hidden layers, 1024 maxout units per layer, pool size

K=4) trained on the VS task. Figure 3 shows maxout unit activity

(i.e. how often each of the detection units produced the maximum

output) in different layers. We can see the bottom layer (Layer 1)

distribution is nearly uniform suggesting all its parametrisation was

active while in higher layers the units tend to specialize and domi-

nate each other within a pool. However, another question is whether

these units approximate sufficiently different functions so that they

become invariant to small perturbations in the input. To answer this

question we plot another figure 2 (a-d) showing the output value dis-

tributions produced by each of the four detection components z· of

the first maxout unit (from the figure 3). The intuition is that the less

overlapping distributions the more orthogonal to each other the units

z are. And as is clearly visible, in the first layer units produce very

similar outputs which become more spread in higher layers. Since

these plots show histograms for all 10k frames without focusing on

what happens in the pool for the same inputs we draw another set

of figures 2 (e-h) of mean square errors between the first component

and all remaining ones in a frame-wise fashion. In principle, if com-

ponents produce similar outputs for the given speech frame the angle

between learned functions is small thus the parametrization remains

redundant.

The above analyses show that the bottom layers seem to waste

a large portion of the additional parametrisation (figure 2 (a,e)) thus

could be replaced, for example, by smaller ReLU layers. Similarly,

maxout units in higher layers seem to use piecewise-linear compo-

nents in a more active way suggesting the use of larger pools.
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Fig. 3. Normalized histograms of how often each detection unit

z1, . . . , z4 produced the max output for the first 50 pools (maxout

units) in each layer. We draw every 2nd pool to make the plot clearer.

5. CONCLUSIONS AND FUTURE WORK

We studied properties of maxout networks in acoustic modelling ap-

plications. We found it superior or equal to the networks with logistic

non-linearity in terms of WERs. Moreover, its convergence time is

three times faster. It is also worth mentioning the optimised cost and

frame accuracies were always better for maxout neurons which sug-

gests superior optimisation properties and encourages the use of se-

quence training criterion [32]. As expected, maxout units work well

with dropout for low-resource conditions. However, dropout is less

crucial when the amount of training data increases and the maxout

models can be efficiently trained without dropout. Future work could

follow the exploration of auto-encoder pre-training schemes for low

resource-applications which could provide even bigger gains over

pre-trained sigmoid networks. Another interesting direction would

be to apply Bayesian hyper-parameters [33] search, for example, to

select the right maxout structures (number of maxout units, pool

sizes) and possibly tune layer-specific dropout rates [20]. Also, since

pooling remains a crucial component of maxout network it would be

interesting to see whether differential pooling mechanism, where we

can learn pool weights, can bring any gains.
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