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Translation Microscopy (TRAM) for 
super-resolution imaging
Zhen Qiu1,2,*,‡, Rhodri S Wilson1,2,*, Yuewei Liu1,3, Alison R Dun1,2, Rebecca S Saleeb1,2, 
Dongsheng Liu3, Colin Rickman1,2, Margaret Frame4, Rory R Duncan1,2 & Weiping Lu1,2

Super-resolution microscopy is transforming our understanding of biology but accessibility is limited by 
its technical complexity, high costs and the requirement for bespoke sample preparation. We present 
a novel, simple and multi-color super-resolution microscopy technique, called translation microscopy 
(TRAM), in which a super-resolution image is restored from multiple diffraction-limited resolution 
observations using a conventional microscope whilst translating the sample in the image plane. 
TRAM can be implemented using any microscope, delivering up to 7-fold resolution improvement. We 
compare TRAM with other super-resolution imaging modalities, including gated stimulated emission 
deletion (gSTED) microscopy and atomic force microscopy (AFM). We further developed novel ‘ground-
truth’ DNA origami nano-structures to characterize TRAM, as well as applying it to a multi-color dye-
stained cellular sample to demonstrate its fidelity, ease of use and utility for cell biology.

In optical microscopy, image resolution is limited by the standard diffraction limit1, of about 200 nm for visi-
ble light. Resolutions that exceed this limit are referred to commonly as super-resolution in light microscopy. 
Three main approaches have been developed to achieve this. First, hardware-based technologies aim to shape 
the point spread function (PSF), such as in STED2 or nonlinear structured illumination microscopy (SIM)3, that 
employs optical patterning of the excitation and a nonlinear response of the sample. Second, biological and soft-
ware technologies, grouped together as single molecule localization microscopy (SMLM)4, try to image single 
PSFs separated in time, calculating the positions of the single molecules that give rise to the signals with a pre-
cision certainty substantially better than the diffraction limit. A super-resolution map is then reconstructed by 
projecting together all the individual measurements acquired at different time points5–7. The third approach is 
computational, in which image processing techniques are employed to restore a super-resolution image from a set 
of low-resolution observations8. In this approach, a low-resolution observation is considered as the outcome of a 
degrading process of a high-resolution image due to blurring and noise effects. The super-resolution restoration 
method is therefore a post-acquisition inverse process. The accessibility of all these super-resolution microscopy 
approaches is limited currently, as all three general modalities require a high degree of technical expertise and 
a need for sample preparation to match the modality employed. Furthermore, there is an acute requirement in 
biology for a simple route towards multi-color super-resolution imaging; this is currently technically difficult in 
almost all current super-resolution modalities.

Recently, there has been a substantial effort to develop super-resolution restoration techniques for medical 
imaging, such as X-ray mammography, functional magnetic resonance imaging (fMRI) and positron emission 
tomography (PET)9. Medical imaging usually uses highly controlled illumination doses to avoid damage to the 
subject9, leading to low signal-to-noise ratio (SNR) images. Noise removal therefore becomes critically important 
for the performance of super-resolution restoration9,10. However, there is a trade-off between noise removal and 
feature preservation; over-smoothing impedes the image resolution that can be restored11. To date, the prior 
models for regularizing noise reduction have usually been constructed based on the edge-preservation concept 
in medical and other applications10; features are restored as long as the edges are preserved in the inverse pro-
cess. Biological imaging is often more challenging than medical imaging in terms of complexity and feature size. 
Medical images contain data describing tissues typically 2-3 times smaller than the resolution-limit of the system9, 
whereas fluorescence images of intracellular structures contain abundant, heterogeneous features, and complex 
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sub-cellular structures, potentially many orders-of-magnitude smaller than the diffraction-limit12. In general, 
edges embedded in such small and complex features are more prone to noise contamination, leading to poor per-
formance of edge-based methods in fluorescence microscopy images13. Prior models based on edge-preservation 
therefore cannot fully capture these structures in fluorescence biological microscopy due to their complexity and 
low SNR environments. As such, super-resolution (SR) restoration methods using these models do not perform 
well in fluorescence biological imaging.

Here, we present a novel super-resolution method we call translation microscopy (TRAM). In TRAM, 
a super-resolution image is restored, using signal processing techniques, from a set of diffraction-limited 

Figure 1. Translation microscopy delivers super-resolution image data in a simple, inexpensive way.  
(a) Schematic illustration of translation microscopy (TRAM). It involves acquiring multiple images of the same 
sample, as the object is moved on the microscope stage. All the acquired data are then used to rationally denoise 
and restore a super-resolution image through an iterative energy minimization process. (b) Top row: Confocal, 
gSTED and TRAM fluorescent bead images (from left to right). There are more than 100 bright spots observed 
in the confocal image. Scale bar 1 μ m. Bottom row: A zoom area of (left to right) CLSM, gSTED and TRAM 
40 nm-diameter fluorescent bead images from the same field of view. Scale bar 100 nm. (c) Line intensity profiles 
of the same region from the three images, showing an improvement in contrast and resolution across three 
closely adjacent objects. (d) Spatial resolution versus the number of translation images used for each TRAM 
restoration for the beads data presented here and quantum dot images in Fig. 2a.
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low-resolution images acquired whilst moving (translating) the sample in the XY plane, as depicted in Fig. 1a. 
An advantage of TRAM is that these movements can be in multiple directions, and with non-exact step-sizes, 
allowing small regions of interest to be scanned without leaving the field of view. In contrast to the existing 
super-resolution restoration methods for medical imaging, here we explore a sophisticated prior model that 
is capable of preserving complex and fine biological structures in the inverse process. Distinct from other 
super-resolution imaging modalities, TRAM can be performed using any microscope equipped with a mov-
able stage with no modification to hardware or sample preparation methodology. We show that TRAM can 
achieve up to a 7-fold increase in lateral resolution in a cellular environment. Our results were compared with 
state-of-the-art gSTED microscopy, in this case measuring resolution using sub-diffraction nanobeads14 and cor-
relation with atomic force microscopy (AFM)15 data using novel DNA origami-quantum dot nano-structures16 to 
provide a reliable ‘ground-truth’. In addition, we used an off-the-shelf, multi-color organic dye-stained biological 
sample selected because it had not been subjected to any specialized preparation protocols, demonstrating a large 
improvement in resolution and contrast compared to confocal laser-scanning microscope (CLSM).

Results
First, we tested TRAM on a range of image datasets, both simulated and real (Supplementary Figs S1-S2). Here 
we focus on four-exemplar fluorescence datasets: fluorescent beads, quantum dots, quantum dots on a DNA ori-
gami scaffold and stained pulmonary endothelial cell. First, 40 nm-diameter fluorescent bead (i.e., sub-resolution) 
image data were acquired using a CLSM (pixel size of 20 nm), whilst translating the sample 30 times in the imag-
ing plane in the order of 100 nm-steps in an XY-grid pattern. We applied our TRAM restoration method to these 
images. We acquired images from the same field of view using gSTED to allow direct assessment of results from 
CLSM, gSTED and TRAM (Fig. 1b: top row). As seen from the full view of the these images, there are more than 
100 bright spots observed in the confocal image. TRAM shows the capability of separating adjacent beads, as 
gSTED does, the two are shown to have a one to one correspondence between each spot. We analyzed the data 
in detail from a small region-of-interest (ROI) for each modality (Fig. 1b: bottom row), finding that as expected, 
gSTED could resolve beads underneath the diffraction limit (middle panel), that were not detectable as sepa-
rate objects in the CLSM image (left panel). TRAM performed favorably (right panel), delivering lateral resolu-
tion well below the diffraction-limit. Quantifying this data using line-plots confirmed that TRAM could resolve 
closely adjacent structures that were not resolvable using CLSM (Fig. 1c). Figure 1d shows the mean values of the 
full width at half maximum (FWHM) of the Gaussian-fitted (n =  20) beads intensity profiles in the full field of 
view, which is commonly used as an estimate of the lateral resolution: confocal ~231 nm and TRAM restorations 
using different numbers of translation images: 10 images ~158 nm, 20 images ~55 nm and 30 images ~47 nm. The 
scaling law (Fig. 1d) on increasing TRAM resolution with the number of translation images is consistent with the 
quantum dot experiment (see below) and also synthetic data in Supplementary Figs S1 and S2. For gSTED, while 
the non-optimized measurement is ~100 nm, further optimization of the STED conditions resulted in superior 
results compared to TRAM in this test (the mean value of FWHM is 44 nm, Supplementary Fig. S3). Nevertheless, 
our finding that TRAM can deliver sub-diffraction resolution data is indicative of the utility, relative simplicity, 
and accessibility of our approach.

We next examined quantum dots (QDs) acquired with excitation at 405 nm wavelength on a widefield micro-
scope equipped with a 150 ×  1.45 NA objective. This gives the diffraction limit 228 nm. A set of low resolution 
(LR) images were acquired whilst translating the sample in steps of 100 nm. Figure 2a shows a LR image con-
taining several bright spots, with measured noise levels of σ n =  11.2 (STD for 8-bit images). Figure 2b shows a 
zoom image of region 1, where the intensity profile is indeed Airy-disk shape of the FWHM of 194 nm (Gaussian 
fitting), in agreement with the theoretical value. Figure 2c,d shows restored SR images resulting from 32 and 64 
LR observations, giving measured FWHM of 39.7 and 30.6 nm respectively; an exponential decrease on increas-
ing LR frames is observed as shown in Fig. 2e, showing a resolution improvement of ~3-fold for 16 observations 
and up to 7-fold for 64 observations (this data was also shown in Fig. 1d for comparison). TRAM can indeed 
identify adjacent diffraction-unresolved multiple QDs. For example, for regions 2 and 3 of Fig. 2a (magnified in 
Fig. 2f,h), the single diffraction unresolved spot in fact contains 2 and 3 adjacent QDs respectively as shown in the 
restored images (Fig. 2g,i). To verify the results, we investigated QD intensity fluctuations, taking advantage of the 
quantum blinking effect of single QDs17. If a bright spot in the LR image contains a single dot, its intensity varies 
quantally between bright and dark states, as shown in Fig. 2j. However, if a spot contains two QDs, the signal is 
the sum of those of the two dots, consequently the “off ” state appears less frequently (Fig. 2k). This characteristic 
becomes more prominent when there are more QD signals in a spot. Figure 2l shows the case of three QDs, where 
the intensity fluctuation tends to be averaged out by random blinks of all the individual dots in the region. Thus, 
deconvolving the intensity fluctuations over time alongside our image restoration provides a ‘ground truth’ for 
TRAM: our restoration can indeed separate single particles from diffraction-unresolved data.

The so-called ‘ground truth’ is difficult to obtain in super-resolution imaging experiments, particularly if 
organic samples are required16. To further validate TRAM and confirm that our restoration approach deliv-
ered images that faithfully represent the original sample under observation, we designed and synthesized 
quantum-dot-DNA-origami structures of predictable dimensions. Quantum dots were again selected as fluores-
cent emitters for their predictable size and photo-stability, as we note that previously described organic dye-DNA 
origami16 is prone to photobleaching and could not be used in TRAM or in STED reliably. Each rectangular 
quantum dot structure was designed to measure 47 nm x 53 nm on a DNA origami template of 70 nm x 100 nm, 
as depicted in Fig. 3a. These structures were imaged using AFM to confirm their integrity (Fig. 3b); although the 
structures were designed to have four 16 nm-diameter quantum dots occupying each corner of the DNA origami 
scaffold, complete occupation of each conjugation site was difficult to achieve whilst avoiding over-saturation 
and non-conjugated quantum dot contamination. Nevertheless, this approach delivered sub-resolution sam-
ples, which although inevitably heterogeneous, generally had 3-4 quantum dots separated by a measureable and 
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predictable distance distribution, confirmed using AFM (Fig. 3b, zoom  in the inset). We next applied TRAM to 
this sample, prepared in an identical manner, acquiring 45 images translated with steps of ~100 nm in an X-Y 
grid-pattern on a CLSM with a 19 nm pixel size. Figure 3c shows a single diffraction-limited fluorescent image 
acquired using CLSM. As expected, no sub-diffraction structures can be seen in this image or in the zoom region 
of interest (Fig. 3d). By translating the sample many times (i.e. oversampling), more data are acquired, but a sim-
ple sum of these 45 (translation-corrected) images reveals no useful contrast (Fig. 3e,f). Importantly, however, 
these images provide useful information for TRAM restoration. A restored image from the same field of view is 
shown in Fig. 3g,h (rendered view). Distinct rectangular nano-structures are apparent in the TRAM image, reit-
erating the AFM data presented in Fig. 3b. To quantify this and take into account the heterogeneity of the samples, 
we measured the lengths of two edges (x and y) and hypotenuse of ~40 structures from both the AFM and TRAM 
images. The mean values found were (x) 46 nm, (y) 53 nm and (hypotenuse) 71 nm for AFM (Fig. 3i), the overlap-
ping of the three histograms and their broad distributions are the manifestation of the structures imperfections as 
discussed above (Fig. 3b). We took the same measurement for TRAM, which is shown in Fig. 3j. To investigate the 
results further, we plot the three representative examples of structures that we have observed in the pixel grids of 
the image (19 nm), which can explain well the x, y and hypotenuse distributions in the histograms. For example, 
the x side mainly falls between 42 nm and 54 nm, which correspond to the diagonal lines of 1 by 2 pixels and 2 by 
2 pixel, respectively. The mean values measured for TRAM were (x) 50 nm, (y) 58 nm and (hypotenuse) 76 nm 
(Fig. 3j), which describe rectangles of the same aspect ratio but is larger than the predicted and AFM values by 
a small fraction of the pixel size. The results are pleasing given the differences in sample preparation and imag-
ing modality between AFM and TRAM. The TRAM restoration delivered, from data acquired using a standard 
confocal microscope, a very substantial improvement in spatial resolution and contrast, revealing sub-resolution 
rectangular structures with the shape we designed.

Having demonstrated that TRAM could deliver super-resolution images in a straightforward manner 
from relatively sparse samples, not requiring special instrumentation, we finally set out to acquire data from 
a biological sample. A principal requirement of biological imaging is multi-color labeling; however it remains 
challenging to acquire multi-color super-resolution image data. STED2 for example, commonly utilizes a sin-
gle depletion laser, meaning that special combinations of organic dyes are required. Dual color photo-activated 
localization microscopy (PALM) experiments5 remain challenging until better green photo-activatable proteins 
become available. Multi-color direct stochastic optical reconstruction microscopy (dSTORM)6 also requires spe-
cial sample preparation steps. In principle, TRAM is inherently multi-color, with no special sample preparation 

Figure 2. Test on quantum dots. (a) A single frame of QDs (diameter: 16 nm) from a series of LR images taken 
with translation between frames. (b) A close-up LR image of region 1 containing a bright signal corresponding 
to a single QD, where the green curve is the intensity profile in the horizontal direction. (c,d) Restored SR 
images using 32 and 64 LR observations respectively, with overlaid intensity profiles. (e) The observed FWHM 
of the restored quantum dot versus the number of LR observations. (f,g) Close-up LR and SR images of region 2 
in a, where two QDs are resolved. (h,i) Close-up LR and SR images of region 3 in a, which show 3 QDs.  
(j) Intensity fluctuations over time in region 1 between bright and dark states (k) Intensity fluctuations of region 
2, which are the sum of the intensities of the two resolved QDs in the SR image. (l) Intensity fluctuations of in 
region 3, which are made of the sum of the intensities of the three resolved QDs in the SR image. Scale bars 3 μ m 
for (a) and 100 nm for (b–d) and (f–i)
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methodology required. We therefore selected a commercially available three-color sample, a bovine pulmo-
nary artery endothelial cell sample stained with Texas Red-X phalloidin, anti-bovine α -tubulin detected with a 
BODIPY FL labeled secondary antibody, and DAPI (DAPI is shown in grayscale for clarity), to test multi-color 
TRAM; these commonly used dyes are not known for their special properties or particular photo-stability. A 
set of 60 diffraction-limited observations of all three channels was acquired in ~30 s, with translation steps in 
an XY-grid-pattern of ~100 nm between each frame, using CLSM. A single observation and its corresponding 

Figure 3. ‘Ground-truth’ samples demonstrate the high-fidelity of TRAM. (a) Schematic of rectangular 
quantum dot structure on a DNA origami template. (b) AFM image of the quantum dot structure (scale bar 
100 nm), where the inset shows a zoom area (scale bar 50 nm), confirming that our design is reiterated in the 
nano-structure. (c) A single diffraction-limited fluorescence image, from the 45 translation sequence, acquired 
using CLSM. Scale bar 100 nm. (d) A zoom region of interest from (c) Scale bar 50 nm. (e) Sum of all data from 
45 aligned translation images, showing no structures in the over sampled data. (f) A zoom region of interest 
from (e). (g) TRAM super-resolution reveals rectangular structures in restored image. (h) A rendered, zoom 
region of interest from (g). (i) Measurement of the edges and hypotenuse of the structures from the AFM: (x) 
46 nm, (y) 53 nm and (hypotenuse) 71 nm. (j) Similar measurements for TRAM: 50 nm, 58 nm and 76 nm, 
where three representative structures are shown in the pixel grid of 19 nm.
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TRAM image are shown in Fig. 4a,b, respectively, with the latter demonstrating a large apparent improvement in 
resolution. A region corresponding to the centrosome is shown enlarged (Fig. 4c) highlighting the close proxim-
ity of actin (red) and microtubule (green) filaments in this region. To analyze the improvement in resolution in 
this multicolor image, we measure the FWHM of the cross sections of microtubule and actin filaments. Figure 4d 

Figure 4. Multi-color TRAM of a pulmonary endothelial cell. (a) One of the 60 LR images acquired whilst 
translating the sample in XY-steps of ~100 nm. Three colors represent three different stained structures; red: 
actin, green: microtubules and gray: DNA (DAPI), respectively. Scale bar 2 μ m. (b) TRAM-restored image 
using the 60 diffraction-limited images. (c) A zoom-view of the spindle-pole region (bottom-left box in (a)) 
showing TRAM restored data for both channels. Scale bar 250 nm. (d) Top row: A zoom-view of microtubule 
segment from the box in (c) and corresponding intensity profiles of the cross-section measurements at single 
pixel and within a window of 25 pixels respectively. Bottom row: Histogram of the FWHM measurements of 
60 microtubule cross-sections, exhibiting a distinct peak at around 55 nm. (e) A zoom-view of microtubules 
(green) and DAPI stained nuclei (gray) from the top-right region-of-interest in (a). Scale bar 250 nm.  
(f) Corresponding TRAM restored region in which DAPI-stained structures are clearly resolved. (g) Intensity 
profiles of the microtubules (yellow line) and DAPI (pink line) from the TRAM restored image.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:19993 | DOI: 10.1038/srep19993

(top row) shows a zoom microtubule segment with 4 measurements: 2 intersected by single pixel at slightly differ-
ent locations and 2 averaged over a sliding window of 25 pixels. As seen, due to intensity fluctuations, the shape 
and width of the two cross sections vary considerably for the single pixel measurements but are almost unchanged 
when averaged over the 25 pixels. We therefore took the averaged measurements on 60 typical straight microtu-
bule segments from different locations of the entire image. The histogram of the FWHM is shown in the bottom 
row of Fig. 4d, in which the distinct peak occurs at around 55 nm. The result is in a good agreement with the 
range of 50-60 nm observed by Gustafsson, Sedat and coworkers on their 3D SIM experiment18. We undertook a 
similar measurement to the actin network, finding the FWHM of the cross section to be around 80 nm. We fur-
ther show a zoom view of microtubules and DAPI-stained nuclei in the CLSM and TRAM images (Fig. 4e,f) and 
TRAM restored super-resolution signal intensity profiles (Fig. 4g). As seen, microtubules has the FWHM around 
55 nm, as discussed earlier, while the DAPI-stained nuclei is measured to be ~180 nm. The latter is larger than that 
measured using 3D SIM by Sedat and co-workers and probably shows that the current version of TRAM does not 
resolve blob-like structures as well as SIM.

We note that as with all other microscopy techniques, the different levels of structure and detail that TRAM 
can restore depend on its operating conditions. As biological samples have structures of more than one spatial 
scale and of different signal strengths, different parameter settings may be used in order to observe different levels 
of detail. As shown in Supplementary Fig. S4, for example, by varying the parameters controlling the denoising 
strength TRAM can reveal different details and structures, including actin bundles.

Discussion
It is important to note that as with all other techniques, TRAM has limitations in its performance. It relies on 
intensity information at pixel level, so when bleaching occurs in a local region of an image, restoration is not pos-
sible there, but it does not affect other regions in the image. When there are changes in image structures between 
the translation images, either due to motion induced blur or dynamics, TRAM has difficulty in its present form 
and so is best suited to fixed samples (in common with many of the current super-resolution modalities). TRAM 
restoration currently requires a few hours of computation for a 256 ×  256 image by using a desktop computer 
running on MATLAB, however, its performance will improve with algorithmic optimization, processing paralleli-
zation and with computing hardware advances. Moreover, as with other super-resolution microscopy techniques, 
including STED, a TRAM image depends on its operating conditions and, to a lesser extent than the existing 
techniques, sample preparation.

In summary, we present a super-resolution imaging technique, which can be used with any microscope with-
out any hardware modification. TRAM is developed purposely to restore images under low SNR environments 
and containing small structures many times below the diffraction limit. Use of multiple transition observations 
in TRAM has enabled us to undertake more effective collaborative filtering for image denoising through a newly 
developed prior model. The multiple translation approach further imposes more stringent criteria on the SR res-
toration process; our restored image is collectively an optimal SR counterpart of all the diffraction-limited transla-
tion observations. This methodology has made TRAM more robust than the present SR methods when applied to 
fluorescence biological imaging. Our approach is multi-color, requires no special sample preparation, works with 
any fluorescent stain and is simple to apply, delivering super-resolution images with up to 7-fold improvement in 
lateral resolution. We believe that this technique will be of broad interest to the cell-biology community.

Methods
Super-resolution restoration method. A low-resolution (LR) image, Jl, can be considered as the out-
come of an original high-resolution (HR) image, Il, after an image-degrading process involving blurring and noise 
contamination. This process can be formulated by a linear image capturing model10,

= + , = , … , … , ( )J P I N l k M1 1l l l l

where M denotes the number of images (observations), the column vectors Jl and Il consist of row-wise concate-
nations of the LR and HR images, Pl is a blurring matrix determined by the PSF of the imaging system and Nl rep-
resents noise contamination. The blurring matrix and noise can be different for different l in Eq.(1). SR restoration 
aims to recover the HR images beyond the diffraction limit from the diffraction-limited LR observations. Since 
the blurring matrix is usually not invertible10, the HR image is commonly estimated by minimizing a pre-defined 
energy function,
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where the first term in the energy function, E(Il), measures the difference between the LR observations and pre-
dicted data in a l2-norm form, Ckl is a shift matrix measuring the pixel-level correspondence between the HR 
images, Il and Ik, and φ( )x  takes a robust function in the form of

φ( ) = /( + ) ( )x x x1 3

so that the energy function more likely reaches a global minimum19. In practice, the correspondence matrix Ckl is 
unknown to the observer but is assumed to be unchanged during the degrading process. As such, the matrix can 
be determined by the correspondence between LR images11. In the presence of noise, a prior model, R(Il), is essen-
tial to be included in the energy function to regularize the minimization process. The proportional parameter, λIl

, 
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is to balance noise removal and feature preservation via the regularization. Since an edge is a fundamental feature 
that underlies more complicated features or structures in an image, many SR restoration methods in medical 
imaging have applied gradient operators (first-order difference) to build the prior model and achieved impressive 
performances in X-Ray mammography, fMRI and PET, as discussed earlier9. However, the gradient-based model 
does not work well when applied to biological fluorescence microscopy. Biological microscopy data are usually 
made up by vesicles, filaments, microtubules and their complex networks, which are more complicated than 
medical data that are usually images of organs or tissues. Spatial scales of the structures in the two types of images 
are also very different9,12. Since edges embedded in small and complex structures are prone to noise contamina-
tion, the gradient-based operators may not be able to robustly detect edges under noise contamination and there-
fore can fail to characterize and preserve complex structures. In a recent study20, we developed an anisotropic 
diffusion model by employing first- and second-order nonlocal differences (NLD) as feature detectors and 
demonstrated a superior performance of image restoration compared to many state-of-the-art denoising algo-
rithms, particularly in high noise levels. This idea is based on our observations that diverse biological structures 
such as vesicles, filaments, microtubules are made primarily of two basic features, blob and ridge21,22, which are 
better characterized by a combination of these two NLDs.

In the present work, we further develop this idea by capturing and preserving spatially more complex 
high-order structures. This is necessary as SR restoration is a more complex operation that not only removes noise 
but also corrects structure distortion induced by blurring. To implement the idea, we associate each image pixel 
with a small spatial region (patch) around which it is centered. Pixels are then grouped based on local structure 
similarity of their corresponding patches by using un-supervised clustering methods23. A set of principal compo-
nents (eigenvectors) for each group are then calculated using singular vector decomposition. Nonlocal features at 
various levels (orders) of complexity for each group are extracted by projecting the patches to their correspond-
ing eigenvectors. These nonlinear features can be considered as a generalization of the first- and second-order 
NLDs used in our previous study to high orders and are adopted to build the prior model, R(Il), in Eq. (2) for SR 
restoration. The detail about the model is presented in supplementary text. We note that these nonlinear features, 
particularly those underlying fine structures, are prone to noise contamination. Making use of group statistics of 
similar patches has shown to improve the robustness of feature extraction24.

We solve the minimization problem in Eq. (2) by an iteratively reweighted least squares (IRLS) method, the 
flow chart of which is given in Supplementary Fig. S5. It has been proven in many studies25 that the IRLS leads to 
either the global optimum solution or a local optimum solution that is most close to the global optimum solution 
among all local optimum solutions. To solve Eq. (2), we assume the initial solution as Il =  Jl. The solution then 
evolves iteratively while the energy function is gradually minimized by IRLS. The rate of the evolution is adjusted 
at each iteration step based on the difference of HR solutions between the present and previous steps. The param-
eter λIl

 is also updated at each iteration step according to the residual noise contained in the current HR image 
estimation. When the difference of the HR image estimations between two adjacent iterations is below a pre-set 
threshold, the iteration stops and the solution is considered to the restored HR image. More details are given in 
the supplementary text.

Translation microscopy (TRAM). Based on the information theory26, the LR observations to be used to 
recover a HR image via the proposed inverse process must be correlated but not identical. For biological micros-
copy applications, the easiest way to obtain a set of (correlated) LR images is to record these images while the 
microscope or specimen is translated in the XY plane. The correspondence matrix in this case can be easily 
determined from motion vectors of the two LR images given by the relative positions between the camera and 
specimen11. Such multiple images were acquired in our lab by using a motorized stage translating in the X and the 
Y plane; the translation is calibrated at pixel level using image registration methods to avoid uncertainty due to 
any mechanic drifting. For example, 64 frames used in Fig. 4 were recorded at a frame rate of 498 ms in an 8 by 8 
array in the XY plane. The distance between neighboring frames was set to be around or larger than the FWHM 
of PSF of the microscope. The 3D PSF is considered to be space variant27–29 and can be modelled based on experi-
mental configurations30 or measured experimentally using point-like specimen such as beads and quantum dots. 
The 2D PSF in our TRAM restoration is the projection of the 3D PSF model31, taking into account the translation 
of each observation. We refer to the combination of such multiple LR image acquisition modality with our SR res-
toration method as translation microscopy (TRAM). Compared with other SR imaging techniques such as SIM, 
STED, dSTORM, etc., TRAM can be implemented simply on conventional microscopes; confocal, widefield and 
other imaging systems with little or no hardware modifications. We note that if optical sectioning techniques can 
acquires 3D diffraction-limited images with the depth (axial) information, TRAM can in principle be extended to 
be a 3D restoration method from the current 2D technique.

Simulation. We applied our TRAM restoration method to a number of data sets and validated the results by 
comparing to the ground truths. We first tested our method on a 2-D standard resolution chart and a synthetic 
biological image containing blobs and ridges of varying sizes and orientations, from which we explore some 
usual scaling laws between the quality of restoration and number of LR images in different noise levels. Finally, 
we performed TRAM on two optical microscopy data sets, beads and quantum dots, with known ground truth. 
In all the tests the SR restoration process was measured by the mean squared difference-norm (MSDN) of the 
restored images between two adjacent iterations. When the MSDN reaches to a given threshold, the process was 
terminated and the solution is considered to be the HR image.

Validation. 2-D standard resolution chart. An 8-bit HR resolution chart contains various features with var-
ying sizes and orientations and is commonly used for evaluation of image restoration methods32, particularly 
improvement in SNR. We applied our TRAM method with a set of 64 LR images corrupted by a Gaussian-shaped 
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PSF of Std σpsf =  5, 10, 15 (pixels) and AWGN contamination of Std σn =  20 (Supplementary Fig. S1a for one of 
the observations and Supplementary Fig. S1b restored). The performance of TRAM is shown to improve mono-
tonically on increasing the number of LR observations and begins to saturate at 50 LR images (Supplementary 
Fig. S1c), the saturation point is dependent on the noise level in the LR observations. We present the restored 
images and measurements by our method and other three popular SR methods, ZMT33, RSR34 and ALG32, in 
Supplementary Fig. S1d-j, the last of which is considered to be the state of art. By comparison, our results give the 
best visual and quantitative performance, restoring all the features in the original chart without artifacts.

Synthetic biological cell image. Pertinent to biological applications, we conducted the experiment on a synthetic 
cell image that contains blobs and ridges which mimic the transport particles and microtubules in intracellular 
structures (Supplementary Fig. S2a). The LR images were obtained by convolving Gaussian-shaped PSF of Std 
σpsf =  31 pixels and noise of Std σn =  20 (Supplementary Fig. S2b). By comparing to the original HR image, the 
results show visually a remarkable resolution improvement, recovering all the original structures. The ratio of the 
averaged FWHM of the blobs and ridges in the restored image to that in the LR image is 6.3 (Supplementary Fig. 
S2d), which is a common measurement of resolution improvement in biology. We further investigated the resolu-
tion improvement of our method on different noise levels. In general, the FWHM ratio decreases as the noise level 
increase (Supplementary Fig. S2e). We finally studied the scaling of resolution improvement to the numbers of 
LR observations in different levels of noise contamination. In general, the FWHM ratio increases monotonically 
on increasing the LR number, as in the test of the standard resolution chart. However, higher noise reduces the 
maximum resolution that can be restored and also requires more LR observations for a same resolution improve-
ment compared to lower noise case (Supplementary Fig. S2f). Note that the above restoration used the known 
PSF profile but did not require noise information; the restoration is robust under small fluctuations of the PSF.

Software. We have implemented the TRAM algorithm in Matlab (Mathworks). The software has been 
attached here for demonstration purpose, which includes the TRAM program and a set of translation LR beads 
images. Users can run the program to show the evolution of how a TRAM SR image is restored from these 
LR images. The results can be compared with gSTED image from the same view area. The software can run in 
Windows7 64 bit and Linux Ubuntu 64 bit machines.

Sample preparation. QDot 625 (Invitrogen) was diluted 1:1,000,000 in phosphate buffered saline (PBS). 
Coverslips were coated with CellTak (BD Biosciences) according to the manufacturer’s instructions. Diluted 
quantum dots were incubated on the coated coverslips for 1 hour prior to imaging in PBS. Fixed cell datasets 
were acquired using the FluoCells pre-prepared slide #2 (Invitrogen) which contains bovine pulmonary artery 
endothelial cells (BPAEC) stained with Texas Red-X phalloidin, anti-bovine α -tubulin and BODIPY FL labelled 
secondary antibody, and DAPI.

Quantum dot – DNA origami. All short staple strands were purchased from Invitrogen (China) and used as 
received. M13mp18 single stranded DNA was purchased from New England Biolabs. Chemicals were purchased 
from Sigma-Aldrich. Quantum dots were purchased from Invitrogen (China).

Preparation of DNA origami ruler. The rectangular shaped DNA origami template was formed according to 
the literature35. A molar ratio of 1:10 between the long viral ssDNA and the short helper strands was used. DNA 
origami was assembled in 1 ×  TAE-Mg2+ buffer (Tris 40 mM; Acetic acid 20 mM; EDTA 2 mM and Magnesium 
acetate 12.5 mM; pH 8.0) by cooling slowly from 95 °C to room temperature. DNA origami was then filtered 
with Millipore’s 100 kDa MWCO centrifuge filter to remove extra DNA helper strands. The concentration of 
the DNA origami was estimated from the optical absorbance at 260 nm. Purified DNA origami was mixed with 
streptavidin-coated QDs in 1 ×  TAE-Mg2+ buffer at room temperature.

AFM characterization. The DNA origami ruler sample was deposited onto a new cleaved mica substrate. Then 
the surface was rinsed using deionized water and dried by air. All AFM images were obtained using a Multimode 
Nanoscope VIII instrument (Bruker) under tapping mode in air with NSC11 tips (μ Masch).

Fluorescent image data acquisition. Quantum dot calibration data were acquired on an inverted IX81 
microscope (Olympus) using a 150 ×  1.45 NA objective. Illumination was provided by a fully motorized four 
laser TIRF combiner coupled to a 405 nm 100 mW laser under widefield illumination. The sample was laterally 
translated using a motorized stage (ASI). Image data was collected using an Orca-Flash 4.0 s CMOS camera 
(Hamamatsu) which in combination with a 1.6 ×  magnifier in the image path provided an effective pixel size of 
27 ×  27 nm. Ten frames were acquired at each position before translation of the stage to the next position. Fixed 
cell and DNA origami image data were acquired on an SP5 gSTED SMD laser scanning confocal microscope 
(Leica) using a 60 ×  1.4 NA objective. Images 4096 ×  4096 were acquired with a pixel size of 6 nm (for Fig. 4) or 
19 nm (for Fig. 3). A single frame in each channel was acquired before translation of the stage to the next position.
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