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Abstract. We consider infinite-state Markov decision processes (MDPs)
that are induced by extensions of vector addition systems with states
(VASS). Verification conditions for these MDPs are described by reacha-
bility and Büchi objectives w.r.t. given sets of control-states. We study the
decidability of some qualitative versions of these objectives, i.e., the decid-
ability of whether such objectives can be achieved surely, almost-surely,
or limit-surely. While most such problems are undecidable in general,
some are decidable for large subclasses in which either only the controller
or only the random environment can change the counter values (while
the other side can only change control-states).

1 Introduction

Markov decision processes (MDPs) [17, 14] are a formal model for games on
directed graphs, where certain decisions are taken by a strategic player (a.k.a.
Player 1, or controller) while others are taken randomly (a.k.a. by nature, or
the environment) according to pre-defined probability distributions. MDPs are
thus a subclass of general 2-player stochastic games, and they are equivalent to
1.5-player games in the terminology of [10]. They are also called “games against
nature”.

A run of the MDP consists of a sequence of visited states and transitions on the
graph. Properties of the system are expressed via properties of the induced runs.
The most basic objectives are reachability (is a certain (set of) control-state(s)
eventually visited?) and Büchi objectives (is a certain (set of) control-state(s)
visited infinitely often?).

Since a strategy of Player 1 induces a probability distribution of runs of
the MDP, the objective of an MDP is defined in terms of this distribution,
e.g., if the probability of satisfying a reachability/Büchi objective is at least
a given constant. The special case where this constant is 1 is a key example
of a qualitative objective. Here one asks whether Player 1 has a strategy that
achieves an objective surely (all runs satisfy the property) or almost-surely (the
probability of the runs satisfying the property is 1).

Most classical work on algorithms for MDPs and stochastic games has focused
on finite-state systems (e.g., [14, 19, 11]), but more recently several classes of



infinite-state systems have been considered as well. For instance, MDPs and
stochastic games on infinite-state probabilistic recursive systems (i.e., probabilistic
pushdown automata with unbounded stacks) [13] and on one-counter systems
[7, 6] have been studied. Another infinite-state probabilistic model, which is
incomparable to recursive systems, is a suitable probabilistic extension of Vector
Addition Systems with States (VASS; a.k.a. Petri nets), which have a finite
number of unbounded counters holding natural numbers.

Our contribution. We study the decidability of probability-1 qualitative reach-
ability and Büchi objectives for infinite-state MDPs that are induced by suitable
probabilistic extensions of VASS that we call VASS-MDPs. (Most quantitative
objectives in probabilistic VASS are either undecidable, or the solution is at least
not effectively expressible in (R,+, ∗,≤) [2].) It is easy to show that, for general
VASS-MDPs, even the simplest of these problems, (almost) sure reachability,
is undecidable. Thus we consider two monotone subclasses: 1-VASS-MDPs and
P-VASS-MDPs. In 1-VASS-MDPs, only Player 1 can modify counter values while
the probabilistic player can only change control-states, whereas for P-VASS-MDPs
it is vice-versa. Still these two models induce infinite-state MDPs. Unlike for
finite-state MDPs, it is possible that the value of the MDP, in the game theoretic
sense, is 1, even though there is no single strategy that achieves value 1. For
example, there can exist a family of strategies σε for every ε > 0, where playing
σε ensures a probability ≥ 1− ε of reaching a given target state, but no strategy
ensures probability 1. In this case, one says that the reachability property holds
limit-surely, but not almost-surely (i.e., unlike in finite-state MDPs, almost-surely
and limit-surely do not coincide in infinite-state MDPs).

We show that even for P-VASS-MDPs, all sure/almost-sure/limit-sure reacha-
bility/Büchi problems are still undecidable. However, in the deadlock-free subclass
of P-VASS-MDPs, the sure reachability/Büchi problems become decidable (while
the other problems remain undecidable). In contrast, for 1-VASS-MDPs, the
sure/almost-sure/limit-sure reachability problem and the sure/almost-sure Büchi
problem are decidable.

Our decidability results rely on two different techniques. For the sure and
almost sure problems, we prove that we can reduce them to the model-checking
problem over VASS of a restricted fragment of the modal µ-calculus that has
been proved to be decidable in [3]. For the limit-sure reachability problem in
1-VASS-MDP, we use an algorithm which at each iteration reduces the dimension
of the considered VASS while preserving the limit-sure reachability properties.

Although we do not consider the class of qualitative objectives referring
to the probability of (repeated) reachability being strictly greater than 0, we
observe that reachability on VASS-MDPs in such a setting is equivalent to
reachability on standard VASS (though this correspondence does not hold for
repeated reachability).

Outline. In Section 2 we define basic notations and how VASS induce Markov
decision processes. In Sections 3 and 4 we consider verification problems for
P-VASS-MDP and 1-VASS-MDP, respectively. In Section 5 we summarize the
decidability results (Table 1) and outline future work.
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2 Models and verification problems

Let N (resp. Z) denote the set of nonnegative integers (resp. integers). For two
integers i, j such that i ≤ j we use [i..j] to represent the set {k ∈ Z | i ≤ k ≤ j}.
Given a set X and n ∈ N \ {0}, Xn is the set of n-dimensional vectors with
values in X. We use 0 to denote the vector such that 0(i) = 0 for all i ∈ [1..n].
The classical order on Zn is denoted ≤ and is defined by v ≤ w if and only if
v(i) ≤ w(i) for all i ∈ [1..n]. We also define the operation + over n-dimensional
vectors of integers in the classical way (i.e., for v, v′ ∈ Zn, v + v′ is defined by
(v + v′)(i) = v(i) + v′(i) for all i ∈ [1..n]). Given a set S, we use S∗ (respectively
Sω) to denote the set of finite (respectively infinite) sequences of elements of S.
We now recall the notion of well-quasi-ordering (which we abbreviate as wqo). A
quasi-order (A,�) is a wqo if for every infinite sequence of elements a1, a2, . . . in
A, there exist two indices i < j such that ai � aj . For n > 0, (Nn,≤) is a wqo.
Given a set A with an ordering � and a subset B ⊆ A, the set B is said to be
upward closed in A if a1 ∈ B, a2 ∈ A and a1 � a2 implies a2 ∈ B.

2.1 Markov decision processes

A probability distribution on a countable set X is a function f : X 7→ [0, 1]
such that

∑
x∈X f(x) = 1. We use D(X) to denote the set of all probability

distributions on X. We first recall the definition of Markov decision processes.

Definition 1 (MDPs). A Markov decision process (MDP) M is a tuple 〈C,C1,
CP , A,→, p〉 where: C is a countable set of configurations partitioned into C1 and
CP (that is C = C1∪CP and C1∩CP = ∅); A is a set of actions; →⊆ C×A×C
is a transition relation; p : CP 7→ D(C) is a partial function which assigns to
some configurations in CP probability distributions on C such that p(c)(c′) > 0 if

and only if c
a−→ c′ for some a ∈ A.

Note that our definition is equivalent as seeing MDPs as games played between
a nondeterministic player (Player 1) and a probabilistic player (Player P). The
set C1 contains the nondeterministic configurations (or configurations of Player
1) and the set CP contains the probabilistic configurations (or configurations of
Player P). Given two configurations c, c′ in C, we write c→ c′ whenever there

exists a ∈ A such that c
a−→ c′. We will say that a configuration c ∈ C is a deadlock

if there does not exist c′ ∈ C such that c→ c′. We use Cdf1 (resp. CdfP ), to denote
the configurations of Player 1 (resp. of Player P) which are not a deadlock (df
stands here for deadlock free).

A play of the MDP M = 〈C,C1, CP , A,→, p〉 is either an infinite sequence of

the form c0
a0−→ c1

a1−→ c2 · · · or a finite sequence c0
a0−→ c1

a1−→ c2 · · ·
ak−1−−−→ ck. We

call the first kind of play an infinite play, and the second one a finite play. A play
is said to be maximal whenever it is infinite or it ends in a deadlock configuration.
These latter plays are called deadlocked plays. We use Ω to denote the set of

maximal plays. For a finite play ρ = c0
a0−→ c1

a1−→ c2 · · ·
ak−1−−−→ ck, let ck = last(ρ).

We use Ωdf1 to denote the set of finite plays ρ such that last(ρ) ∈ Cdf1 .
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A strategy for Player 1 is a function σ : Ωdf1 7→ C such that, for all ρ ∈ Ωdf1
and c ∈ C, if σ(ρ) = c then last(ρ)→ c. Intuitively, given a finite play ρ, which
represents the history of the game so far, the strategy represents the choice of
Player 1 among the different possible successor configurations from last(ρ). We use
Σ to denote the set of all strategies for Player 1. Given a strategy σ ∈ Σ, an infinite
play c0

a0−→ c1
a1−→ c2 · · · respects σ if for every k ∈ N, we have that if ck ∈ C1

then ck+1 = σ(c0
a0−→ c1

a1−→ c2 · · · ck) and if ck ∈ CP then p(ck)(ck+1) > 0. We
define finite plays that respect σ similarly. Let Plays(M, c, σ) ⊆ Ω be the set of
all maximal plays of M that start from c and that respect σ.

Note that once a starting configuration c0 ∈ C and a strategy σ have been
chosen, the MDP is reduced to an ordinary stochastic process. We define an
event A ⊆ Ω as a measurable set of plays and we use P(M, c, σ,A) to denote
the probability of event A starting from c ∈ C under strategy σ. The notation
P+(M, c,A) will be used to represent for the maximal probability of event A
starting from c which is defined as P+(M, c,A) = supσ∈ΣP(M, c, σ,A).

2.2 VASS-MDPs

Probabilistic Vector Addition Systems with States have been studied, e.g., in [2].
Here we extend this model with non-deterministic choices made by a controller.
We call this new model VASS-MDPs. We first recall the definition of Vector
Addition Systems with States.

Definition 2 (Vector Addition System with States). For n > 0, an n-
dimensional Vector Addition System with States (VASS) is a tuple S = 〈Q,T 〉
where Q is a finite set of control states and T ⊆ Q × Zn × Q is the transition
relation labelled with vectors of integers.

In the sequel, we will not always make precise the dimension of the considered
VASS. Configurations of a VASS are pairs 〈q,v〉 ∈ Q×Nn. Given a configuration
〈q,v〉 and a transition t = 〈q, z, q′〉 in T , we will say that t is enabled at 〈q′′,v〉, if
q = q′′ and v+z ≥ 0. Let then En(q,v) be the set {t ∈ T | t is enabled at 〈q,v)〉}.
In case the transition t = 〈q, z, q′〉 is enabled at 〈q,v〉, we define t(q,v) = 〈q′,v′〉
where v′ = v + z. An n-dimensional VASS S induces a labelled transition system
〈C, T,→〉 where C = Q × Nn is the set of configurations and the transition

relation →⊆ C × T ×C is defined as follows: 〈q,v〉 t−→ 〈q′,v′〉 iff 〈q′,v′〉 = t(q,v).
VASS are sometimes seen as programs manipulating integer variables, a.k.a.
counters. When a transition of a VASS changes the i-th value of a vector v, we
will sometimes say that it modifies the value of the i-th counter. We show now
in which manner we add probability distributions to VASS.

Definition 3 (VASS-MDP). A VASS-MDP is a tuple S = 〈Q,Q1, QP , T, τ〉
where 〈Q,T 〉 is a VASS for which the set of control states Q in partitioned into
Q1 and QP , and τ : T 7→ N\{0} is a partial function assigning to each transition
a weight which is a positive natural number.
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Nondeterministic (resp. probabilistic) choices are made from control states
in Q1 (resp. QP ). The subset of transitions from control states of Q1 (resp.
control states of QP ) is denoted by T1 (resp. TP ). Hence T = T1 ∪ TP with T1 ⊆
Q1×Zn×Q and TP ⊆ QP ×Zn×Q. A VASS-MDP S = 〈Q,Q1, QP , T, τ〉 induces
an MDP MS = 〈C,C1, CP , T,→, p〉 where: 〈C, T,→〉 is the labelled transition
system associated with the VASS 〈Q,T 〉; C1 = Q1 × Nn and CP = QP × Nn;
and for all c ∈ CP and c′ ∈ C, if c → c′, the probability of going from c to c′

is defined by p(c)(c′) = (
∑
{t|t(c)=c′} τ(t))/(

∑
t∈En(c) τ(t)), whereas if c 6→ c′, we

have p(c)(c′) = 0. Note that the MDP MS is well-defined: when defining p(c)(c′)
in the case c→ c′, there exists at least one transition in En(c) and consequently
the sum

∑
t∈En(c) τ(t) is never equal to 0. Also, we could have restricted the

weights to be assigned only to transitions leaving from a control state in QP
since we do not take into account the weights assigned to the other transitions.
A VASS-MDP is deadlock free if its underlying VASS is deadlock free.

Finally, as in [18] or [3], we will see that to gain decidability it is useful to
restrict the power of the nondeterministic player or of the probabilistic player by
restricting their ability to modify the counters’ values and hence letting them
only choose a control location. This leads to the two following definitions: a
P-VASS-MDP is a VASS-MDP 〈Q,Q1, QP , T, τ〉 such that for all 〈q, z, q′〉 ∈ T1,
we have z = 0 and a 1-VASS-MDP is a VASS-MDP 〈Q,Q1, QP , T, τ〉 such that
for all 〈q, z, q′〉 ∈ TP , we have z = 0. In other words, in a P-VASS-MDP, Player 1
cannot change the counter values when taking a transition and, in a 1-VASS-MDP,
it is Player P which cannot perform such an action.

2.3 Verification problems for VASS-MDPs

We consider qualitative verification problems for VASS-MDPs, taking as objectives
control-state reachability and repeated reachability. To simplify the presentation,
we consider a single target control-state qF ∈ Q. However, our positive decidability
results easily carry over to sets of target control-states (while the negative ones
trivially do). Note however, that asking to reach a fixed target configuration like
〈qF ,0〉 is a very different problem (cf. [2]).

Let S = 〈Q,Q1, QP , T, τ〉 be a VASS-MDP and MS its associated MDP. Given
a control state qF ∈ Q, we denote by J♦qF K the set of infinite plays c0 ·c1 · · · · and
deadlocked plays c0 · · · · · cl of MS for which there exists an index k ∈ N such that
ck = 〈qF ,v〉 for some v ∈ Nn. Similarly, J�♦qF K characterizes the set of infinite
plays c0 · c1 · · · · of MS for which the set {i ∈ N | ci = 〈qF ,v〉 for some v ∈ Nn}
is infinite. Since MS is an MDP with a countable number of configurations, we
know that the sets of plays J♦qF K and J�♦qF K are measurable (for more details
see for instance [4]), and are hence events for MS . Given an initial configuration
c0 ∈ Q× Nn and a control-state qF ∈ Q, we consider the following questions:

1. The sure reachability problem: Does there exist a strategy σ ∈ Σ such that
Plays(MS , c0, σ) ⊆ J♦qF K?

2. The almost-sure reachability problem: Does there exist a strategy σ ∈ Σ such
that P(MS , c0, σ, J♦qF K) = 1?
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3. The limit-sure reachability problem: Does P+(MS , c0, J♦qF K) = 1?
4. The sure repeated reachability problem: Does there exist a strategy σ ∈ Σ

such that Plays(MS , c0, σ) ⊆ J�♦qF K?
5. The almost-sure repeated reachability problem: Does there exist a strategy
σ ∈ Σ such that P(MS , c0, σ, J�♦qF K) = 1?

6. The limit-sure repeated reachability problem: Does P+(MS , c0, J�♦qF K) = 1?

Note that sure reachability implies almost-sure reachability, which itself implies
limit-sure reachability, but not vice-versa, as shown by the counterexamples in
Figure 1 (see also [7]). The same holds for repeated reachability. For the sure
problems, probabilities are not taken into account, and thus these problems can
be interpreted as the answer to a two player reachability game played on the
transition system of S. Such games have been studied for instance in [18, 1, 3].
Finally, VASS-MDPs subsume deadlock-free VASS-MDPs and thus decidability
(resp. undecidability) results carry over to the smaller (resp. larger) class.

q0

0

qF
0

q1

+1

q2
0

-1

qF
−1

Fig. 1. Two 1-dimensional VASS-MDPs. The circles (resp. squares) are the control
states of Player 1 (resp. Player P). All transitions have the same weight 1. From 〈q0, 0〉,
the state qF is reached almost-surely, but not surely, due to the possible run with an
infinite loop at q0 (which has probability zero). From 〈q1, 0〉, the state qF can be reached
limit-surely (by a family of strategies that repeats the loop at q1 more and more often),
but not almost-surely (or surely), since every strategy has a chance of getting stuck at
state q2 with counter value zero.

2.4 Undecidability in the general case

It was shown in [1] that the sure reachability problem is undecidable for (2-
dimensional) two player VASS. From this we can deduce that the sure reachability
problem is undecidable for VASS-MDPs. We now present a similar proof to show
the undecidability of the almost-sure reachability problem for VASS-MDPs.

For all of our undecidability results we use reductions from the undecidable
control-state reachability problem for Minsky machines. A Minsky machine is a
tuple 〈Q,T 〉 where Q is a finite set of states and T is a finite set of transitions
manipulating two counters, say x1 and x2. Each transition is a triple of the form
〈q, xi = 0?, q′〉 (counter xi is tested for 0) or 〈q, xi := xi + 1, q′〉 (counter xi is
incremented) or 〈q, xi := xi − 1, q′〉 (counter xi is decremented) where q, q′ ∈ Q.
Configurations of a Minsky machine are triples in Q × N × N. The transition
relation ⇒ between configurations of the Minsky machine is then defined in
the obvious way. Given an initial state qI and a final state qF , the control-
state reachability problem asks whether there exists a sequence of configurations
〈qI , 0, 0〉 ⇒ 〈q1, v1, v′1〉 ⇒ . . .⇒ 〈qk, vk, v′k〉 with qk = qF . This problem is known
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to be undecidable [16]. W.l.o.g. we assume that Minsky machines are deadlock-
free and deterministic (i.e., each configuration has always a unique successor)
and that the only transition leaving qF is of the form 〈qF , x1 := x1 + 1, qF 〉.

q1 q2
(1, 0)

q3 q4
(0,−1)

q5
(0, 0)

q6
(0, 0)

⊥

(−1, 0)

(0, 0)

Fig. 2. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

We now show how to reduce the control-state reachability problem to the
almost-sure and limit-sure reachability problems in deadlock-free VASS-MDPs.
From a Minsky machine, we construct a deadlock-free 2-dimensional VASS-MDP
for which the control states of Player 1 are exactly the control states of the
Minsky machine. The encoding is presented in Figure 2 where the circles (resp.
squares) are the control states of Player 1 (resp. Player P), and for each edge
the corresponding weight is 1. The state ⊥ is an absorbing state from which the
unique outgoing transition is a self loop that does not affect the values of the
counters. This encoding allows us to deduce our first result.

Theorem 1. The sure, almost-sure and limit-sure (repeated) reachability prob-
lems are undecidable problems for 2-dimensional deadlock-free VASS-MDPs.

In the special case of 1-dimensional VASS-MDPs, the sure and almost-sure
reachability problems are decidable [7].

2.5 Model-checking µ-calculus on single-sided VASS

It is well-known that there is a strong connection between model-checking branch-
ing time logics and games, and in our case we have in fact undecidability results
for simple reachability games played on a VASS and for the model-checking of
VASS with expressive branching-time logics [12]. However for this latter point,
decidability can be regained by imposing some restrictions on the VASS structure
[3] as we will now recall. We say that a VASS 〈Q,T 〉 is (Q1, Q2)-single-sided
iff Q1 and Q2 represents a partition of the set of states Q such that for all
transitions 〈q, z, q′〉 in T with q ∈ Q2, we have z = 0; in other words only
the transitions leaving a state from Q1 are allowed to change the values of
the counters. In [3], it has been shown that, thanks to a reduction to games
played on a single-sided VASS with parity objectives, a large fragment of the
µ-calculus called Lsv

µ has a decidable model-checking problem over single-sided
VASS. The idea of this fragment is that the “always” operator � is guarded with
a predicate enforcing the current control states to belong to Q2. Formally, the
syntax of Lsv

µ for (Q1, Q2)-single-sided VASS is given by the following grammar:
φ ::= q | X | φ∧φ | φ∨φ | ♦φ | Q2∧�φ | µX.φ | νX.φ, where Q2 stands

7



for the formula
∨
q∈Q2

q and X belongs to a set of variables X . The semantics
of Lsv

µ is defined as usual: it associates to a formula φ and to an environment

ε : X → 2C a subset of configurations JφKε. We use ε0 to denote the environment
which assigns the empty set to any variable. Given an environment ε, a variable
X ∈ X and a subset of configurations C, we use ε[X := C] to represent the
environment ε′ which is equal to ε except on the variable X, where we have
ε′(X) = C. Finally the notation JφK corresponds to the interpretation JφKε0 .

The problem of model-checking single-sided VASS with Lsv
µ can then be

defined as follows: given a single-sided VASS 〈Q,T 〉, an initial configuration c0
and a formula φ of Lsv

µ , do we have c0 ∈ JφK?

Theorem 2. [3] Model-checking single-sided VASS wrt. Lsv
µ is decidable.

3 Verification of P-VASS-MDPs

In [3] it is proved that parity games played on a single-sided deadlock-free VASS
are decidable (this entails the decidability of model checking Lsv

µ over single-sided
VASS). We will see here that in the case of P-VASS-MDPs, in which only the
probabilistic player can modify the counters, the decidability status depends on
the presence of deadlocks in the system.

3.1 Undecidability in presence of deadlocks

We point out that the reduction presented in Figure 2 to prove Theorem 1 does
not carry over to P-VASS-MDPs, because in that construction both players
have the ability to change the counter values. However, it is possible to perform
a similar reduction leading to the undecidability of verification problems for
P-VASS-MDPs, the main difference being that we crucially exploit the fact that
the P-VASS-MDP can contain deadlocks.

We now explain the idea behind our encoding of Minsky machines into P-
VASS-MDPs. Intuitively, Player 1 chooses a transition of the Minsky machine to
simulate, anticipating the modification of the counters values, and Player P is
then in charge of performing the change. If Player 1 chooses a transition with
a decrement and the accessed counter value is actually 0, then Player P will
be in a deadlock state and consequently the desired control state will not be
reached. Furthermore, if Player 1 decides to perform a zero-test when the counter
value is strictly positive, then Player P is able to punish this choice by entering
a deadlock state. Similarly to the proof of Theorem 1, Player P can test if the
value of the counter is strictly greater than 0 by decrementing it. The encoding
of the Minsky machine is presented in Figure 3. Note that no outgoing edge of
Player 1’s states changes the counter values. Furthermore, we see that Player P
reaches the control state ⊥ if and only if Player 1 chooses to take a transition
with a zero-test when the value of the tested counter is not equal to 0. Note that,
with the encoding of the transition 〈q3, x2 := x2 − 1, q4〉, when Player P is in the
control state between q3 and q4, it can be in a deadlock if the value of the second
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counter is not positive. In the sequel we will see that in P-VASS-MDP without
deadlocks the sure reachability problem becomes decidable.

q1

(0, 0)

q2

(1, 0)

q3

(0, 0)

q4

(0,−1)

q5

(0, 0)

q6

(0, 0)

⊥
(−1, 0)

(0, 0)

Fig. 3. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

From this encoding we deduce the following result.

Theorem 3. The sure, almost sure and limit sure (repeated) reachability prob-
lems are undecidable for 2-dimensional P-VASS-MDPs.

3.2 Sure (repeated) reachability in deadlock-free P-VASS-MDPs

Unlike in the case of general P-VASS-MDPs, we will see that the sure (repeated)
reachability problem is decidable for deadlock-free P-VASS-MDPs. Let S =
〈Q,Q1, QP , T, τ〉 be a deadlock-free P-VASS-MDP, MS = (C,C1, CP ,→, p) its
associated MDP and qF ∈ Q a control state. Note that because the P-VASS-
MDP S is deadlock free, Player P cannot take the play to a deadlock to avoid
the control state qF , but he has to deal only with infinite plays. Since S is a
P-VASS-MDP, the VASS 〈Q,T 〉 is (QP , Q1)-single-sided. In [18, 1], it has been
shown that control-state reachability games on deadlock-free single-sided VASS
are decidable, and this result has been extended to parity games in [3]. This
implies the decidability of sure (repeated) reachability in deadlock-free P-VASS-
MDPs. However, to obtain a generic way of verifying these systems, we construct
a formula of Lsv

µ that characterizes the sets of winning configurations and use

then the result of Theorem 2. Let V PS be the set of configurations from which
the answer to the sure reachability problem (with qF as state to be reached)
is negative, i.e., V PS = {c ∈ C | @σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J♦qF K} and
similarly let WP

S = {c ∈ C | @σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J�♦qF K}. The next
lemma relates these two sets with a formula of Lsv

µ (where QP corresponds to
the formula

∨
q∈QP

and Q1 corresponds to the formula
∨
q∈Q1

q).

Lemma 1.

– V PS = JνX.(
∨
q∈Q\{qF } q) ∧ (Q1 ∨ ♦X) ∧ (QP ∨ (Q1 ∧�X))K.

– WP
S = JµY.νX.

(
(
∨
q∈Q\{qF } q)∧ (Q1∨♦X)∧ (QP ∨ (Q1∧�X))∨ (qF ∧QP ∧

♦Y ) ∨ (qF ∧Q1 ∧�Y )
)
K

9



Note that we use (QP ∨(Q1∧�X)) instead of (QP ∨�X) so that the formulae
are in the guarded fragment of the µ-calculus. Since the two formulae belong
to Lsv

µ for the (QP , Q1)-single-sided VASS S, decidability follows directly from
Theorem 2.

Theorem 4. The sure reachability and repeated reachability problem are decid-
able for deadlock free P-VASS-MDPs.

3.3 Almost-sure and limit-sure reachability in deadlock-free
P-VASS-MDPs

We have seen that, unlike for the general case, the sure reachability and sure
repeated reachability problems are decidable for deadlock free P-VASS-MDPs,
with deadlock freeness being necessary to obtain decidability. For the correspond-
ing almost-sure and limit-sure problems we now show undecidability, again using
a reduction from the reachability problem for two counter Minsky machines,
as shown in Figure 4. The main difference with the construction used for the
proof of Theorem 3 lies in the addition of a self-loop in the encoding of the
transitions for decrementing a counter, in order to avoid deadlocks. If Player 1,
from a configuration 〈q3,v〉, chooses the transition 〈q3, x2 := x2 − 1, q4〉 which
decrements the second counter, then the probabilistic state with the self-loop
is entered, and there are two possible cases: if v(2) > 0 then the probability of
staying forever in this loop is 0 and the probability of eventually going to state
q4 is 1; on the other hand, if v(2) = 0 then the probability of staying forever in
the self-loop is 1, since the other transition that leaves the state of Player P and
which performs the decrement on the second counter effectively is not available.
Note that such a construction does not hold in the case of sure reachability,
because the path that stays forever in the loop is a valid path.

q1

(0, 0)

q2

(1, 0)

q3

(0, 0)

(0, 0)

q4

(0,−1)

q5

(0, 0)

q6

(0, 0)

Bad
(−1, 0)

(0, 0)

Fig. 4. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

This allows us to deduce the following result for deadlock free P-VASS-MDPs.

Theorem 5. The almost-sure and limit-sure (repeated) reachability problems are
undecidable for 2-dimensional deadlock-free P-VASS-MDPs.

10



4 Verification of 1-VASS-MDPs

In this section, we will provide decidability results for the subclass of 1-VASS-
MDPs. As for deadlock-free P-VASS-MDPs, the proofs for sure and almost-sure
problems use the decidability of Lsv

µ over single-sided VASS, whereas the technique
used to show decidability of limit-sure reachability is different.

4.1 Sure problems in 1-VASS-MDPs

First we show that, unlike for P-VASS-MDPs, deadlocks do not matter for 1-
VASS-MDPs. The idea is that in this case, if the deadlock is in a probabilistic
configuration, it means that there is no outgoing edge (because of the property of
1-VASS-MDPs), and hence one can add an edge to a new absorbing state, and the
same can be done for the states of Player 1. Such a construction does not work
for P-VASS-MDPs, because in that case deadlocks in probabilistic configurations
may depend on the counter values, and not just on the current control-state.

Lemma 2. The sure (resp. almost sure, resp. limit sure) (repeated) reachability
problem for 1-VASS-MDPs reduces to the sure (resp. almost sure, resp. limit-sure)
(repeated) reachability problem for deadlock-free 1-VASS-MDPs.

Hence in the sequel we will consider only deadlock-free 1-VASS-MDPs. Let
S = 〈Q,Q1, QP , T, τ〉 be a deadlock-free 1-VASS-MDP. For what concerns the
sure (repeated) reachability problems we can directly reuse the results from
Lemma 1 and then show that the complement formulae of the ones expressed
in this lemma belong to Lsv

µ for the (Q1, QP )-single-sided VASS 〈Q,T 〉 (in fact
the correctness of these two lemmas did not depend on the fact that we were
considering P-VASS-MDPs). Theorem 2 allows us to retrieve the decidability
results already expressed in [18] (for sure reachability) and [3] (for sure repeated
reachability).

Theorem 6. The sure (repeated) reachability problem is decidable for 1-VASS-
MDPs.

4.2 Almost-sure problems in 1-VASS-MDPs

We now move to the case of almost-sure problems in 1-VASS-MDPs. We consider
a deadlock free 1-VASS-MDP S = 〈Q,Q1, QP , T, τ〉 and its associated MDP
MS = 〈C,C1, CP ,→, p〉. We will see that, unlike for P-VASS-MDPs, it is here
also possible to characterize by formulae of Lsv

µ the two following sets: V 1
AS =

{c ∈ C | ∃σ ∈ Σ such that P(MS , c, σ, J♦qF K) = 1} and W 1
AS = {c ∈ C | ∃σ ∈

Σ such that P(MS , c, σ, J�♦qF K) = 1}, i.e. the set of configurations from which
Player 1 has a strategy to reach the control state qF , respectively to visit infinitely
often qF , with probability 1.

We begin with introducing the following formula of Lsv
µ based on the variables

X and Y : InvPre(X,Y ) = (Q1 ∧ ♦(X ∧ Y )) ∨ (♦Y ∧ QP ∧ �X). Note that

11



InvPre(X,Y ) is a formula of Lsv
µ for the (Q1, QP )-single-sided VASS 〈Q,T 〉.

Intuitively, this formula represents the set of configurations from which (i) Player
1 can make a transition to the set represented by the intersection of the sets
characterized by the variables X and Y and (ii) Player P can make a transition
to the set Y and cannot avoid making a transition to the set X.

Almost sure reachability. We will now prove that V 1
AS can be characterized

by the following formula of Lsv
µ : νX.µY.(qF ∨ InvPre(X,Y )). Note that a similar

result exists for finite-state MDPs, see e.g. [9]; this result in general does not
extend to infinite-state MDPs, but in the case of VASS-MDPs it can be applied.
Before proving this we need some intermediate results.

We denote by E the set JνX.µY.
(
qF ∨ InvPre(X,Y )

)
Kε0 . Since νX.µY.

(
qF ∨

InvPre(X,Y )
)

is a formula of Lsv
µ interpreted over the single-sided VASS 〈Q,T 〉,

we can show that E is an upward-closed set. We now need another lemma which
states that there exists N ∈ N and a strategy for Player 1 such that, from any
configuration of E, Player 1 can reach the control state qF in less than N steps
and Player P cannot take the play outside of E. The fact that we can bound
the number of steps is crucial to show that JνX.µY.

(
qF ∨ InvPre(X,Y )

)
Kε0 is

equal to V 1
AS . For infinite-state MDPs where this property does not hold, our

techniques do not apply.

Lemma 3. There exists N ∈ N and a strategy σ of Player 1 such that for all
c ∈ E, there exists a play c · c1 · c2 · . . . in Plays(MS , c, σ) satisfying the three
following properties: (1) there exists 0 ≤ i ≤ N such that ci ∈ JqF K; (2) for all
0 ≤ j ≤ i, cj ∈ E; (3) for all 0 ≤ j ≤ i, if cj ∈ CP then for all c′′ ∈ C such that
cj → c′′, we have c′′ ∈ E.

This previous lemma allows us to characterize V 1
AS with a formula of Lsv

µ . The
proof of the following result uses the fact that the number of steps is bounded,
and also the fact that the sets described by closed Lsv

µ formulae are upward-closed.
This makes the fixpoint iteration terminate in a finite number of steps.

Lemma 4. V 1
AS = JνX.µY.(qF ∨ InvPre(X,Y ))K.

Since 〈Q,T 〉 is (Q1, QP )-single-sided and since the formula associated to V 1
AS

belongs to Lsv
µ , from Theorem 2 we deduce the following theorem.

Theorem 7. The almost-sure reachability problem is decidable for 1-VASS-
MDPs.

Almost sure repeated reachability. For the case of almost sure repeated
reachability we reuse the previously introduced formula InvPre(X,Y ). We can
perform a reasoning similar to the previous ones and provide a characterization
of the set W 1

AS .

Lemma 5. W 1
AS = JνX.InvPre(X,µY.(qF ∨ InvPre(X,Y )))K.

12



As previously, this allows us to deduce the decidability of the almost sure
repeated reachability problem for 1-VASS-MDP.

Theorem 8. The almost sure repeated reachability problem is decidable for 1-
VASS-MDPs.

4.3 Limit-sure reachability in 1-VASS-MDP

We consider a slightly more general version of the limit-sure reachability problem
with a set X ⊆ Q of target states instead of a single state qF , i.e., the standard
case corresponds to X = {qF }.

We extend the set of natural numbers N to N∗ = N
⋃
{∗} by adding an element

∗ /∈ N with ∗+ j = ∗− j = ∗ and j < ∗ for all j ∈ N. We consider then the set of
vectors Nd∗. The projection of a vector v in Nd by eliminating components that
are indexed by a natural number k is defined by projk(v)(i) = v(i) if i 6= k and
projk(v)(i) = ∗ otherwise

Let Qc represent control-states which are indexed by a color. The coloring
functions coli : Q→ Qc create colored copies of control-states by coli(q) = qi.

Given a 1-VASS-MDP S = 〈Q,Q1, QP , T, τ〉 of dimension d, an index k ≤ d
and a color i, the colored projection is defined as:

Projk(S, d, i) = 〈coli(Q), coli(Q1), coli(QP ), projk,i(T ), τk,i〉

where projk,i(T ) = {projk,i(t)|t ∈ T} is the projection of the set of transitions
T and projk,i(t) = 〈coli(x), projk(z), coli(y)〉 is the projection of transition t =
〈x, z, y〉 obtained by removing component k and coloring the states x and y with
color i. The transition weights carry over, i.e., τk,i(t

′) =
∑
{τ(t) | projk,i(t) = t′}.

We define the functions state : Q×Nd∗ → Q and count : Q×Nd∗ → Nd s.t for
a configuration ci = 〈q,v〉, where q ∈ Q and v ∈ Nd we have that state(q,v) = q
and count(q,v) = v. For any two configurations c1 and c2, we write c1 ≺ c2 to
denote that state(c1) = state(c2), and there exists a nonempty set of indexes
I where for every i ∈ I , count(c1)(i) < count(c2)(i), whereas for every index
j /∈ I, 0 < j ≤ d, count(c1)(j) = count(c2)(j).

Algorithm 1 reduces the dimension of the limit-sure reachability problem for
1-VASS-MDP by a construction resembling the Karp-Miller tree [15]. It takes as
input a 1-VASS-MDP S of some dimension d > 0 with a set of target states X. It
outputs a new 1-VASS-MDP S′ of dimension d− 1 and a new set of target states
X ′ such that MS can limit-surely reach X iff MS′ can limit-surely reach X ′. In
particular, in the base case where d−1 = 0, the new system S′ has dimension zero
and thus induces a finite-state MDP MS′ , for which limit-sure reachability of X ′

coincides with almost-sure reachability of X ′, which is known to be decidable in
polynomial time. Algorithm 1 starts by exploring all branches of the computation
tree of S (and adding them to S′ as the so-called initial uncolored part) until it
encounters a configuration that is either (1) equal to, or (2) strictly larger than a
configuration encountered previously on the same branch. In case (1) it just adds
a back loop to the point where the configuration was encountered previously.
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In case (2), it adds a modified copy of S (identified by a unique color) to S′.
This so-called colored subsystem is similar to S except that those counters that
have strictly increased along the branch are removed. The intuition is that these
counters could be pumped to arbitrarily high values and thus present no obstacle
to reaching the target. Since the initial uncolored part is necessarily finite (by
Dickson’s Lemma) and each of the finitely many colored subsystems only has
dimension d− 1 (since a counter is removed; possibly a different one in different
colored subsystems), the resulting 1-VASS-MDP S′ has dimension d − 1. The
set of target states X ′ is defined as the union of all appearances of states in X
in the uncolored part, plus all colored copies of states from X in the colored
subsystems.

Algorithm 1 Reducing the dimension of the limit-sure reachability problem.

Require: S = 〈Q,Q1, QP , T, τ〉 1-VASS-MDP, dimension d > 0, c0 = 〈q0,v〉 ∈ Q×Nd

X ⊆ Q - set of target states
Ensure: S′ = 〈Q′, Q′1, Q′P , T ′, τ ′〉; c′0 = 〈q′0,0〉; X ′ ⊆ Q′; λ : Q′ → ((Q

⋃
Qc)× Nd

∗)
1: Q′ ← ∅; Q′1 ← ∅; Q′P ← ∅; T ′ ← ∅; τ ′ ← ∅;
2: new(q′); q′0 ← q′; λ(q′)← c0; Q′ ← {q′}; i← 0
3: if state(λ(q′)) ∈ Q1 then Q′1 ← {q′} else Q′P ← {q′}
4: ToExplore ← {q′}
5: while ToExplore 6= ∅ do
6: Pick and remove a q ∈ ToExplore
7: if ∃q′. q′ is previously on the same branch as q and λ(q′) ≺ λ(q) then
8: get indexes I in which the counter is increasing
9: pick and remove the first index k from I

10: i← i+ 1; // increase color index
11: new(q′′);
12: λ(q′′)← 〈coli(state(λ(q))), projk(count(λ(q)))〉
13: if state(λ(q)) ∈ Q1 then Q′1 ← Q′1

⋃
{q′′} else Q′P ← Q′P

⋃
{q′′}

14: T ′ ← T ′
⋃
{〈q,0, q′′〉}; τ ′(〈q,0, q′′〉) = 1;

15: Q′1 ← Q′1
⋃
coli(Q1); Q′P ← Q′P

⋃
coli(QP ); T ′ ← T ′

⋃
projk,i(T );

16: X ′ ← X ′
⋃
coli(X); τ ′ ← τ ′ ∪ τk,i

17: else
18: for every t = 〈x, z, y〉 in T such that t ∈ En(λ(q)) do
19: if ∃q′. q′ is previously on the same branch as q and t(λ(q)) = λ(q′) then
20: T ′ ← T ′

⋃
{〈q, z, q′〉};

21: else
22: new(q′); λ(q′)← t(λ(q))
23: T ′ ← T ′

⋃
{〈q, z, q′〉}; τ ′(〈q, z, q′〉)← τ(t)

24: if state(λ(q′)) ∈ Q1 then Q′1 ← Q′1
⋃
{q′} else Q′P ← Q′P

⋃
{q′}

25: if state(λ(q′)) ∈ X then X ′ ← X ′
⋃
{q′}

26: ToExplore← ToExplore
⋃
{q′}

27: end if
28: end for
29: end if
30: end while
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By Dickson’s Lemma, the conditions on line 7 or line 19 of the algorithm
must eventually hold on every branch of the explored computation tree. Thus, it
will terminate.

Lemma 6. Algorithm 1 terminates.

The next lemma states the correctness of Algorithm 1. Let S = 〈Q,Q1, QP , T, τ〉
be 1-VASS-MDP of dimension d > 0 with initial configuration c0 = 〈q0,v〉 and
X ⊆ Q a set of target states. Let S′ = 〈Q′, Q′1, Q′P , T ′, τ ′〉 with initial configu-
ration c′0 = 〈q′0,0〉 and set of target states X ′ ⊆ Q′ be the (d− 1) dimensional
1-VASS-MDP produced by Algorithm 1. As described above we have the following
relation between these two systems.

Lemma 7. P+(MS , c0, J♦XK) = 1 iff P+(MS′ , c
′
0, J♦X ′K) = 1.

By applying the result of the previous lemma iteratively until we obtain a
finite-state MDP, we can deduce the following theorem.

Theorem 9. The limit-sure reachability problem for 1-VASS-MDP is decidable.

5 Conclusion and Future Work

Table 1 summarizes our results on the decidability of verification problems for
subclasses of VASS-MDP. The exact complexity of most problems is still open.
Algorithm 1 relies on Dickson’s Lemma for termination, and the algorithm
deciding the model-checking problem of Theorem 2 additionally uses the Valk-
Jantzen construction repeatedly. However, all these problems are at least as hard
as control-state reachability in VASS, and thus EXPSPACE-hard [12].

The decidability of the limit-sure repeated reachability problem for 1-VASS-
MDP is open. A hint of its difficulty is given by the fact that there are instances
where the property holds even though a small chance of reaching a deadlock cannot
be avoided from any reachable configuration. In particular, a solution would
require an analysis of the long-run behavior of multi-dimensional random walks
induced by probabilistic VASS. However, these may exhibit strange nonregular
behaviors for dimensions ≥ 3, as described in [8] (Section 5).

P-VASS-MDP df P-VASS-MDP 1-VASS-MDP

sure reachability × (Thm. 3) X (Thm. 4) X (Thm. 6)

almost-sure reachability × (Thm. 3) × (Thm. 5) X (Thm. 7)

limit-sure reachability × (Thm. 3) × (Thm. 5) X (Thm. 9)

sure repeated reachability × (Thm. 3) X (Thm. 4) X (Thm. 6)

almost-sure repeated reachability × (Thm. 3) × (Thm. 5) X (Thm. 8)

limit-sure repeated reachability × (Thm. 3) × (Thm. 5) Open

Table 1. Decidability of verification problems for P-VASS-MDP, deadlock-free P-VASS-
MDP and 1-VASS-MDP. A X stands for decidable and a × for undecidable.
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A Proofs of Section 3

A.1 Proof of Lemma 1

Even if the result of this lemma is quite standard, in order to be consistent we
provide the proof, in particular to be sure that the fact that we are dealing with
infinite state systems does not harm the reasoning.

Lemma 8. V PS = JνX.(
∨
q∈Q\{qF } q) ∧ (Q1 ∨ ♦X) ∧ (QP ∨ (Q1 ∧�X))K.

Proof. We denote by U the set JνX.(
∨
q∈Q\{qF } q)∧(Q1∨♦X)∧(QP∨(Q1∧�X))K.

We will consider the function g : 2C 7→ 2C such that for each set of configurations
C ′ ⊆ C, we have g(C ′) = J

∨
(q∈Q\{qF } q)∧(Q1∨♦X)∧(QP∨(Q1∧�X))Kε0[X:=C′],

i.e. the set J
∨
q∈Q\{qF } q)∧(Qp∧♦X)∧(Q1∧(Q1∧�X))K where X is interpreted

as C ′. Note that U is then the greatest fixpoint of g and hence U = g(U).

We first prove that U ⊆ V PS . Let c be a configuration in C such that c /∈ V PS .
Then there exists a strategy σ ∈ Σ such that Plays(MS , c, σ) ⊆ J♦qF K. We
consider such a strategy σ and we reason by contradiction assuming that c ∈ U .

Let us show that since c ∈ U , there exists an infinite play c0 → c1 → c2 → . . .
in Plays(MS , c, σ) such that c0 = c and ci in U for all i ∈ N. We prove in fact
by induction that if c0 → c1 . . . → ck is a finite play in MS respecting σ with
c0 = c and such that ci ∈ U for i ∈ [0..k], then there exists ck+1 ∈ U such that
c0 → c1 . . .→ ck+1 is a play in MS respecting σ. The base case is obvious since
c ∈ U . We assume now that c0 → c1 . . . → ck is a finite play in MS respecting
σ such that ci ∈ U for i ∈ [0..k]. Because there is no deadlock, if ck ∈ C1 then
there exists ck+1 ∈ C satisfying ck+1 = σ(c0 → c1 . . .→ ck). Furthermore since
ck ∈ U and U = g(U), we deduce that, for all c ∈ C such that ck → c, we have
c ∈ U , and consequently ck+1 ∈ U . On the other hand, if ck ∈ CP , then since
ck ∈ U , there exists ck+1 ∈ U such that ck → ck+1. In both cases, we have that
c0 → c1 . . .→ ck → ck+1 is a play in MS which respects σ.

We deduce the existence of an infinite play c0 → c1 → c2 → . . . in Plays(MS ,
c, σ) such that c0 = c and ci in U for all i ∈ N. Note that, because U = g(U), we
have that U ⊆ Q\{qF }. However, because c0 → c1 → c2 → . . . in Plays(MS , c, σ),
we also have that c0 → c1 → c2 → . . . ∈ J♦qF K, which is a contradiction. Conse-
quently, we have c /∈ U and this allows us to conclude that U ⊆ V PS .

We now prove that V PS ⊆ U . By the Knaster-Tarski Theorem, since U is the
greatest fixpoint of g, we know that U =

⋃
{C ′ ⊆ C | C ′ ⊆ g(C ′)}. It hence

suffices to show that V PS ⊆ g(V PS ). Let c = 〈q,v〉 be a configuration in V PS . First
note that by definition of V PS , we have q 6= qF . We reason then by a case analysis
to prove that c ∈ g(V PS ). First assume c ∈ C1. Then by definition of V PS , for all
c′ = 〈q′,v′〉 in C satisfying c→ c′, we have c′ ∈ V PS , otherwise Player 1 would
have a strategy to reach qF from c which will consist in taking the transition
leading to c′. This allows us to deduce that c ∈ g(V PS ). Assume now that c ∈ CP .
Then, because c ∈ V PS and S is deadlock free, there necessarily exists c′ such
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c → c′ and c′ ∈ V PS (otherwise there would be a strategy to reach qF from all
states c′ such that c→ c′ and hence c would not be in V PS ). So also in this case
we have c ∈ g(V PS ). Hence we have V PS ⊆ g(V PS ) which allows to deduce that
V PS ⊆ U . ut

Lemma 9. WP
S = JµY.νX.

(
(
∨
q∈Q\{qF } q) ∧ (Q1 ∨ ♦X) ∧ (QP ∨ (Q1 ∧�X)) ∨

(qF ∧QP ∧ ♦Y ) ∨ (qF ∧Q1 ∧�Y )
)
K.

Proof. We denote by U the set JµY.νX.
(
(
∨
q∈Q\{qF } q) ∧ (Q1 ∨ ♦X) ∧ (QP ∨

(Q1 ∧ �X)) ∨ (qF ∧ QP ∧ ♦Y ) ∨ (qF ∧ Q1 ∧ �Y )
)
K and we consider the func-

tion h : 2C 7→ 2C such that for each set of configurations C ′ ⊆ C, we have
h(C ′) = JνX.

(
(
∨
q∈Q\{qF } q)∧(Q1∨♦X)∧(QP ∨(Q1∧�X))∨(qF ∧QP ∧♦Y )∨

(qF ∧ Q1 ∧ �Y )
)
Kε0[Y :=C′], i.e. it corresponds to the set JνX.

(
(
∨
q∈Q\{qF } q) ∧

(Q1 ∨♦X) ∧ (QP ∨ (Q1 ∧�X)) ∨ (qF ∧QP ∧♦Y ) ∨ qF ∧ (Q1 ∧�Y )
)
K where Y

is interpreted as C ′. Note that U is then the least fixpoint of h.

We first prove that U ⊆ WP
S . Note that U being the least fixpoint of h, by

the Knaster-Tarski Theorem we have U =
⋂
{C ′ ⊆ C | h(C ′) ⊆ C ′}. We will

hence show that h(WP
S ) ⊆ WP

S from which we will get U ⊆ WP
S . For this, we

consider the function gWP
S

: 2C 7→ 2C such that for each set of configurations

C ′ ⊆ C, we have gWP
S

(C ′) = J(
∨
q∈Q\{qF } q)∧ (Q1 ∨♦X)∧ (QP ∨ (Q1 ∧�X))∨

(qF ∧QP ∧♦Y ) ∨ (qF ∧Q1 ∧�Y )Kε0[Y :=WP
S ,X:=C′]. The set V = h(WP

S ) is then

by definition the greatest fixpoint of gWP
S

(so we have as well V = gWP
S

(V )).

Hence we need to show that V ⊆WP
S . For this we will assume that c /∈WP

S and
show that c /∈ V .

Let c /∈WP
S . Hence there exists a strategy σ ∈ Σ such that Plays(MS , c, σ) ⊆

J�♦qF K. We reason now by contradiction assuming that c ∈ V . We will show
that either there exists a finite play c0 → c1 → c2 . . .→ ck in MS which respects
σ and with ck ∈WP

S ∩ JqF K or there exists an infinite play c0 → c1 → c2 → . . .
in Plays(MS , c, σ) such that c0 = c and ci /∈ JqF K for all i ∈ N \ {0}.

We prove in fact by induction that if c0 → c1 . . . → ck is a finite play in
MS respecting σ with c0 = c and such that ci ∈ V and ci /∈ WP

S for i ∈ [0..k],
then there exists ck+1 ∈ C such that either ck+1 ∈WP

S ∩ JqF K or (ck+1 ∈ V and
ck+1 /∈ JqF K), and such that c0 → c1 . . .→ ck+1 is a play in MS respecting σ. We
proceed with the base case. First note that c ∈ V and c /∈ WP

S . We recall that
V = gWP

S
(V ).

– If c ∈ C1, then let c1 = σ(c). Since c ∈ gWP
S

(V ) and c ∈ C1, we have

necessarily that either (c1 ∈ V and c1 /∈ JqF K) or c1 ∈ WP
S ∩ JqF K, and we

have c→ c1 is a play in MS respecting σ.
– If c ∈ CP , then by definition of gWP

S
(V ), there exists necessarily c1 such that

either (c1 ∈ V and c1 /∈ JqF K) or c1 ∈ WP
S ∩ JqF K and c→ c1. Furthermore

this allows us to deduce that c→ c1 is a play in MS respecting σ.

For the inductive case, the proof works exactly the same way.
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From this we deduce that either there exists a finite play c→ c1 → c2 . . .→
ck in MS respecting σ with ck ∈ WP

S ∩ JqF K or there exists an infinite play
c → c1 → c2 → . . . in Plays(MS , c, σ) such that c0 = c and ci /∈ JqF K for all
i ∈ N. We recall that we have Plays(MS , c, σ) ⊆ J�♦qF K and proceed by a case
analysis to show a contradiction:

1. If there exists c0 → c1 → c2 . . .→ ck in Plays(MS , c, σ) with ck ∈WP
S then

it is not possible that all the plays of the form c0 → c1 → c2 . . .→ ck . . . in
Plays(MS , c, σ) are in J�♦qF K. In fact, otherwise there would be a strategy
σ′ from ck (built from σ) such that Plays(MS , ck, σ

′) ⊆ J�♦qF K which
contradicts the fact that ck ∈WP

S .

2. If there exists an infinite play c0 → c1 → c2 → . . . in Plays(MS , c, σ) such
that c0 = c and ci /∈ JqF K for all i ∈ N, then we have a contradiction with
the fact that Plays(MS , c, σ) ⊆ J�♦qF K.

We hence deduce that c /∈ V , and consequently we have shown that U ⊆WP
S .

We now prove that WP
S ⊆ U . To do that we will instead show that the

complement of U , denoted by U , is included in the complement of WP
S , denoted

by W 1
S and which is equal to the set {c ∈ C | ∃σ ∈ Σ s.t. Plays(MS , c, σ) ⊆

J�♦qF K}.
First, note that U is equal to JνY.µX.

(
qF ∨ (QP ∧�X)∨ (Q1∧ (QP ∨♦X))∧

(¬qF ∨QP ∨♦Y ) ∧ (¬qF ∨Q1 ∨�Y )
)
K, which is itself equal to JνY.µX.

[(
¬qF ∧(

(QP ∧ �X) ∨ (Q1 ∧ ♦X)
))
∨
(
qF ∧

(
(QP ∧ �Y ) ∨ (Q1 ∨ ♦Y )

))]
K. Note that

then we have as well that U = JµX.
[(
¬qF ∧

(
(QP ∧�X)∨ (Q1 ∧♦X)

))
∨
(
qF ∧(

(QP ∧ �Y ) ∨ (Q1 ∨ ♦Y )
))]

Kε0[Y :=U ]. We denote by T the set J
(
qF ∧

(
(QP ∧

�Y ) ∨ (Q1 ∨ ♦Y )
))

Kε0[Y :=U ]. Note that we have : JµX.
[(
¬qF ∧

(
(QP ∧�X) ∨

(Q1∧♦X)
))
∨
(
qF ∧

(
(QP ∧�Y )∨(Q1∨♦Y )

))]
Kε0[Y :=U ] ⊆ JµX.

[((
(QP ∧�X)∨

(Q1 ∧ ♦X)
))
∨
(
qF ∧

(
(QP ∧ �Y ) ∨ (Q1 ∨ ♦Y )

))]
Kε0[Y :=U ]. Let U ′ be the set

JµX.
[((

(QP ∧�X)∨ (Q1 ∧♦X)
))
∨
(
qF ∧

(
(QP ∧�Y )∨ (Q1 ∨♦Y )

))]
Kε0[Y :=U ].

By adapting the proof of Lemma 8, we can deduce that the complement of
this last U ′ is equal to {c ∈ C |6 ∃σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J♦T K} (where
J♦T K denotes the plays that eventually reach the set T ) and consequently U ′ =
{c ∈ C | ∃σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J♦T K}. We have consequently that
U ⊆ {c ∈ C | ∃σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J♦T K} with T = J

(
qF ∧

(
(QP ∧

�Y ) ∨ (Q1 ∨ ♦Y )
))

Kε0[Y :=U ].

We can now prove that U ⊆ W 1
S . Let c ∈ U . Since U ⊆ {c ∈ C | ∃σ ∈

Σ s.t. Plays(MS , c, σ) ⊆ J♦T K}, from c Player 1 can surely reach T and by
definition of T , when it reaches T first it is in JqF K and then Player 1 can ensure
a successor state to belong to U . Hence performing this reasoning iteratively, we
can build a strategy for Player 1 from c to reach surely infinitely often JqF K.

ut
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B Proofs of Section 4

B.1 Proof of Lemma 2

Proof. Let S = 〈Q,Q1, QP , T, τ〉 be a 1-VASS-MDP and MS = 〈C,C1, CP ,→, p〉
its associated MDP. If a configuration 〈q,v〉 ∈ CP is a deadlock, then it means
that there is no outgoing edge in S from the control state q; hence each time a
play will reach this configuration, Player 1 will lose, so we can add a self loop
without any effect on the counters to this state in order to remove the deadlock.
For the states q ∈ Q1, we add a transition t to the outgoing edge of q which does
not modify the counter values and which leads to a new control state with a
self-loop, such that if the play reaches a configuration 〈q,v〉 which is a deadlock
in S, in the new game arena the only choice for Player 1 will be to go to this new
absorbing state and he will lose as he loses in S because of the deadlock. ut

B.2 Proof of Theorem 6

If we define the two following set of configurations: V 1
S = {c ∈ C | ∃σ ∈

Σ such that Plays(MS , c, σ) ⊆ J♦qF K} and W 1
S = {c ∈ C | ∃σ ∈ Σ such that

Plays(MS , c, σ) ⊆ J�♦qF K}, we have the following result:

Lemma 10.

– V 1
S = JµX.qF ∨ (Q1 ∧ ♦X) ∨ (QP ∧�X)K

– W 1
S = JνY.µX.

(
qF ∨ (QP ∧�X)∨ (Q1 ∧♦X)

)
∧
(∨

q∈Q\{qF } q ∨Q1 ∨ (QP ∧
�Y )

)
∧
(∨

q∈Q\{qF } q ∨QP ∨ ♦Y
)
K

Proof. Since we are looking at deadlock free VASS-MDP, we can reuse the formula

given by Lemma 8 and 9. In fact, note that we have V 1
S = V PS and W 1

S = WP
S .

Hence by taking the complement formulae of Lsv
µ , we obtain the desired result. For

V 1
S , from the formula describing V PS , we obtain the formula µX.qF ∨ (Q1∧♦X)∨(
Q1 ∧ (QP ∨�X)

)
which is equivalent to µX.qF ∨ (Q1 ∧♦X)∨ (QP ∧�X). For

W 1
S , from the formula describing WP

S , we obtain the formula νY.µX.
(
qF ∨ (QP ∧

�X)∨(Q1∧(QP ∨♦X))
)
∧
(∨

q∈Q\{qF } q∨Q1∨�Y
)
∧
(∨

q∈Q\{qF } q∨QP ∨♦Y
)

which is equivalent to νY.µX.
(
qF ∨ (QP ∧�X) ∨ (Q1 ∧ ♦X)

)
∧
(∨

q∈Q\{qF } q ∨
Q1 ∨ (QP ∧�Y )

)
∧
(∨

q∈Q\{qF } q ∨QP ∨ ♦Y
)
. ut

B.3 Closed Lsv
µ -formulae manipulate upward closed-sets

We will say that an environment ε : X → 2C is upward-closed if for each variable
X ∈ X , ε(X) is upward-closed (we take as order ≤ for the configurations, the
classical one such that 〈q,v〉 ≤ 〈q′,v′〉 iff q = q′ and v ≤ v′) . Whereas it is not
true that for any VASS, any formula φ ∈ Lsv

µ and any upward closed environment

ε : X → 2C the set JφKε is upward closed, we now prove that on single-sided
VASS this property holds.
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Lemma 11. For any formula φ ∈ Lsv
µ and any upward closed environment ε,

JφKε evaluated over the configurations of the (Q1, QP )-single-sided VASS 〈Q,T 〉
is an upward closed set.

Proof. The proof is by induction on the length of the formula φ. For formulae
of the form q, the result is due to the fact that the set of considered regions is
upward closed. For formulae of the form X, the result comes from the assumption
on the considered environment. For formulae of the form φ ∧ ψ and µX.φ the
result can be obtained using the induction hypothesis and the fact that the
intersection of upward closed sets is an upward-closed set. For formulae of the
form φ ∨ ψ and νX.φ the result can be obtained using the induction hypothesis
and the fact that the union of upward closed sets is an upward closed set.

Now we consider formulae of the form ♦φ assuming that for any upward
closed environment ε, JφKε is an upward closed set. Let c1 ∈ J♦φKε. Then there
exists c′1 ∈ JφKε such that c1 → c′1. Let c2 ∈ C such that c1 ≤ c2. Since we are
considering VASS, we now that there exists c′2 ∈ C such that c2 → c′2 and c′1 ≤ c′2.
Since JφKε is upward closed, we have c′2 ∈ JφKε, hence c2 belongs to J♦φKε. This
proves that J♦φKε is upward closed.

Now we consider formulae of the form QP ∧�φ assuming that for any upward
closed environment ε, JφKε is an upward closed set. Let c1 ∈ JQP ∧�φKε. Then
for all c′1 ∈ C such that c1 → c′1, we have c′1 ∈ JφKε. Note that c1 = (q1,v1)
with q1 ∈ QP . Let c2 ∈ C such that c1 ≤ c2. By definition of the order ≤ on
the set of configurations, we have c2 = (q1,v2) with v1 ≤ v2. Let c′2 such that
c2 → c′2. Since q1 ∈ QP , by the definition of single-sided VASS, we know that the
transition which leads from c2 to c′2 can also be taken from c1 (this is because
the outgoing transitions from control states in QP do not modify the counter
values), hence there exists c′1 ∈ C such that c1 → c′1 and since c1 ≤ c2, we have
c′1 ≤ c′2. Furthermore, we have c′1 ∈ JφKε and since, by induction, this last set is
upward closed, we deduce c′2 ∈ JφKε. This allows us to conclude that c2 belongs
to JQ1 ∧�φKε which is hence an upward closed set. ut

B.4 Proof of Lemma 3

Proof. We consider the function h : 2C → 2C which associates to each set of
configurations C ′ ⊆ C the set h(C ′) = JqF ∨ InvPre(X,Y )

y
ε0[X:=E,Y :=C′]

. We

define a sequence of sets (Fi)i∈N included in C as follows:

– F0 = ∅
– for all i ∈ N, Fi+1 = Fi ∪ h(Fi)

Using Lemma 11 and the fact that the union of upward closed set is an upward
closed set, we can prove that Fi is upward closed for all i ∈ N. Furthermore,
we have that Fi ⊆ Fi+1 for all i ∈ N. Since (Fi)i∈N is an increasing sequence of
upward closed sets included in C and since (C,≤) is a wqo, from the theory of
wqo, we know that there exists N ∈ N such that for all i ≥ N , Fi = Fi+1.

We consider also the function g : 2C → 2C , which associates to each set of
configurations C ′ ⊆ C the set g(C ′) = JµY.

(
qF ∨ InvPre(X,Y )

)
Kε0[X:=C′]. By
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definition, E is the greatest fixpoint of the function g, hence E = JµY.
(
qF ∨

InvPre(X,Y )
)
Kε0[X:=E]. E is then also the least fixpoint of the function h and

consequently, by definition of the sequence (Fi)i∈N, we know that E =
⋃
i∈N Fi.

This allows us to deduce that E = FN . We point out that F1 = JqF K.
We now define a strategy σ for Player 1 which will be memoryless on E (i.e.

the strategy will only depend on the current configuration) and is a function
σ : E ∩ C1 7→ C (note that since with this strategy all the plays starting from
E will stay in E, we do not need to define it precisely on the entire set C1

and we assume that, on the set C1 \E, the strategy can choose any one of the
possible successor configurations). Let c ∈ E. Then we denote by j ∈ [2..N ] the
smallest index such that c ∈ Fj and c /∈ Fj−1, we then define σ(c) as being the
configuration c′ such that c → c′ and c′ ∈ Fj−1 (by definition of the sequence
((Fi)i∈N, such a c′ necessarily exists). If c belongs to F1, then the strategy chooses
any one of the possible successors.

Let c0 ∈ E. We show that there exists a play c0 ·c1 ·c2 · . . . in Plays(MS , c0, σ)
that satisfies the three properties of the lemma. In fact, we consider the play such
that in all configurations c ∈ E ∩ CP and if j ∈ [2..N ] is the smallest index such
that c ∈ Fj and c /∈ Fj−1, Player P chooses c′ such that c → c′ and c′ ∈ Fj−1.
Hence in this play it is obvious that in less than N steps, the play will reach a
configuration in F1 = JqF K and the points 2. and 3. also hold for this play by
definition of the sets (Fi)i∈N. ut

B.5 Proof of Lemma 4

We now prove that the set E is included in V 1
AS . Techniques we used here are

quite similar than the one presented in [2] to prove decidability of the sure
reachability problems in probabilistic VASS (without nondeterminism).

Lemma 12. E ⊆ V 1
AS

Proof. We consider the integer N ∈ N and the strategy σ of Player 1 given
by Lemma 3. For each q ∈ QP , let Out(q) = {(q, z, q′) ∈ T for some q′ ∈
Q and z ∈ Zn} be the set of transitions going out of q. We also denote by Lq
the cardinality of Out(q), by Wq the sums Σt∈Out(q)τ(t) and finally Minq is the
minimal element of {τ(t) | t ∈ Out(q)}. By definition of VASS-MDP, we know
that for a configuration 〈q,v〉 ∈ CP , for any configuration c′ ∈ C such that

〈q,v〉 → c′, we have p(q,v)(c′) ≥ Minq

Lq·Wq
. We denote by β the minimal element of

the set { Minq

Lq·Wq
| q ∈ QP }. Then for any configuration c ∈ CP and c′ ∈ C such

that c→ c′, we have p(c)(c′) ≥ β. Note that necessarily β > 0. Let c0 ∈ E \ JqF K
and let c0 · c1 · c2 · · · be a play in Plays(MS , c0, σ) such that for all i ∈ N,
ci /∈ JqF K. From Lemma 3, we know that there exists N ∈ N such that, for
all i ∈ N, ci ∈ E, we have that P(MS , ci, σ, J♦qF K) ≥ βN . This allows us to
deduce that the probability of never visiting qF from c0 following σ is smaller
than (1− βN )∞ and since β > 0, we deduce that this probability is equal to 0.
Consequently P(MS , c0, σ, J♦qF K) = 1 and c0 ∈ V 1

AS . �
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We now prove the opposite direction. For this we use a technique similar to
the ones presented in the proof of Lemma 5.29 in [5].

Lemma 13. V 1
AS ⊆ E

Proof. Let c0 ∈ V 1
AS . So there exists a strategy σ for Player 1 such that P(MS ,

c0, σ, J♦qF K) = 1. Let D be the following set of configurations: {c ∈ C | ∃c0 ·
c1 · · · ∈ Plays(MS , c0, σ) s.t. ∃i ∈ N for which ci = c and ∀0 ≤ j < i.cj /∈ JqF K}.
Clearly c0 belongs to D. We will show that D ⊆ E.

We consider the two functions g, h : 2C → 2C such that for each set of
configurations C ′ ⊆ C, we have g(C ′) = JµY.

(
qF ∨ InvPre(X,Y )

)
Kε0[X:=C′] and

h(C ′) = JqF ∨ InvPre(X,Y )
y
ε0[X:=D,Y :=C′]

. We define the following sequence of

configurations (FDi )i∈N such that:

– FD0 = ∅,
– for all i ∈ N, FDi+1 = FDi ∪ h(FDi )

Let c ∈ D, since P(MS , c0, σ, J♦qF K) = 1, we know that there exists a strategy
σ′ such that P(MS , c, σ

′, J♦qF K) = 1 (otherwise we would have P(MS , c0, σ, J♦qF K)
< 1). Hence there is a play in c · c′1 · c′2 · · · ∈ Plays(MS , c, σ

′) for which there
exists i ∈ N satisfying c′i ∈ JqF K and c′j /∈ JqF K for all 0 ≤ j < i. Note also
that by definition of D, for all 0 ≤ j ≤ i, we have that c′j belongs to D and if
c′j ∈ CP then for all c′′ ∈ C such that c′j → c′′, we have c′′ ∈ D. Hence there exists

0 ≤ k ≤ i+1, such that c ∈ FDk . Since g(D) = JµY.
(
qF ∨InvPre(X,Y )

)
Kε0[X:=D],

we have g(D) =
⋃
i∈N F

D
i . Consequently, c ∈ g(D) and we have D ⊆ g(D).

We know that E is the greatest fixpoint of g, then by Knaster-Tarski Theorem
we know that E =

⋃
{C ′ ∈ C | C ′ ⊆ g(C ′)}, and hence D ⊆ E. Since c0 ∈ D, we

deduce that c0 ∈ E. �

B.6 Proof of Lemma 5

We denote by F the set JνX.InvPre(X,µY.(qF ∨ InvPre(X,Y ))
)
Kε0 . Since

νX.InvPre(X,µY.(qF ∨ InvPre(X,Y ))) is a formula of Lsvµ interpreted over
the (Q1, QP )-single-sided VASS 〈Q,T 〉, from Lemma 11, we know that F is an
upward-closed set.

We first prove that W 1
AS is included in F .

Lemma 14. W 1
AS ⊆ F

Proof. Let c0 ∈W 1
AS . So there exists a strategy σ for Player 1 such that P(MS ,

c0, σ, J�♦qF K) = 1. Let T be the following set of configurations {c ∈ C | ∃c0 ·
c1 · · · ∈ Plays(MS , c0, σ) s.t. ∃i ∈ N for which ci = c}. Necessarily, we have
T ∩ JqF K 6= ∅ and c0 ∈ T . We consider the function g : 2C → 2C such that
for each set of configurations C ′ ⊆ C, we have g(C ′) = JInvPre(X,µY.(qF ∨
InvPre(X,Y )))Kε0[X:=C′]. We will prove that T ⊆ g(T ).
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Let c ∈ T . We have necessarily that there exists a strategy σ′ for Player 1 such
that P(MS , c, σ

′, J�♦qF K) > 0, otherwise we would have that P(MS , c0, σ, J�♦qF K) <
1. Hence there exists a play in MS respecting σ of the form:

c0 · c1 · · · ck · · · c · c′1 · · · c′m

with m ≥ 1 (that is c 6= c′m) and c′m ∈ JqF K. By definition of T , for each 1 ≤ i ≤ m,
if c′i ∈ CP , for all configurations c′′ ∈ C such that c′i → c′′ we have, c′′ ∈ T . Using
a similar reasoning to that done in Lemma 13, we deduce that for all 1 ≤ i ≤ m,
we have c′i ∈ JµY.(qF ∨ InvPre(X,Y ))Kε0[X:=T ]. Furthermore if c ∈ CP , for all
configurations c′′ ∈ C such that c→ c′′ we have also c′′ ∈ T , hence we have that
c ∈ g(T ) (using the definition of InvPre(X,Y )). This implies T ⊆ g(T ).

Since F is the greatest fixpoint of g, then by Knaster-Tarski Theorem we
know that F =

⋃
{C ′ ∈ C | C ′ ⊆ g(C ′)}, so T ⊆ F . Since c0 ∈ T , we deduce

that c0 ∈ F . �

We now prove the left to right inclusion.

Lemma 15. F ⊆W 1
AS

Proof. We consider the function h : 2C → 2C which associates to each set of
configurations C ′ ⊆ C the set h(C ′) = JqF ∨ InvPre(X,Y )

y
ε0[X:=F,Y :=C′]

. We

define a sequence of sets (Fi)i∈N included in C as follows:

– F0 = ∅
– for all i ∈ N, Fi+1 = Fi ∪ h(Fi)

As for the proof of Lemma 3, we know that there exists N ∈ N such that for
all i ≥ N , Fi = Fi+1 and that JµY.

(
qF ∨ InvPre(X,Y )

)
Kε0[X:=F ] = FN . Since

F = JνX.InvPre(X,µY.(qF ∨ InvPre(X,Y )))Kε0 , using again fixpoint theory, we
know that F = JInvPre(X,µY.(qF ∨ InvPre(X,Y )))Kε0[X:=F ] and consequently
F = JInvPre(X,Y )Kε0[X:=F,Y :=FN ].

We now define a strategy σ for player 0 which will be memoryless on F (i.e.
the strategy will only depend of the current configuration). The strategy σ will be
described as a function σ : F ∩C1 7→ C (note that since with this strategy all the
plays starting from F will stay in F , we do not need to define it precisely on the
entire set C1; we assume that on the set C1 \ F , the strategy can choose any one
of the possible successor states). Let c ∈ C1 \ F and consider the following two
cases. If c ∈ F \FN or c ∈ F1, we define σ(c) as being a configuration c′ ∈ FN ∩F
such that c → c′. By definition of F such a configuration necessarily exists. If
c ∈ FN \ F1 we denote by j ∈ [2..N ] the smallest index such that c ∈ Fj and
c /∈ Fj−1. We then define σ(c) as being the configuration c′ such that c → c′

and c′ ∈ Fj−1 ∩ F (by definition of F and of the sequence (Fi)i∈N, such a c′

necessarily exists).
By construction of the strategy σ and using a similar reasoning to the one

performed in the proof of Lemma 12, we can prove that for all c ∈ F , we
have P(MS , c, σ, J♦qF K) = 1. We would like now to prove that for each c ∈ F ,
P(MS , c, σ, J�♦qF K) = 1.
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We denote by J�¬qF K the set of infinite plays c0 · c1 · · · of MS such that for
all i ∈ N, ci /∈ JqF K. Then for each c ∈ F , we have P(MS , c, σ, J�¬qF K) = 0. We
also use the notation J♦�¬qF K the set of infinite play c0 · c1 · · · of MS for which
there exists i ∈ N, such that cj /∈ JqF K for all j ≥ i. Then for each c ∈ F , we
have P(MS , c, σ, J�♦qF K) = 1− P(MS , c, σ, J♦�¬qF K). We will now prove that
for each c ∈ F , P(MS , c, σ, J♦�¬qF K) = 0.

For c ∈ C, i ∈ N and d ∈ C \ JqF K, let Πc−i−d be the set of finite plays of MS

of the form c0 · c1 · · · ck such that:

– k > i;

– c0 = c, ck = d and ck−1 ∈ JqF K;
– the set G = {j ∈ {0, . . . , k} | cj ∈ JqF K} has i elements.

This represents the set of finite plays starting at c ending at configuration d and
that passes exactly through i configurations in JqF K.

For c ∈ F and i ∈ N and d ∈ F \ JqF K, we define ∆c−i−d the set of infinite
plays of the form ρ ·ρ′ where ρ is a finite play in Πc−i−d and ρ is an infinite play in
J�¬qF K. Let ∆c−i =

⋃
d/∈JqF K∆c−i−d. Intuitively ∆c−i is the set of infinite plays

starting from c which revisits JqF K exactly i times. For c ∈ F , it is straightforward
to check that:

(1) ∀i ∈ N, ∀d1, d2 ∈ F \ JqF K such that d1 6= d2, ∆c−i−d1 ∩∆c−i−d2 = ∅
(2) ∀i, j ∈ N such that i 6= j, ∆c−i ∩∆c−j = ∅
(3) ∀i ∈ N, ∀d ∈ F \JqF K, P(MS , c, σ,∆c−i−d) = P (Πc−i−d)P(MS , d, σ, J�¬qF K)

Hence, for all c ∈ F and i ∈ N, we have:

P(MS , c, σ,∆c−i) =
∑
d∈F\JqF K P(MS , c, σ,∆c−i−d)

= Σd∈F\JqF KP (Πc−i−d)P(MS , d, σ, J�¬qF K)
= 0

where the first equality holds by (1) and by the fact that all the configurations
reached from c following σ belongs to F (by definition of σ and F ); the second
equality follows from (3) and the last equality from the fact that for all d ∈ F ,
P(MS , d, σ, J�¬qF K) = 0.

Finally, we have for all c ∈ F :

(Plays(MS , c, σ) ∩ J♦�¬qF K) ⊆ (Plays(MS , c, σ) ∩
⋃
i∈N

∆c−i)

This is due to the fact that if an infinite play belongs to Plays(MS , c, σ) ∩
J♦�¬qF K, then it will pass only a finite number of times through JqF K. From this
inclusion, the previous equality and using (2), we deduce that P(MS , c, σ, J♦�¬qF K)
≤
∑
i∈N P(MS , c, σ,∆c−i) = 0. Hence, for all c ∈ F , we have P(MS , c, σ, J�♦qF K) =

1, which allows us to conclude that F ⊆W 1
AS . ut
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B.7 Proof of Lemma 6

Proof. Algorithm 1 explores an unfolding of the computation tree of S, which
is finitely branching since |T | is finite. The number of counters is fixed, and
therefore, by Dickson’s Lemma, (Nd,�) is a well quasi ordering. Therefore, on
every branch we eventually satisfy either the condition of line 19 or of line 7. In
the former case, a loop in the derived system S′ is created, and the exploration
of the current branch stops. In the latter case, a finitary description of a new
colored (possibly infinite-state) subsystem is added to S′ by adding finitely many
states, transitions and configurations to Q′, T ′ and X ′, respectively. Also in this
case, the exploration of the current branch stops. Since the exploration is finitely
branching, and every branch eventually stops, the algorithm terminates. ut

B.8 Proof of Lemma 7

Lemma 16. P+(MS , c0, J♦XK) = 1 =⇒ P+(MS′ , c
′
0, J♦X ′K) = 1.

Proof. Let us assume that P+(MS , c0, J♦XK) = 1. Therefore, there exists a family
of strategies that make the probability of reaching X arbitrarily close to 1. In
other words, ∀ε,∃σε,P(MS , c0, σε, J♦XK) ≥ 1 − ε. For every ε > 0 we use the
strategy σε of player 1 on MS to construct a copycat strategy σ′ε for the game
on MS′ that starts in c′0 = (q0,0), such that it achieves J♦X ′K with probability
≥ 1− ε.

The strategy σ′ε will use the same moves on MS′ as σε on MS , which is
possible due to the way how MS′ is constructed from MS by Algorithm 1. By
construction, for every reachable configuration in MS there is a corresponding
configuration in MS′ , and this correspondence can be maintained stepwise in the
moves of the game.

For the initial uncolored part of MS′ , this is immediate, since S′ is derived
from the unfolding of the game tree of S. The correspondence is expressed by the
function λ. Each current state of MS′ is labeled by the corresponding current
configuration of MS .

In the colored subsystems, the corresponding configuration in system MS′ is
a projection of a configuration in MS . For any transition t ∈ T that is controlled
by player 1 from a configuration in MS , there exists a transition t′ ∈ T ′ that
belongs to player 1 in the corresponding configuration in MS′ , such that this
transition leads to the corresponding state. This is achieved by the projection
and the fact that the 1-VASS-MDP game is monotone w.r.t. player 1, i.e., larger
configurations always benefit the player (by allowing the same moves or even
additional moves).

We now show a property on how probabilistic transitions in MS and MS′

correspond to each other: For every probabilistic transition t ∈ T from a configu-
ration in MS , there exists a probabilistic transition t′ ∈ T ′ in the corresponding
configuration in MS′ , and vice-versa, such that these transitions have the same
probability. In particular, a configuration in MS′ does not allow any additional
probabilistic transitions compared to its corresponding configuration in MS

(though it may allow additional transitions controlled by player 1).
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The first part of this statement follows from the monotonicity of the pro-
jection function and the monotonicity of the transitions w.r.t. the size of the
configurations. For the second part we need to show that for every probabilistic
transition t′ = 〈coli(x), projk(op), coli(y)〉 ∈ T ′ from a configuration in MS′ ,
there exists a probabilistic transition t = 〈x,0, y〉 ∈ TP in the corresponding
configuration in S, such that the probabilities of these transitions are equal. This
latter fact holds only because we are considering 1-VASS-MDP, where only the
player can change the counters, whereas the probabilistic transitions can only
change the control-states. I.e., the ‘larger’ projected configurations in MS′ do
not enable additional probabilistic transitions, since in 1-VASS-MDP these only
depend on the control-state.

Therefore, by playing in MS′ using strategy σ′ε with the same moves as σε
plays in MS , we reach the same corresponding configurations in MS′ with the
same probability values as in MS . Since the definition of the target set X ′ in S′

includes all configurations corresponding to configurations in X on S, it follows
from P(MS , c0, σε, J♦XK)) ≥ 1− ε that P(MS′ , c

′
0, σ
′
ε, J♦X ′K) ≥ 1− ε. Since, by

assumption above, this holds for every ε > 0, we obtain P+(MS′ , c
′
0, J♦X ′K)) = 1.

ut

Lemma 17. P+(MS′ , c
′
0, J♦X ′K) = 1 =⇒ P+(MS , c0, J♦XK) = 1.

Proof. We use the assumed family of strategies on MS′ that witnesses the property
P+(MS′ , c

′
0, J♦X ′K) = 1 to synthesize a family of strategies on MS that witnesses

P+(MS , c0, J♦XK) = 1.
First we establish some basic properties of the system S′. It is a 1-VASS-MDP

of dimension d− 1 with initial configuration c′0, and consists of several parts. The
initial uncolored part induces a finite-state MDP. Moreover, S′ contains finitely
many subsystems of distinct colors, where each subsystem is a 1-VASS-MDP of
dimension d− 1 obtained from S by projecting out one component of the integer
vector. For color i, let k(i) be the projected component of the vector (see line 9
of the algorithm). Each colored subsystem of dimension d− 1 induces an MDP
that may be infinite-state (unless d = 1, in which case it is finite-state).

Note that colored subsystems are not reachable from each other, i.e., a
color, once reached, is preserved. Each colored subsystem has its own initial
configuration (created in lines 11-12 of Alg. 1). Let m be the number of colors in S′

and ri the initial configuration of the subsystem of color i (where 0 ≤ i ≤ m− 1).
Let’s now consider only those colored subsystems in which the target setX ′ can

be reached limit-surely, i.e., let J = {i : 0 ≤ i ≤ m− 1 | P+(MS′ , ri, J♦X ′K) = 1}
be the set of good colors and let R = {rj | j ∈ J}, and R̄ = {rj | j /∈ J}.

Further, let X ′f be the restriction of X ′ to the finite uncolored part of S′ (i.e.,
only those parts added in line 25 of Alg. 1).

We now establish the existence of certain strategies in subsystems of S′. These
will later serve as building blocks for our strategies on MS .

Since we assumed that P+(MS′ , c
′
0, J♦X ′K) = 1, there exists a family of

strategies that makes the probability of reaching X ′ arbitrarily close to one.
In particular, they must also make the probability of reaching configurations
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in R̄ arbitrarily close to zero. Thus we obtain P+(MS′ , c
′
0, J♦X ′f ∪ RK) = 1,

i.e., we can limit-surely reach X ′f ∪ R. Since, for this objective, only the finite
uncolored part of MS′ is relevant, this is a problem for a finite-state MDP and
limit-surely and almost-surely coincide. So there exists a partial strategy σ, for
the uncolored part of MS′ , such that, starting in c′0, we almost-surely reach
X ′f ∪R, i.e., P(MS′ , c

′
0, σ, J♦X ′f ∪RK) = 1.

In each of the good colored subsystems we can limit-surely reach X ′, i.e., for
every rj ∈ R we have P+(MS′ , ri, J♦X ′K) = 1. So for every ε > 0 there exists a
strategy σεi such that P(MS′ , ri, σ

ε
i , J♦X ′K) ≥ 1− ε. Consider the computation

tree of the game on MS′ from ri when playing according to σεi and its restric-
tion to some finite depth d. Let Pd(MS′ , ri, σ

ε
i , J♦X ′K) be the probability that

the objective is reached already during the first d steps of the game. We have
Pd(MS′ , ri, σ

ε
i , J♦X ′K) ≤ P(MS′ , ri, σ

ε
i , J♦X ′K), but limd→∞ Pd(MS′ , ri, σ

ε
i , J♦X ′K) =

P(MS′ , ri, σ
ε
i , J♦X ′K) ≥ 1− ε. Thus for every color i ∈ J and every ε > 0 there

exists a number d(i, ε) s.t. Pd(i,ε)(MS′ , ri, σ
ε
i , J♦X ′K) ≥ 1− 2ε.

Since configurations of MS′ are obtained by projecting configurations of MS ,
we can go the reverse direction by replacing the missing component in an MS′

configuration by a given number. Given an MS′-configuration ri and a number
d(i, ε) we obtain an MS-configuration si(d(i, ε)) by replacing the missing k(i)-th
component of ri by d(i, ε). Let α ∈ N be the maximal constant appearing in any
transition in S, i.e., the maximal possible change in any counter in a single step.
Since a single step in MS can only change a counter by ≤ α, the k(i)-th component
of si(α ∗ d(i, ε)) cannot be exhausted during the first d(i, ε) steps of the game on
MS starting at si(α ∗ d(i, ε)). Thus we can use the same strategy σεi in the game
from si(α ∗ d(i, ε)) on MS and obtain P(MS , si(α ∗ d(i, ε)), σεi , J♦XK) ≥ 1 − 2ε.
Intuitively, the number α ∗ d(i, ε) is big enough to allow playing the game for
sufficiently many steps to make the probability of success close to 1.

Using the strategy σ above and the strategies σεi , we now define a new family
of strategies σε for every ε > 0 for the game on MS from c0. Given ε > 0, we
let d(ε) = α ∗ maxi∈J d(i, ε) (a number that is big enough for each projected
component).

Playing from c0 in MS , the strategy σε behaves as follows. First it plays like
strategy σ in the corresponding game from c′0 on MS′ . (Function λ connects
the corresponding configurations in the two games.) When the game in MS′

reaches a configuration ri then there are two cases: If the configuration in MS

is ≥ si(d(ε)) then σε henceforth plays like σεi , which ensures to reach the target
X with probability ≥ 1 − 2ε. Otherwise, the configuration in MS is still too
small to switch to σεi . In this case, σε continues to play like σ plays from the
previously visited smaller configuration in the uncolored part of MS′ (see line
7 of the algorithm). This is possible, because the game is monotone and larger
configurations always benefit Player 1. So the game on MS continues with a
configuration that is larger (at least on component k(i)) than the corresponding
game on MS′ , i.e., component k(i) is pumped. Since we know that σ on MS′ will
almost surely visit X ′f or R, we obtain that σε on MS will almost surely eventually
visit X or some configuration ≥ si(d(ε)) for i ∈ J (and from there achieve to
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reach the target with probability ≥ 1 − 2ε). Since every weighted average of
probabilities ≥ 1− 2ε is still ≥ 1− 2ε, we obtain P(MS , c0, σε, J♦XK) ≥ 1− 2ε
and thus P+(MS , c0, J♦XK) = 1. ut

B.9 Proof of Theorem 9

Proof. Let S = 〈Q,Q1, QP , T, τ〉 be 1-VASS-MDP of dimension d > 0 with initial
configuration c0 = 〈q0,v〉 and X ⊆ Q a set of target states. We show decidability
of P+(MS , c0, J♦XK) = 1 by induction on d.

Base case d = 0. If S has 0 counters then MS is a finite-state MDP and thus
limit sure reachability coincides with almost sure reachability, which is decidable.

Inductive step. We apply Algorithm 1, which terminates by Lemma 6, and
obtain a new instance of the 1-VASS-MDP limit sure reachability problem of
dimension d− 1: S′ = 〈Q′, Q′1, Q′P , T ′, τ ′〉 with initial configuration c′0 = 〈q′0,0〉
and set of target states X ′ ⊆ Q′. By Lemma 16 and Lemma 17, we have
P+(MS , c0, J♦XK) = 1 ⇔ P+(MS′ , c

′
0, J♦X ′K) = 1. By induction hypothesis,

P+(MS′ , c
′
0, J♦X ′K) = 1 is decidable and the result follows. ut
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