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Abstract

The steady advances of computational methods make model-based op-
timization an increasingly attractive method for process improvement.
Unfortunately, the available models are often inaccurate. The traditional
remedy is to update the model parameters, but this generally leads to a
difficult parameter estimation problem that must be solved on-line. In ad-
dition, the resulting model may not represent the plant well when there is
structural mismatch between the two. The iterative optimization method
called Modifier Adaptation overcomes these obstacles by directly incor-
porating plant measurements into the optimization framework, princi-
pally in the form of constraint values and cost and constraint gradients.
However, the number of experiments required to estimate these gradi-
ents increases linearly with the number of process inputs, which tends
to make the method intractable for processes with many inputs. This
paper presents a new algorithm, called Directional Modifier Adaptation,
that overcomes this limitation by only estimating the plant gradients in
certain privileged input directions. It is proven that plant optimality with
respect to these privileged directions can be guaranteed upon convergence.
A novel, statistically optimal, gradient estimation technique is developed.
The algorithm is illustrated through the simulation of a realistic airborne
wind-energy system, a promising renewable energy technology that har-
nesses wind energy using large kites. It is shown that Directional Modifier
Adaptation can optimize in real time the path followed by the kite.

1 Introduction

Industrial processes have a certain number of degrees of freedom, the values of
which are chosen by operators to meet safety requirements and operating con-
straints and to optimize process performance. Real-time optimization aims to
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determine the optimal values of these degrees of freedom, and then to continu-
ally update them in response to disturbances and process variations.

We start with a quick review of the field of Real-Time Optimization (RTO)
over the past 50 years, with a particular focus on the development of a technique
called Modifier Adaptation (MA). Srinivasan et al. (2003a) gives a comprehen-
sive review of RTO techniques and divides them into two categories: ‘model-
based’ and ‘model-free’ techniques, depending on whether or not the process
model is used explicitly for on-line calculations. Heuristic model-free evolu-
tionary search techniques were developed first (Box and Draper, 1969). These
techniques use plant data to find ‘improving directions’ in which to move. Since
these techniques require no process model and only simple calculations, they can
be implemented readily. However, evolutionary operation has difficulty handling
large numbers of decision variables, process constraints and complex nonlinear
plant behavior. A more recent model-free technique is Self-Optimizing Control
(SOC) (Skogestad, 2000; Alstad and Skogestad, 2007), which uses a process
model off-line to select controlled variables that lead to near-optimal operation
via multivariable feedback control.

Increased computational power led to the development of the original model-
based algorithm, the so-called two-step approach (Chen and Joseph, 1987; Jang
et al., 1987). Two steps are repeated online, namely, parameter estimation to
update the model and optimization of the updated model to compute the op-
timal inputs. Although this approach can handle arbitrarily complex systems
with many degrees of freedom, it is fairly computation intensive. Despite the
popularity of the two-step method, Forbes et al. (1994) and Forbes and Marlin
(1996) proved that the model must satisfy extremely stringent ‘model adequacy’
conditions for the RTO scheme to converge to the plant optimum. These con-
ditions will almost never be satisfied in a practical setting, and Agarwal (1997),
Gao and Engell (2005b) and Marchetti (2009) showed that, in the presence of
structural plant-model mismatch, parameter estimation is ineffective and can
even lead to worse performance than if no RTO was performed at all!

The pitfalls of the two-step approach are, for the most part, of theoretical
nature. In practice, it is likely, although this cannot be guaranteed, to perform
well if an accurate model with few uncertain parameters is available. The two-
step approach is per se the default RTO algorithm for industrial applications
(Darby et al., 2011). However, the two-step approach is unlikely to perform
well when (i) the model is structurally inaccurate, (ii) the parameter estimation
problem is difficult to solve, or (iii) there are simply too many uncertain param-
eters in the model. For this reason, another class of model-based algorithms,
which addresses the issues associated with the two-step approach, has devel-
oped in parallel. Roberts (1979) proposed a method called ‘Integrated System
Optimization and Parameter Estimation’ (ISOPE), which uses measurements
to update both the model parameters and the gradient of the cost function in
the optimization problem to be solved on-line. This gradient modifier can guar-
antee plant optimality in the presence of plant-model mismatch. A number of
researchers have improved and extended the ISOPE algorithm over the next 20
years, and a good review of these developments is given by Roberts (1995).
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Tatjewski (2002) simplified ISOPE by eliminating the parameter estimation
step. This simpler algorithm was further refined to handle general plant con-
straints by Gao and Engell (2005a). Finally, Marchetti et al. (2009) provided a
solid theoretical basis for the simplified ISOPE algorithm, by comprehensively
dealing with tuning, convergence and optimality conditions. The result is a MA
algorithm that has now been successfully applied to a number of reasonably
complex industrially relevant systems that include an experimental solid-oxide
fuel-cell stack (Bunin et al., 2012), the simulated heat and power system of a
sugar and ethanol plant (Serralunga et al., 2013), and a simulated oxygen con-
sumption plant (Navia et al., 2012). Many aspects of MA have been investigated
further, such as approaches to deal with the estimation of gradients (Bunin et al.,
2013a; Marchetti, 2013; Rodger and Chachuat, 2011; Navia et al., 2013), exten-
sion to closed-loop systems (Costello et al., 2014), extension to discontinuous
systems (Serralunga et al., 2014), use of convex models to ease the optimization
and the convergence to the plant optimum (François and Bonvin, 2013), use
of second-order modifiers (Faulwasser and Bonvin, 2014), and even promising
preliminary results on sufficient conditions for global convergence (Bunin, 2014;
Faulwasser and Bonvin, 2014).

What are the challenges currently facing RTO? The following discussion is
largely based on an excellent review of the challenges facing RTO in industry
today (Darby et al., 2011). It is estimated that there are at least 250-300 RTO
implementations in industrial plants. RTO is particularly beneficial for plants
involving operational or economic trade-offs, or large product price differen-
tials. It is estimated that, for a large plant, the benefits of RTO can be up
to 50 % of the benefits obtained from implementing advanced process control.
Increased global competition calls for more effective and easier-to-implement
RTO algorithms than the current state-of-the-art. Improved RTO algorithms
should address the following issues:

1. Constraint satisfaction is of paramount importance, as violating con-
straints often has harsh economic consequences. The two-step approach,
which represents the industry standard, cannot guarantee the satisfac-
tion of operational constraints as these might be poorly predicted by a
structurally incorrect model.

2. Online diagnostics. It is important to know why the RTO algorithm
takes certain steps, and whether it has in fact reached the plant opti-
mum. Again, due to the possibility of a structurally incorrect model, the
two-step approach may not satisfy any optimality measure for the plant
(Forbes et al., 1994). It may even do worse than simply applying the
nominal optimal solution! In contrast, MA supplies an estimate of the
plant gradient, which can be used to verify the optimality of the current
operating point.

3. Convergence speed. A certain settling time must be respected between
set-point changes. The typical assumption in RTO is that disturbances
and parameter drifts occur slowly with respect to both this settling time
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and the time taken by the RTO algorithm to converge. For example, RTO
can easily handle disturbances that vary on a daily basis for a plant with
a 30-minute settling time.

4. RTO synthesis. The RTO design process should be fairly methodological
and straightforward, as the person implementing RTO may not have a
detailed knowledge of the process. This point is particularly important
as the majority of the modern RTO algorithms are reportedly based on
rigorous process models (Darby et al., 2011).

In addition, we claim that it is desirable to develop RTO methods that do not
require frequent online parameter estimation. While RTO based on parame-
ter estimation may work well in some situations, namely when there are few
uncertain parameters, it is not always a good solution. Parameter estimation
is certainly useful as it improves the quality of the rigorous model, which may
then be used for other offline investigations. However, the accurate, automated
estimation of many model parameters as required by the two-step approach
is not only extremely complicated to implement, it is also at odds with the
optimization objective of the RTO layer. If the model contains many uncer-
tain parameters, it is difficult to ensure sufficient excitation to estimate these
parameters, and doing so will detract from reaching the optimization objective.

With the preceding motivation in mind, this paper presents a novel RTO
method, called Directional Modifier Adaptation(D-MA), with the following char-
acteristics:

1. Constraint satisfaction is ensured upon convergence, even for large num-
bers of constraints.

2. Plant optimality with respect to a subset of the plant inputs is guaranteed
upon convergence, despite the use of a structurally inaccurate model.

3. Convergence speed is independent of the number of inputs. However, so
far, convergence cannot be guaranteed, which is a problem afflicting almost
all RTO algorithms dealing with plant-model mismatch. Attempts at
convergence proofs have required significant assumptions, which makes
them of little practical use.

4. Straightforward design procedure using the available model.

The paper is structured as follows. Section 2 briefly reviews the MA family
of algorithms, Section 3 presents the novel D-MA algorithm and examines its
properties, while Section 4 presents a dual D-MA algorithm, which simultane-
ously estimates the plant gradient and searches for the plant optimum. This
algorithm is applied to the challenging problem of optimizing the flight path of
a power-generating kite in Section 5. Finally, Section 6 concludes the paper and
provides a prospective outlook.
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2 RTO via Modifier Adaptation

2.1 MA for steady-state optimization

The problem of finding optimal steady-state operating conditions for a contin-
uous process is typically expressed mathematically as:

u∗p := arg min
u

φp (u)

subject to gp (u) ≤ 0 , (2.1)

where u is the nu-dimensional vector of inputs, φp the cost function and gp the
ng-dimensional vector of process constraints. Here, the subscript (·)p indicates a
quantity related to the plant, and we will refer to this as the plant optimization
problem. We will assume in this paper that φp and gp are continuously differ-
entiable, although we note that an extension to certain classes of discontinuous
processes is given in Serralunga et al. (2014).

The functions φp and gp are usually unknown, as only the models φ and g
are available. Consequently, an approximate solution to the original Problem
(2.1) is obtained by solving the following model-based problem:

u∗(θ) := arg min
u

φ (u,θ)

subject to g (u,θ) ≤ 0, (2.2)

where θ is the nθ-dimensional vector of uncertain model parameters. If the
model matches the plant perfectly, solving Problem (2.2) provides a solution
to Problem (2.1). Unfortunately, this is rarely the case, since the structure of
the model functions φ and g as well as the nominal values θ0 for the uncertain
model parameters θ are likely to be incorrect, which implies that the nominal
model-based optimal input u∗(θ0) will not correspond to u∗p.

MA collects process information to correct for the differences between the
plant and the model optimization problems. This is done by applying suc-
cessively different values of u to the plant, each time waiting for the plant to
settle to steady state and observing its performance. The measured cost and
constraints corresponding to the input uk at the kth iteration are:

φ̃p(uk) = φp(uk) + dφk (2.3)

g̃p(uk) = gp(uk) + dgk, (2.4)

where dφk and dgk ∈ Rng are realizations of zero-mean random variables for

the cost and the constraint functions, respectively, with Var(dφk) = σ2
φ and

Var(dgk) = diag(σ2
g,1, σ

2
g,2, . . . , σ

2
g,ng ). The additive stochastic components rep-

resent high-frequency noise due to measurement noise and disturbances affecting
the plant. The plant measurements are used to iteratively modify the model-
based Problem (2.2) in such a way that, upon convergence, the necessary condi-
tions of optimality (NCO) for the modified problem match those for the plant-
based Problem (2.1). This is made possible by using modifiers that, at each
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iteration, are computed as the differences between the measured and predicted
values of the constraints and the measured and predicted cost and constraint
gradients. This forces the corresponding values in the model-based optimization
problem to locally match those of the plant. In its simplest form, the algorithm
proceeds as follows.

Algorithm 1: Modifier Adaptation (Marchetti et al., 2009)

Initialize the ng-dimensional vector of zeroth-order modifiers, ε0 = 0, the nu-

dimensional vector of first-order cost modifiers, λφ0 = 0, and the (nu × ng)
matrix of first-order gradient modifiers, λg0 = 0. Choose the modifier filter
matrices Kε,Kg,Kφ as (typically) diagonal matrices with eigenvalues in the
interval (0, 1]. Also, choose arbitrarily u0 = 0.

for k = 1→∞

1. Solve the modified model-based optimization problem

uk := argmin
u

φm,k−1(u)

subject to gm,k−1(u) ≤ 0, (2.5)

where the modified cost and constraints are given by

φm,k(u) := φ(u,θ0) + (λφk)T (u− uk), (2.6)

gm,k(u) := g(u,θ0) + εk + (λg
k)T (u− uk). (2.7)

The subscript (·)m indicates a quantity that has been modified. The de-
pendency of uk, φm,k and gm,k on θ0 is dropped since θ0 is constant.

2. Apply the input uk to the plant and obtain the (noisy) measurements
φ̃p(uk) and g̃p(uk).

3. Compute estimates of the plant cost gradient, ∇φE,k, and of the plant
constraint gradients, ∇giE,k, i = 1, . . . , ng, for the current operating point
uk, where the subscript E denotes an estimate. The gradients must be
estimated using measurements collected at no less than nu different oper-
ating points close to uk (see Section 2.3).

4. Update the modifiers using measurements:

εk := (Ing −Kε)εk−1 + Kε
(
g̃p(uk)− g(uk,θ0)

)
, (2.8)

λgi
k := (Inu −Kgi)λgi

k−1 + Kgi
(
∇giE,k −∇gi(uk,θ0)

)T
, i = 1, . . . , ng, (2.9)

λφk := (Inu −Kφ)λφk−1 + Kφ (∇φE,k −∇φ(uk,θ0))
T
. (2.10)

end
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The filter matrices Kε,Kgi ,Kφ are tuning parameters. In order for the MA
Algorithm 1 to be stable and have a non-oscillatory response (although this
cannot be guaranteed), these matrices are chosen with real, positive eigenvalues
in the interval (0, 1]. The choice of the filter matrices is discussed in Marchetti
et al. (2009). As can be expected, with more filtering (smaller eigenvalues),
the method is more likely to converge, but it will do so more slowly. These
filters also partially eliminate the noise affecting the constraint measurements
and the gradient estimates. If the MA scheme converges, then it will do so
to the (local) plant optimum, provided the model satisfies some very relaxed
adequacy conditions (Marchetti et al., 2009), which can be strictly enforced if φ
and g are replaced by convex approximations (François and Bonvin, 2013). In
reality, due to noise, the algorithm will converge to a neighborhood of the plant
optimum.

2.2 MA for run-to-run optimization of dynamic processes

Static RTO methods can be applied to either continuous processes or semi-
batch/periodic processes. In the case of a continuous process, the RTO scheme
aims to find the optimal steady-state values for the plant inputs (which may
actually correspond to set-points for lower-level controllers). If the process is
operated in batch or semi-batch (i.e., transient) mode, there is obviously no
steady state. However, one can parameterize the time-varying inputs and let
the resulting input parameters become the decision variables. At the end of a
batch run, the effect of the current input parameters (which act on the dynamic
process via the corresponding input profiles) on the cost and constraints can
be determined. This way, a batch run is assimilated to a RTO iteration, and
static RTO can be used to compute optimal input parameters, which generate
optimal input profiles. Note that this approach can only be applied to repeated
(or periodic) transient processes.

While RTO methods have primarily been developed for the more widespread
continuous processes, there is also a significant interest in applying RTO to tran-
sient processes, and the process engineering literature is rich with applications
to batch and semi-batch chemical processes for fine chemicals (Ruppen et al.,
1998; Filippi-Bossy et al., 1989; Ubrich et al., 1999), polymerization (Kadam
et al., 2007; François et al., 2004; Zafiriou and Zhu, 1990; Clarke-Pringle and
Mac Gregor, 1998), distillation (Welz et al., 2008), crystallization (Fiordalis and
Georgakis, 2013), and bio-processes (Visser et al., 2000; Bodizs et al., 2007). A
review of RTO for batch processes is given by Bonvin et al. (2002).

The problem of finding optimal operating conditions for a transient process
can be expressed mathematically as follows (Srinivasan et al., 2003b):

min
w(·)

Jp
(
w(·)

)
subject to Sp(t,w(·)) ≤ 0 ∀ t ∈ [0, tf ],

Tp(w(·)) ≤ 0, (2.11)

where Jp is the terminal cost, w(t) is the nw-dimensional time-varying vector of
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decision variables at time t, Sp is the vector of path constraints, and Tp is the
vector of terminal constraints. The notation w(·) is used to indicate the function
mapping from t to w, for all t ∈ [0, tf ]. The unique minimizer, assuming it exists,
is denoted w∗(·). The theory of dynamic optimization deals with the solution to
this problem, and a continuous-time equivalent of the necessary KKT conditions,
called Pontryagin’s Maximum Principle, exists. However, these days, complex
dynamic optimization problems are generally discretized and approximated by a
static optimization problems, because static optimization problems are typically
much easier to solve numerically.

The discretization process involves representing the (infinite-dimensional)
input function w(·) using a finite-dimensional input vector u ∈ Rnu (i.e., pa-
rameterizing the input profile). This is commonly done by dividing the time
horizon into a number of control stages and representing the continuous input
profile by a polynomial during each control stage (Biegler, 2010). The coeffi-
cients of each polynomial make up the finite-dimensional input vector. This
results in the function w(·) being parametrized by u through a relationship W
of the form:

w(t) = W(t,u). (2.12)

In a similar manner, the continuous (infinite-dimensional) path constraints Sp

can be approximated by point-wise constraints, i.e., they are only enforced at
nc time instants, called here collocation times:

ĝj(u) = S (tj ,W(·,u)) , j = 1, 2, . . . , nc. (2.13)

If the discretization is sufficiently dense (i.e., nu and nc are sufficiently large),
then the optimal vector of decision variables for the discretized problem, u∗p,
results in near-optimal performance, with the possible constraint violations in-
between collocation points being negligible.

It is important to note that the dimensionality of u is invariably quite large
after this discretization procedure. Even if low-order polynomials are used to
represent the input profile, nu tends to be at least 20 for a typical dynamic
optimization problem. As will be seen in Section 2.3, the large dimension of
the input vector u makes gradient estimation very difficult, if not intractable.
An easy solution is simply to not use gradient correction terms, thus working
only with the zeroth-order modifiers for the constraints (Marchetti et al., 2007).
While this may work very well for processes for which the optimal solution
is mostly determined by active constraints, it may perform poorly for others.
The approach proposed by Chachuat et al. (2009) is to combine MA with the
‘parsimonious’ parametrization that is used in NCO tracking (Srinivasan and
Bonvin, 2007). While attractive, this is a ‘tailor-made’ solution for each process,
which requires a high level of process insight. The technique presented in the
following section allows MA to be applied to transient processes without making
any assumptions regarding the structure of the optimal solution.
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2.3 Gradient estimation and dual MA

As we have already seen, gradient estimates are necessary for the implementa-
tion of RTO via MA. In the general context of RTO, gradient estimates can be
obtained in many different ways (François et al., 2012; Mansour and Ellis, 2003;
Bunin et al., 2013a). Here, we limit the discussion to the techniques that have
been most associated with MA. The basic method is to use finite differences.
For example, using the forward finite-difference formula, the derivative of the
plant cost1 in the ith direction of the input space, i.e., the ith element of ∇φE,k,
is estimated as: (

∂φ

∂ui

)
E,k

=
φ̃p(uk + δui)− φ̃p(uk)

‖δui‖
, (2.14)

where δui is a vector aligned with the ith input direction. This generally re-
quires nu additional evaluations of the plant cost and constraints around each
RTO point. Depending on the values of nu and the plant settling time, the
experimental cost may be unacceptable.

An alternative consists in computing the gradients solely from measurements
collected at previously visited RTO points. For example, given nu past in-
put/measurement pairs, the cost gradient can be estimated by fitting an nu
dimensional plane to the data (Marchetti et al., 2010):

∇φE,k =


φ̃p(uk)− φ̃p(uk−1)

φ̃p(uk)− φ̃p(uk−2)
...

φ̃p(uk)− φ̃p(uk−nu)


T

[
uk − uk−1, · · · ,uk − uk−nu

]−1
. (2.15)

The matrix inverse in the above equation will become badly conditioned if the
past points do not extend evenly in all directions in the input space. This ill-
conditioning can lead to very erroneous gradient estimates. Another technique,
which does not suffer from ill-conditioning is the rank-1 Broyden update (Rodger
and Chachuat, 2011). In this case, the gradient estimate is updated in one
direction only at each RTO iteration:

∇φE,k = ∇φE,k−1 +
φ̃p(uk)− φ̃p(uk−1)−∇φE,k−1(uk − uk−1)

‖uk − uk−1‖2
(uk − uk−1)T . (2.16)

While it might appear that, by using previously visited RTO points, the
gradient can be estimated ‘for free’, that is, without any additional experimen-
tal burden, in reality the steps taken by the RTO algorithm must be severely
constrained to ensure good gradient estimates. ‘Dual MA’ algorithms have been
proposed to deal with this problem by including the quality of the gradient es-
timates in the cost to be optimized at each step (Marchetti et al., 2010; Rodger

1Only the cost gradient is considered in this section. The procedure for estimating the
constraint gradients is identical.
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and Chachuat, 2011; Marchetti, 2013)2. However, this conflict between the gra-
dient estimation objective on the one hand, and the optimization objective on
the other, negatively impacts convergence toward the plant optimum. Both of
the above gradient estimate equations are based on the assumption that the
plant cost function is locally linear, which only holds if the past nu RTO points
are sufficiently close to each other. This implies that the RTO input must evolve
very gradually in order to ensure an acceptably accurate gradient estimate at
each iteration. In general, the more decision variables in the optimization prob-
lem, the slower the plant optimum will be reached.

Finally, it is worth noting that there is no redundancy in any of the above
gradient estimation methods: in the cases of the finite-differences technique and
the least-squares fit, nu measurements are used to estimate an nu-dimensional
gradient, while the Broyden update uses one measurement to preform a rank-1
update. This means that the methods are not well suited to dealing with a
significant amount of noise.

3 Directional Modifier Adaptation

This section presents a novel method to circumvent the prohibitive experimental
cost of estimating plant gradients when nu is large, as is typically the case for
complex processes, and for discretized dynamic optimization problems. The
idea is that rather than estimating the full gradients of the plant cost and
constraints, only directional derivatives (i.e., the gradients in certain directions)
are estimated.

3.1 Basic idea of directional MA

Definition 3.1 (Directional Derivative). The (nf×nr)-dimensional directional
derivative of a nf -dimensional differentiable vector function f is:

∇Urf(u) :=
∂f(u + Urr)

∂r

∣∣∣∣
r=0

, (3.1)

where Ur = [δu1 · · · δur] is an nu×nr matrix, the columns of which contain the
nr < nu directions in the input space that the directional derivative is evaluated
in, and nr is the dimension of r.

Property 3.1. Applying the chain rule to Equation (3.1) yields:

∇Ur
f(u) =

∂f(u + Urr)

∂r

∣∣∣∣
r=0

= ∇f(u + Urr)
∂(u + Urr)

∂r

∣∣∣∣
r=0

= ∇f(u)Ur.

(3.2)

2This is in analogy to the concept of ‘dual control’ in the field of adaptive control, whereby
there is a dichotomy between more excitation for better identification and less excitation for
better control.
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Property 3.2.

∇Ur
f(u)U+

r x =

{
∇f(u)x x ∈ C(Ur)

0 x /∈ C(Ur)
, (3.3)

where C(Ur) is the column space of Ur, and U+
r is the Moore-Penrose pseudo-

inverse of Ur.

Property 3.2 follows from Property 3.1 by noting that

UrU
+
r x =

{
x x ∈ C(Ur)

0 x /∈ C(Ur)
. (3.4)

Algorithm 2: Directional Modifier Adaptation (D-MA)

Initialize the ng-dimensional vector of zeroth-order modifiers, ε0 = 0, the nu-

dimensional vector of first-order cost modifiers, λφ0 = 0, and the (nu × ng)
matrix of first-order gradient modifiers, λg0 = 0. Choose the modifier filter
matrices Kε,Kg,Kφ as (typically) diagonal matrices with eigenvalues in the
interval (0, 1]. Also, choose arbitrarily u0 = 0. Select the matrix of ‘privileged’
input directions Ur in which the plant derivatives will be estimated (Section 3.2
explains how to select Ur).

for k = 1→∞

1. Solve the modified model-based optimization problem

uk := argmin
u

φm,k−1(u)

subject to gm,k−1(u) ≤ 0, (3.5)

where the modified cost and constraints are given by

φm,k(u) := φ(u,θ0) + (λφk)T (u− uk), (3.6)

gm,k(u) := g(u,θ0) + εk + (λg
k)T (u− uk). (3.7)

The subscript (·)m indicates a quantity that has been modified. The de-
pendency of uk, φm,k and gm,k on θ0 is dropped since θ0 is constant.

2. Apply the input uk to the plant and obtain the (noisy) measurements
φ̃p(uk) and g̃p(uk).

3. Estimate the directional derivative of the plant cost, ∇Ur
φE,k, and the

plant constraints, ∇Ur
giE,k, i = 1, . . . , ng, at the current operating point

uk. These derivatives must be estimated using measurements collected
at no less than nr successive operating points close to uk. This can be
done using finite differences or the novel approach proposed in Section 4.
Estimate the cost gradient as:

∇φE,k = ∇φ(uk,θ0)(Inu −UrU
+
r ) +∇UrφE,kU

+
r , (3.8)

and likewise for the constraint gradients.
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4. Update the modifiers using measurements:

εk := (Ing −Kε)εk−1 + Kε
(
g̃p(uk)− g(uk,θ0)

)
, (3.9)

λgi
k := (Inu −Kgi)λgi

k−1 + Kgi
(
∇giE,k −∇gi(uk,θ0)

)T
, i = 1, . . . , ng, (3.10)

λφk := (Inu −Kφ)λφk−1 + Kφ (∇φE,k −∇φ(uk,θ0))
T
. (3.11)

end

Note that, if the estimated directional derivative is accurate, ∇Ur
φE,k =

∇Ur
φp(uk) and, using Property 3.2, Equation (3.8) implies

∇φE,kδu =

{
∇φp(uk)δu δu ∈ C(Ur)

∇φ(uk)δu δu /∈ C(Ur)
, (3.12)

which indicates that the gradient estimate corresponds to the true plant gradient
in the nr privileged directions and to the model gradient in the other directions.
D-MA allows the user to select which input directions the MA algorithm will
pay particular attention to. Although D-MA will not, in general, reach a point
satisfying the KKT conditions for Problem (2.1), if it converges, it will do so
to a point where the cost function cannot be improved in any of the privileged
directions. This is formalized in the following theorem.

Theorem 3.1 (Plant Optimality in Privileged Directions). Consider D-MA
Algorithm 2 in the absence of measurement noise and with perfect estimates
of the plant derivatives in nr input directions. If the algorithm converges to
the fixed point (u∞, ε∞, λφ∞ and λg

∞) that corresponds to a KKT point of the
modified optimization Problem (3.5), then u∞ will be optimal for the plant in
these nr directions.

Proof. Assuming noise-free measurements, i.e., φ̃p(uk) = φp(uk) and g̃p(uk) =
gp(uk), the modifiers(3.9)-(3.11) of D-MA Algorithm 2 converge to :

ε∞ = gp(u∞)− g(u∞,θ0) (3.13)(
λg
∞

)T
= ∇gE,∞ −∇g(u∞,θ0) (3.14)(

λφ∞

)T
= ∇φE,∞ −∇φ(u∞,θ0). (3.15)

The converged version of Equation (3.7) can be combined with Equation (3.13)
to give:

gm(u∞) = g(u∞,θ0) + ε∞ = gp(u∞). (3.16)

Furthermore, the gradients of the modified cost and constraint functions can be
computed from Equations (3.6) and (3.7) as:

∇φm,k(u) = ∇φ(u,θ0) + (λφk)T (3.17)

∇gm,k(u) = ∇g(u,θ0) + (λg
k)T , (3.18)
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which, upon convergence, give:

∇φm(u∞) = ∇φ(u∞,θ0) + (λφ∞)T (3.19)

∇gm(u∞) = ∇g(u∞,θ0) + (λg
∞)T . (3.20)

The assumption that u∞ is a KKT point of the modified optimization Problem
(3.5) leads to the following necessary conditions of optimality (Bazaraa et al.,
2006):

gm(u∞) ≤ 0, (3.21)

ν ≥ 0, νTgm(u∞) = 0 (3.22)

∇φm(u∞) + νT∇gm(u∞) = 0. (3.23)

The stationarity condition (3.23), with Equations (3.19) and (3.20), can be
explicited as:

∇φ(u∞,θ0) +
(
λφ∞

)T
+ νT

(
∇g(u∞,θ0) + (λg

∞)
T
)

= 0, (3.24)

and, with Equations (3.14) and (3.15):

∇φE,∞ + νT∇gE,∞ = 0. (3.25)

Post-multiplying Equation (3.25) by Ur and using Property 3.1 yields:

∇UrφE,∞ + νT∇UrgE,∞ = 0. (3.26)

The fact that u∞ is optimal for the plant in nr directions can be expressed as
r = 0 being a KKT point of the reduced plant optimization problem

min
r

φp (u∞ + Urr)

s.t. gp (u∞ + Urr) ≤ 0 . (3.27)

Assuming perfect gradient estimates, i.e.,∇UrφE,∞ = ∇Urφp(u∞) and∇UrgE,∞ =
∇Ur

gp(u∞), and using Definition 3.1, Equation (3.26) leads to:

∂φp(u∞ + Urr)

∂r
+ νT

∂gp(u∞ + Urr)

∂r

∣∣∣∣
r=0

= 0. (3.28)

Since u∞ + Urr = u∞ when r = 0, Equations (3.21) and (3.22) mean that
the primal and dual feasibility conditions for Problem (3.27) are satisfied at
r = 0. Together with the fact that Equation (3.28) shows satisfaction of the
stationarity condition for Problem (3.27) at r = 0, this proves that r = 0 is a
KKT point of Problem (3.27).
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3.2 Selection of privileged directions

The most important aspect of D-MA is the choice of nr privileged directions
(the columns of Ur). D-MA acts at two levels as it (i) adapts the inputs in any
directions necessary to ensure constraint satisfaction, and (ii) improves the cost
by adapting the inputs u in the privileged directions. It is important to note
that, regardless of Ur, constraint satisfaction will be ensured upon convergence.

The selection of privileged input directions is addressed here for the case
of parametric uncertainty. Since one of the nicest features of MA is to en-
force matching of the cost and constraint gradients between the modified opti-
mization problem and the plant, we propose to tackle the selection of priv-
ileged input directions via a sensitivity analysis of the Lagrangian function
L(u,ν,θ) = φ(u,θ) + νTg(u,θ).

Case nr = nθ. If nθ model parameters are uncertain (are thus might vary),
the following theorem describes the optimal choice of nθ input directions.

Theorem 3.2 (Gradient Directions to Handle Parametric Uncertainty). Con-
sider

1. the plant optimization Problem (2.1) in the absence of measurement noise,

2. the nominal model-based optimization Problem (2.2) with the optimal in-
put u∗(θ0) and the corresponding KKT multipliers ν∗(θ0), for which no
constraint is weakly active , i.e., there exists no i ∈ {1, 2, . . . , ng} such
that both ν∗i (θ0) = 0 and gi(u

∗(θ0),θ0) = 0, and

3. a small parametric plant-model mismatch, i.e., φp(u) = φ(u,θp) and
gp(u) = g(u,θp) with θp = θ0 + ∆θ.

Let perfect estimates of the plant derivatives be available in nr = nθ input
directions given by the sensitivity matrix

Ur =
∂2L

∂u∂θ
(u∗(θ0),ν∗(θ0),θ0) ∈ Rnu×nθ , (3.29)

and let D-MA Algorithm 2 converge to a fixed point. Then, the plant opti-
mal input u∗p satisfies the necessary conditions to be a fixed point of the D-MA
algorithm and a KKT point for the modified optimization problem (3.5).

Proof. Let (u∞, ε∞, λφ∞, λg
∞) denote any fixed point of D-MA Algorithm 2.

Since such a fixed point is a KKT point of the modified optimization Prob-
lem (3.5), it must satisfy the necessary conditions of optimality (3.21)-(3.23),
with the first-order modifier terms λφ∞ and λg

∞ being estimated using the ap-
proach of (3.8). The stationarity condition (3.23) can also be written as (3.24),
(3.25) or:

∂L

∂u
(u∞,ν,θ0) +

(
λφ∞

)T
+ νT (λg

∞)
T

= 0, (3.30)
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with

λφ∞
T

= (∇Ur
φE,∞ −∇Ur

φ(u∞,θ0))U+
r (3.31)

λg
∞
T

= (∇Ur
gE,∞ −∇Ur

g(u∞,θ0))U+
r , (3.32)

where Equation (3.31) is obtained by combining Equation (3.15) with the gra-
dient estimate (3.8) and using Property 3.1. Equation (3.32) is obtained in the
same way. Since the constraints of the modified model match those of the plant
upon convergence, one also has:

gp(u∞) ≤ 0, ν ≥ 0, νTgp(u∞) = 0. (3.33)

We will show that, for a specific choice of Ur, the plant optimal input u∗p satis-
fies the corresponding KKT conditions (3.21)-(3.23), or equivalently (3.30) and
(3.33), for ν = ν∗p.

It is straightforward to show that u∗p satisfies Conditions (3.33). Indeed,
since u∗p is a KKT point for the plant, one can write:

gp(u∗p) ≤ 0, ν∗p ≥ 0,
(
ν∗p
)T

gp(u∗p) = 0. (3.34)

In contrast, it is more involved to show that that u∗p satisfies Condition (3.30).
For this, we consider the stationary KKT condition of the plant optimization
problem:

∂L

∂u
(u∗p,ν

∗
p,θp) = 0. (3.35)

Developing the left-hand side into a Taylor series around θ0 and using ∆θ =
θp − θ0 leads to:

∂L

∂u
(u∗p,ν

∗
p,θ0) + ∆θT

∂2L

∂u∂θ

T

(u∗p,ν
∗
p,θ0) +O(∆θ2) = 0. (3.36)

Next, we will express the second term of Equation (3.36) in terms of Ur. For
this, we use the following standard result from parametric sensitivity analysis
(Fiacco, 1983):

u∗p − u∗(θ0) =
∂u∗

∂θ
(θ0)∆θ +O(∆θ2) (3.37)

ν∗p − ν∗(θ0) =
∂ν∗

∂θ
(θ0)∆θ +O(∆θ2), (3.38)

provided ∆θ is sufficiently small. Note that this property requires the assump-
tion that the optimal set of active constraints remains unchanged for sufficiently
small parameter variations. This will be the case if no constraint is weakly ac-
tive at the nominal optimal solution, since active constraints will first have to
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become weakly active before they become inactive for sufficiently small param-
eter variations (Deshpande et al., 2011). These sensitivity analysis results allow

developing ∂2L
∂u∂θ (u∗p,ν

∗
p,θ0) into a Taylor series around u∗(θ0), ν∗(θ0) and θ0:

∂2L

∂u∂θ
(u∗p,ν

∗
p,θ0)=

∂2L

∂u∂θ
(u∗(θ0),ν∗(θ0),θ0)+

∂

∂u

(
∂2L

∂u∂θ

)
∂u∗

∂θ

∣∣∣∣
(u∗(θ0),ν∗(θ0),θ0)

∆θ+

∂

∂ν

(
∂2L

∂u∂θ

)
∂ν∗

∂θ

∣∣∣∣
(u∗(θ0),ν∗(θ0),θ0)

∆θ +O(∆θ2). (3.39)

Upon defining Ur := ∂2L
∂u∂θ (u∗(θ0),ν∗(θ0),θ0), Equation (3.39) becomes:

∂2L

∂u∂θ
(u∗p,ν

∗
p,θ0)= Ur +O(∆θ), (3.40)

which allows writing the second term of Equation (3.36) as:

∆θT
∂2L

∂u∂θ

T

(u∗p,ν
∗
p,θ0) = ∆θTUT

r +O(∆θ2). (3.41)

Post-multiplying the two sides of last equation by UrU
+
r and using the matrix

identity UT
r = UT

r UrU
+
r gives:

∆θT
∂2L

∂u∂θ

T

(u∗p,ν
∗
p,θ0)UrU

+
r = ∆θTUT

r +O(∆θ2). (3.42)

Expressing ∆θTUT
r from Equation (3.42) and substituting it into Equation

(3.41) gives:

∆θT
∂2L

∂u∂θ

T

(u∗p,ν
∗
p,θ0) = ∆θT

∂2L

∂u∂θ

T

(u∗p,ν
∗
p,θ0)UrU

+
r +O(∆θ2), (3.43)

which allows writing Equation (3.36) as

∂L

∂u
(u∗p,ν

∗
p,θ0) + ∆θT

∂2L

∂u∂θ

T

(u∗p,ν
∗
p,θ0)UrU

+
r +O(∆θ2) = 0. (3.44)

Next, we explicit Equation (3.44) by using the definition ∆θ = θp − θ0 and
Property 3.1:

∂L

∂u
(u∗p,ν

∗
p,θ0) +∇

(
φ(u∗p,θp)− φ(u∗p,θ0)

)
UrU

+
r

+(ν∗p)T∇
(
g(u∗p,θp)− g(u∗p,θ0)

)
UrU

+
r +O(∆θ2) = 0, (3.45)

or

∂L

∂u
(u∗p,ν

∗
p,θ0) +∇Ur

(
φ(u∗p,θp)− φ(u∗p,θ0)

)
U+

r

+(ν∗p)T∇Ur

(
g(u∗p,θp)− g(u∗p,θ0)

)
U+

r +O(∆θ2) = 0. (3.46)
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The assumption of perfect gradient estimates allows writing:

∇Ur
φE,∞ = ∇Ur

φp(u∞) = ∇Ur
φ(u∗p,θp), (3.47)

and likewise for the estimates of the constraint gradients. Using the modifiers
defined in Equations (3.31) and (3.32) and the fact that O(∆θ2) is negligible
finally gives:

∂L

∂u
(u∗p,ν

∗
p,θ0) + (λφ∞)T + ν∗

T

p (λg∞)T = 0. (3.48)

Hence, Condition (3.30) is satisfied for u∞ = u∗p, and u∗p satisfies the necessary
conditions for being a fixed (stationary) point for the D-MA Algorithm 2

Note that this result provides a theoretical motivation for using parametric
sensitivity analysis to determine the adaptation directions. From the practical
point of view, several simulation case studies have confirmed that, even when
there is significant parametric mismatch, this approach systematically chooses
very appropriate adaptation directions.

Case nr < nθ. It will not usually be necessary to use all of the nθ directions

given by ∂2L
∂u∂θ (u∗(θ0),ν∗(θ0),θ0). Marchetti (2013) showed that, when the

plant gradients are estimated quantities, the optimality loss will be proportional
to the square of the error in the gradients of the Lagrangian functions.

Theorem 3.3 (Optimality Loss due to Gradient Errors). The optimality loss
due to small errors in the gradient of the Lagrangian is:

φp(u∗p)− φp(u∗(θ0)) = −εTAε +O(ε3), (3.49)

with

ε =
∂Lp

∂u
(u,ν)− ∂L

∂u
(u,ν,θ0), (3.50)

where L(u,ν,θ) = φ(u,θ) + νTg(u,θ) and Lp(u,ν) = φp(u) + νTgp(u) are
Lagrangians for the model-based and the plant-based problems, respectively, and
the matrix A depends on the plant equations.

Proof. See Marchetti (2013).

Hence, the optimality loss is approximately proportional to a weighted norm
of the gradient error, meaning that larger gradient errors will result in more op-
timality loss. Singular value decomposition(SVD) can be used to single out
those directions in which the gradient of the Lagrangian will be most affected
by parameter variations. If θmax

i and θmin
i are the maximum and minimum

expected values of the uncertain parameter θi, the effect of a normalized pa-
rameter variation on the gradient of the Lagrangian is given by the following
transformation:

UΣVT =
∂2L

∂u∂θ
(u∗(θ0),ν∗(θ0),θ0)diag(θmax

1 − θmin
1 , . . . , θmax

nθ
− θmin

nθ
), (3.51)
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where U, Σ and V are the matrices of the ordered SVD. Ur can be chosen as the
first nr < nθ columns of U, which are those directions corresponding to the nr
largest singular values. The number of directions nr should be chosen such that
the singular value σnr+1 << σ1. This ensures that the effect of gradient errors
in the neglected directions is relatively small (and thus the resulting optimality
loss negligible).

4 Dual Directional Modifier Adaptation

An efficient MA implementation should use all available information, for ex-
ample all appropriate past measurements, to estimate experimental derivatives.
This section develops a ‘dual control’ approach to D-MA that uses previously
visited RTO points. Firstly, a gradient estimation technique is proposed that
combines information from all available measurements in the vicinity of the
current RTO point. The measurements are reconciled in a statistically optimal
manner to maximally reject the effect of noise. Confidence intervals are obtained
for the gradient estimates, as their variances (which are minimized by the esti-
mation procedure) are also calculated. Secondly, an excitation-rewarding term
is added to the modified model-based optimization problem. This term incites
the RTO algorithm to take steps that will improve the gradient estimates in the
privileged directions.

4.1 Gradient estimation using previous measurements

The method will be illustrated next for the case of cost gradient. However, note
that it can be applied similarly to the estimation of constraint gradients.

The method proposed here is iterative. At each RTO iteration, a reliable
gradient estimate is constructed, starting with the nominal model gradient.
The past measurements are integrated into the gradient estimate one at a time.
Using the measured cost at the current RTO point uk and that at a previous
RTO point, uj , the directional derivative in the one direction δu =

uj−uk
‖uj−uk‖ can

be estimated as

∇δuφE=
φ̃p(uj)− φ̃p(uk)

‖uj − uk‖
(4.1)

= ∇δuφp(uk) +
dφj − d

φ
k

‖uj − uk‖
+O (‖uj − uk‖) . (4.2)

If ‖uj − uk‖ is sufficiently small, the last term (the truncation error) can be
neglected, and

σ2
E = V ar{∇δuφE} =

2σ2
φ

‖uj − uk‖2
. (4.3)

This estimate of the directional derivative can be combined with an existing
gradient estimate, ∇φold, using a weighted rank-1 (Broyden) update to give the
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new gradient estimate:

∇φnew = ∇φold + κ(∇δuφE −∇φoldδu)δuT , (4.4)

with the variance matrix

Σnew = (Inu − κδuδuT )Σold(Inu − κδuδuT ) + κ2σ2
Eδuδu

T . (4.5)

The variance of the new gradient estimate in the direction δu (or directional
derivative) is V ar{∇φnewδu} = δuTΣnewδu. The optimal value of κ is given
by the following theorem.

Proposition 4.1 (Optimal Weighted Broyden Update). The value of κ that
minimizes the variance of the gradient estimate in the direction δu is:

κ =
δuTΣoldδu

δuTΣoldδu + σ2
E

. (4.6)

Proof. The variance of the new gradient estimate in the direction δu is:

δuTΣnewδu = (1− κ)2δuTΣoldδu + κ2σ2
E. (4.7)

By differentiating the expression with respect to κ, it follows that the value of
κ given by Equation (4.6) minimizes this variance.

If the nominal model gradient is used as the initial gradient estimate, the
following algorithm is obtained.

Algorithm 3: Iterative weighted Broyden-update gradient estimator

Initialize: Initialize ∇φold and Σold with the model gradient ∇φ(uk,θ0) and

the estimated model gradient covariance Σφ
0 .

for all j such that ‖uj − uk‖ < ∆r
max

1. δu =
uj−uk
‖uj−uk‖

2. Compute ∇δuφE and σ2
E using Equations (4.1) and (4.3)

3. Compute κ according to Equation (4.6)

4. Compute ∇φnew and Σnew using Equations (4.4) and (4.5)

5. ∇φold = ∇φnew and Σold = Σnew.

end

∇φE,k = ∇φold
Σφ

E,k = Σold

Note that ∆r
max ensures that only past measurements sufficiently close to the

current RTO point are used for gradient estimation, which limits the truncation
errors.
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4.2 Dual directional MA algorithm

This subsection describes the practically applicable RTO algorithm advocated in
this paper. It combines the concepts of directional derivatives, dual control, and
statistically optimal gradient estimates with the existing MA technique. The
algorithm has two conflicting objectives, namely, optimize the plant and ensure
that the gradient estimates in the privileged directions are precise. The idea is to
introduce an additional reward term into the cost function of the optimization
problem. The reward term encourages the RTO algorithm to move in any of
the privileged directions for which only poor gradient estimates are available in
order to get better estimates.

Algorithm 4: Dual Directional Modifier Adaptation (Dual D-MA)

Initialization. Select the matrix of ‘privileged’ input directions Ur using the
method in Section 3.2. Pick a positive reward factor, c0, and set the initial
reward coefficient c = 0. Initialize ε0 = 0, λg0 = 0, λφ0 = 0. Choose the modifier
filter matrices Kε,Kg,Kφ as (typically) diagonal matrices with eigenvalues in
the interval (0, 1]. Initialize u0 with a conservative input (one that is unlikely
to violate the plant constraints). Select values for ∆max and ∆r

max. Choose the
desired gradient estimate variance in the privileged directions, σ2

TOL, and set
δū = 0.

for k = 1→∞

1. Solve the modified model-based optimization problem

uk :=argmin
u

φm,k−1(u)

s.t. gm,k−1(u) ≤ 0 (4.8)

‖u− uk−1‖ ≤ ∆max, (4.9)

where the modified cost and constraints are given by

φm,k(u) := φ(u,θ0) + (λφk)T (u− uk)− c|δūT (u− uk)|2, (4.10)

gm,k(u) := g(u,θ0) + εk + (λg
k)T (u− uk). (4.11)

The last term in the modified cost function is the aforementioned reward
term, which rewards steps in the direction δū (it will be determined in
Step 4).

2. Apply the input uk to the plant to obtain φ̃p(uk) and g̃p(uk).

3. Use the gradient estimation algorithm given in Section 4.1 to compute,
from the previous RTO measurements, the cost gradient estimate at the
current operating point ∇φE,k, and the estimate of the gradient of each
constraint ∇gi,E,k. The algorithm will also calculate the variance of the

cost gradient estimate Σφ
E,k and the variance of each constraint gradient

estimate Σgi
E,k, ∀ i = 1, . . . , ng.
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4. Get the direction in the column space of Ur that maximizes the estimated
variance of the Lagrangian:3

δū ∈ arg max
δu

δuTΣL
E,kδu

s.t. ‖δu‖ = 1

δu ∈ C(Ur), (4.12)

where ΣL
E,k =

(
Σφ

E,k +
∑ng
i=1 νiΣ

gi
E,k

)
is the variance of the estimate of

the Lagrangians gradient (ν is the KKT multiplier obtained in Step 1).

5. if δūTΣL
E,kδū > σ2

TOL

c = c0
else
c = 0

end

6. Calculate the modifiers for the next iteration according to Equations (3.9),
(3.10) and (3.11).

end

Essentially the algorithm proceeds in the same manner as standard MA but uses
the novel gradient estimation technique. However, if the accuracy of the gradi-
ent estimates in the privileged directions does not satisfy the required tolerance,
a quadratic reward term is added to the model-based optimization problem to
encourage the RTO algorithm to move in the direction that will most improve
the gradient estimates. This is different to other dual MA approaches that used
constraints to enforce sufficient excitation. While constraints are often dealt
with by including additional cost terms, the distinction is particularly impor-
tant here, since excitation requirements can result in an infeasible optimization
problem. Section 5.3 illustrates how the parameters of the dual directional MA
algorithm can be chosen in a systematic way.

5 Simulated Case Study

Airborne Wind Energy (also known as kite power) is a promising emerging wind-
power technology. It exploits the aerodynamic force generated by a kite (which
can be imagined as an airplane on a string) to generate power, either by driving
a generator (Ruiterkamp and Sieberling, 2013), or by pulling a boat (Erhard and
Strauch, 2013). The open problem of optimally controlling a power-producing
kite during dynamic flight is currently of great technological relevance. The kite
is free to fly almost any path, provided it does not crash. However, experimental
studies (Zgraggen et al., 2015) have confirmed that the path taken by the kite

3Note that the solution to Problem (4.12) is the (normalized) dominant eigenvector of
UrU

T
r ΣL

E,k−1UrU
T
r .

21



significantly affects the power it can generate. While an approximate optimal
path can be calculated off-line using a simplified model, the problem of deter-
mining the optimal path for the real kite in real time is still an open problem.
This section shows that dual D-MA can efficiently address this problem.

The simulation example considered here is based on industrial data, ex-
perimental studies from the literature, and one of the authors’ own practical
experience in experimental kite control.

5.1 Plant description

The kite dynamic equations are taken from Erhard and Strauch (2013). These
experimentally validated equations have been successfully used in an industrial
setting to design control algorithms for very large kites. An embellishment
proposed by Costello et al. (2013), which has also been experimentally validated,
accounts for the reduction of line tension caused by steering deflections. The
kite fixed, inertial, right-hand co-ordinate system is depicted in Figure 1. The

Figure 1: Spherical co-ordinate system for the kite position. The x and y axes
are horizontal, while the z-axis points skywards. The kite is tethered to the
origin.

dynamic equations (in fact a kinematic model) are merely stated here (the
interested reader is invited to see Erhard and Strauch (2013) and Costello et al.
(2013) for more details):

ϑ̇ =
wap

r

(
cosψ − tanϑ

E

)
, (5.1)

ϕ̇ = − wap

r sinϑ
sinψ, (5.2)

ψ̇ = wapgsδ + ϕ̇ cosϑ, (5.3)

where ϑ and ϕ are the kite spherical co-ordinates (see Figure 1), ψ is the kite
orientation, r is the (constant) line length, gs is the turning constant, and δ is the
steering deflection. The steering deflection is the difference in length between
the kite’s two steering lines (which are either included in, or attached to, the
tether), regulated using motors, which causes the kite to turn. The lift/drag
ratio, E, and the magnitude of the apparent wind projected onto the quarter
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sphere, wap, are given by

wap = wE cosϑ, (5.4)

E = E0 − cδ2, (5.5)

where w is the wind speed at the kite current altitude, and c is the turning
penalty factor. The wind speed is given by the classic power law (Archer,
2013):

w = wref(z/zref)
a, (5.6)

where a is the surface friction coefficient, wref is the reference wind speed at the
reference altitude zref , and z is the kite altitude. The line tension is

T =

(
1

2
ρAw2

0

)
cos2 ϑ(E + 1)

√
E2 + 1. (5.7)

The plant parameters are given in Table 1. They were selected to match
closely the prototypes currently under development in this field (Ruiterkamp
and Sieberling, 2013; Fritz, 2013; van der Vlugt et al., 2013). For plotting pur-
poses in this paper, the kite position is projected onto the plane defined by

the two orthogonal vectors êW =
[
0 1 0

]T
and êN =

[
− sin ϑ̄ 0 cos ϑ̄

]T
(radians), which (as shown in Figure 1) is tangent to the sphere upon which the
kite can move at the point {ϑ̄, ϕ̄} = {0.3, 0} rad.

Table 1: Plant and model parameter values. The uncertain model parameters
θ are highlighted.

Parameter Plant value Model value Unit
r 250 250 m
A 25 25 m2

ρ 1.2 1.2 kg ·m−3
E0 6 4.5 -
gs 5× 10−3 7× 10−3 rad ·m−2
c .06 .02 m−2

zref 10 10 m
wref 8 8 m · s−1
a .15 -

∆w 1× 10−3 s−1

As the kites used for power generation are highly unstable, a controller
must continuously adjust the steering deflection δ to ensure the kite does not
crash. For the purpose of this simulation study, we assume that a ‘perfect’
path-following controller ensures that the kite follows a periodic reference path,
{ϑr(l), ϕr(l)}, l ∈ [0, 1], where l is the normalized path length. This allows us to
focus on performance optimization, without control errors biasing the results.
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The optimization variable is the reference path to be flown. The aim is to
maximize the average thrust, T̄ , obtained by following the reference path:

T̄ :=
1

tf − t0

∫ tf

t0

Tdt, (5.8)

where t0 and tf are the initial and final times for one cycle of the path. Note
that this problem is a middle ground between the problem of maximizing thrust
in a particular direction, which is the case when pulling a boat, and maximizing
energy produced, which is the case when generating electricity by reeling out
the tether at a roughly constant rate. The average thrust T̄ depends on the
reference path, which is a continuous function of the path length. Hence, this is
in fact a periodic optimal control problem. Due to the periodicity of the kite’s
flight, the continuous-time input u(t) can be discretized (or parameterized) to
apply RTO, with the kite’s path being updated between each cycle of the path.
To this end, the RTO decision variables are chosen as a finite set of points on
the reference path:

u =
[
ϑr(0) ϕr(0) ϑr(

1
N ) ϕr(

1
N ) ϑr(

2
N ) ϕr(

2
N ) · · ·ϑr(N−1N ) ϕr(

N−1
N )

]T
,

(5.9)

where N = nu/2 (for this simulation study nu = 40 is used). The continuous
reference path is obtained from u by fitting a spline to the points it contains.
Periodicity is enforced by forcing both the values and the slope of the spline to
match at the endpoints (note that the vector u does not specify the final point
of the path):

ϑr(0) = ϑr(1), ϕr(0) = ϕr(1) (5.10)

ϑ̇r(0) = ϑ̇r(1), ϕ̇r(0) = ϕ̇r(1). (5.11)

The kite must also respect a height constraint z(l) := r sin (ϑ(l)) cos (φ(l)) ≥
zmin and a maximum steering-deflection constraint |δ(l)| ≤ δmax , at every point
on the path. These constraints are also discretized:

gz =


1− z(0)/zmin

1− z( 1
N )/zmin

1− z( 2
N )/zmin

...
1− z

(
N−1
N

)
/zmin

 , gδ =


|δ(0)|/δmax − 1
|δ( 1

N )|/δmax − 1
|δ( 2

N )|/δmax − 1
...

|δ
(
N−1
N

)
|/δmax − 1

 . (5.12)

The RTO layer aims to solve the following discretized plant optimization prob-
lem:

u∗p = argmin
u

φp(u) := − T̄

cT

s.t. gp(u) :=

[
gz
gδ

]
≤ 0, (5.13)
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where cT =
(
1
2ρA

)
r2w2

ref is a scaling factor that makes the cost dimensionless.
Note also that the input u is also dimensionless, as the spherical co-ordinates
for the kite position are in radians. While it is not explicitly stated in the above
formulation, T̄ ,gz and gδ depend on u through the kite dynamic equations.
The parameters of the optimization problem are given in Table 2. The cost and
constraint measurements are corrupted with 3 % zero-mean noise.

Table 2: Parameters used in the optimization problem

Parameter Value Unit
zmin 12.5 m
δmax 7.5 m
σφ 0.2 -
σg .002 -

5.2 Available model

The model available for implementing real-time optimization is based on the
same equations as the plant, with the exception of the wind law which, for the
model, is given by the simple linear law:

w = wref + (z − zref)∆w, (5.14)

where ∆w is the rate of change of wind speed with altitude. Regardless of the
value of zref and ∆w, this simplistic model cannot account for the plant nonlinear
wind profile (i.e., there is structural plant-model mismatch). In addition, the
values of some of the model parameters (given in Table 1) are substantially
different from the plant values (i.e., there is parametric plant-model mismatch).

5.3 RTO design procedure

The preferred directions Ur are chosen exactly as described in Section 3.2, with
the parameter uncertainty intervals given in Table 3. The diagonal matrix

Table 3: Uncertainty intervals for the uncertain model parameters.

Parameter Minimum value Maximum value Unit
E0 3 6 -
gs 2× 10−3 11× 10−3 rad ·m−2
c .01 .08 m−2

∆w 0 .025 s−1

of singular values Σ in Equation (3.51) contains two very dominant singular
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values (almost 100 times larger than the other singular values). Hence, this
analysis reveals that likely parameter variations will overwhelmingly affect the
gradient of the Lagrangian in these two directions. As the aim of the gradient
modifiers in MA is to reject any error in the gradient of the Lagrangian (which
is justified by more theoretical arguments in Section 3.2), Ur was duly chosen
as the directions (the columns of U in Equation (3.51)) corresponding to the
two dominant singular values. The path variations corresponding to the two
chosen directions are shown in Figure 2. Their ‘orthogonality’ can be observed
as follows: roughly speaking, one variation makes the path fatter and lower,
while the other makes it fatter and higher. Hence, for example, one can lower
the kite without changing its shape by applying a positive variation in the first
direction and a negative variation in the second direction.
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−0.1
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0.3
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N
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d
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Figure 2: Kite optimal paths corresponding to u∗p (red) and to u∗(θ0) (black);
path variations produced by steps in the privileged input directions, correspond-
ing to u∗(θ0) + ∆maxUr,i, for i = 1 (dashed blue) and i = 2 (solid blue); height
constraint (dot-dashed).

Table 4: Values of the design parameters for dual D-MA in the kite example.

Parameter Value
nr 2

∆max 0.03
∆r

max 0.06

Σφ
0 322 × Inu

Σg
0 322 × Inu

σTOL 3.5
c0 1

The remaining parameters for the dual D-MA Algorithm 4 (given in Table 4)
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are chosen by performing a number of mock RTO simulations where the plant
is approximated by the model with different values for the uncertain model
parameters. These simulations must generally be carried out to validate the
RTO scheme before applying it to the real process. Nonetheless, it is also useful
to study the effect of several parameters in a simplified analytic fashion. For
example, to see the effect of ∆max, consider the error when the cost directional
derivative is estimated using Equation (4.1) and the two points uj and uk.
According to Equation (4.3), with ∆ = ‖uj − uk‖, the standard deviation of
the noise error is:

ζd =

√
2σφ
∆

. (5.15)

Also, the truncation error can be approximated as:

ζT = ∆×H, (5.16)

where H is the maximum curvature of the model cost function in the space
of privileged directions at the nominal optimal solution, that is, the largest
eigenvalue of U+

r ∇2φ(u∗(θ0),θ0)Ur. Figure 3 plots these two error terms as
functions of ∆. There is a trade-off since too large a value of ∆ will result in
an unacceptable truncation error, while too small a value of ∆ increases the
noise error. The maximal step-size for the dual D-MA algorithm was chosen as
∆max = 0.03, i.e., the point at which the truncation error and the noise error
are roughly the same. This ensures that, at each iteration, the last step taken
by the dual D-MA algorithm will provide a directional gradient estimate that
is not overly contaminated by truncation error. Note that the reward factor
c in Equation (4.10) will encourage the algorithm to take as large a step as
is allowed by ∆max, which helps reduce the noise error. The radius used to
define ‘close’ points that can be used to estimate the current gradient is chosen
as ∆r

max = 2 × ∆max. Again, this choice is a trade-off, as a smaller value of
∆r

max means that fewer points can be used for gradient estimation (reducing the
quality of the gradient estimate), while a larger value increases the truncation
error.

A relatively large value was chosen to initialize the model gradient covari-
ances, Σφ

0 = Σg
0 = 322 × Inu , i.e., this is three times the variance (neglecting

truncation error) of a derivative calculated using only two points (Figure 3).
Thus, the dual D-MA algorithm will tend to ‘trust’ experimental information
more than the model.

5.4 RTO results

Figure 2 shows that the model optimal solution (calculated with the nominal
parameter values) is significantly different from the plant optimal solution, with
the optimality loss

φp(u∗p)− φp(u∗(θ0))

φp(u∗p)
= 29 %. (5.17)
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Figure 3: Gradient error, due to noise affecting the directional-derivative esti-
mate (ζd, dashed) and truncation error (ζT, solid), as a function of the distance
between points ∆.

After about 10 iterations, the dual D-MA algorithm has reduced this optimality
loss to about 5 % (Figure 4), despite a significant amount of measurement noise.
This is very fast, given that the kite takes roughly 15 s to complete one cycle of
the path, with one RTO iteration per cycle.

As can be seen from Figures 5 and 6, since the desired gradient accuracy
σTOL is not achieved within 60 iterations, the algorithm continues to take steps
in the privileged directions to further improve the gradient estimates. These
figures also show that the gradient error calculated in real time is quite small.

Figure 7 shows that the plant directional derivatives in the privileged di-
rections are driven close to 0. This is particularly true for the Ur,2 direction
(see Figure 2), which is the main direction the algorithm needs to adapt in to
reach the plant optimal solution. Hence, dual D-MA converges to the vicinity
of a directionally optimal point for the plant, as predicted by Theorem 3.1.
What is more, as can be seen from Figure 8, dual D-MA not only achieves near-
optimality for the plant, but also converges to the vicinity of the optimal path
for the plant.

For the sake of comparison, the algorithm performance with nr = nθ = 4
is shown in Figure 9. As could be expected, the convergence is slower, as the
algorithm must excite the process in more directions (of which all are not neces-
sarily improving directions) to maintain a good estimate of the plant directional
derivative. This demonstrates the effectiveness of using the singular-value de-
composition given in Equation (3.51) to select the privileged directions.

6 Conclusions

RTO using process models is commonly implemented in industry, with signif-
icant performance improvement (Darby et al., 2011). Ideally, RTO algorithms
provide constraint satisfaction, on-line diagnostics (including optimality guar-
antees for the plant), and rapid convergence. However, the current industry
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Figure 4: Average line tension: simulated (noise-free, solid) and measured
(noisy, dots) plant costs as functions of the RTO iteration number for nr = 2
privileged directions. The optimal plant cost is also shown (dashed).

standard, the two-step approach, cannot detect whether the plant optimum
has been reached. In addition, the two-step approach requires a parameter-
estimation problem to be solved on-line, which may become intractable if there
are many uncertain model-parameters. In contrast, the MA family of techniques
uses measurements to estimate the plant gradients rather than to estimate model
parameters. Gradient estimates represent a very logical diagnostic tool that al-
lows the operator to assess whether the current operating point is optimal for
the plant. In addition, if the current point is not optimal, gradient estimates
provide an improving direction. However, for a process with many inputs, stan-
dard MA is crippled by the experimental cost of gradient estimation.

The solution put forward in this paper is to estimate directional derivatives
rather than full gradients. Compared to MA, the resulting D-MA algorithm
devotes significantly less effort to gradient estimation, and hence converges much
faster. The method, which was proven to guarantee constraint satisfaction and
directional optimality upon convergence, has a straightforward design procedure
using the available model. Furthermore, a novel way of optimally combining
gradient estimates allows reconciling the model gradients with experimental
data at each RTO iteration. The challenging case study of a dynamically flying
power-generating kite has demonstrated rapid convergence to the vicinity of the
plant optimum, despite significant measurement noise and both structural and
parametric plant-model mismatch. In summary, D-MA is specifically tailored
to complex processes with many degrees-of-freedom, for which an approximate
model containing a number of uncertain parameters is available.

A number of interesting research directions could improve this work. Firstly,
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Figure 5: Gradient estimation error in the first privileged direction |∇Ur,1
φE,k−

∇Ur,1φp(uk)| (solid), with its standard deviation
√

UT
r,1Σ

φ
E,kUr,1 calculated on-

line (shaded), along with the desired threshold value σTOL (dashed).

as is also the case for MA and the two-step approach, there is no rigorous
theoretical guarantee that D-MA will converge in the presence of plant-model
mismatch. Neither can it be proven that constraints will not be violated prior
to convergence, although by using constraint back-offs and by tuning conserva-
tively the filters for the zeroth-order constraint modifiers, this can generally be
achieved in practice. It is likely that such theoretical guarantees could be made
for MA schemes in general, if the ideas in Bunin (2014) can be extended to
constrained problems, or alternatively, if an intelligent algorithm such as that
suggested by Bunin et al. (2013b) were used to filter the steps taken by the MA
algorithm. Further work will also investigate the theoretical properties of the
iterative weighted Broyden-update gradient estimation algorithm proposed in
this paper.
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Figure 6: Gradient estimation error in the second privileged direction

|∇Ur,2
φE,k −∇Ur,2

φp(uk)| (solid), with its standard deviation
√

UT
r,2Σ

φ
E,kUr,2

calculated online (shaded), along with the desired threshold value σTOL
(dashed).
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Figure 7: Directional derivatives for the plant cost ∇Ur,iφp(uk) for i = 1 (solid)
and i = 2 (dashed) as functions of the RTO iteration number.
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Figure 8: All the paths corresponding to uk, k = 1, . . . 60, (black) for nr = 2, as
well as the plant optimal path u∗k (red) and the height constraint (dot-dashed).
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(noisy, dots) plant costs as functions of the RTO iteration number for nr = 4
privileged directions. The optimal plant cost is also shown (dashed).
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