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Abstract
The physical limitations of microprocessor design have
forced the industry towards increasingly heterogeneous de-
signs to extract performance. This trend has not been
matched with adequate software tools, leading to a grow-
ing disparity between the availability of parallelism and the
ability for application developers to exploit it.

Algorithmic skeletons simplify parallel programming
by providing high-level, reusable patterns of computation.
Achieving performant skeleton implementations is a difficult
task; skeleton authors must attempt to anticipate and tune
for a wide range of architectures and use cases. This results
in implementations that target the general case and cannot
provide the performance advantages that are gained from
tuning low level optimization parameters. Autotuning com-
bined with machine learning offers promising performance
benefits in these situations, but the high cost of training and
lack of available tools limits the practicality of autotuning
for real world programming. We believe that performing
autotuning at the level of the skeleton library can overcome
these issues.

In this work, we present OmniTune — an extensible and
distributed framework for dynamic autotuning of optimiza-
tion parameters at runtime. OmniTune uses a client-server
model with a flexible API to support machine learning en-
abled autotuning. Training data is shared across a network
of cooperating systems, using a collective approach to per-
formance tuning.

We demonstrate the practicality of OmniTune in a case
study using the algorithmic skeleton library SkelCL. By
automatically tuning the workgroup size of OpenCL Stencil
skeleton kernels, we show that that static tuning across
a range of GPUs and programs can achieve only 26% of
the optimal performance, while OmniTune achieves 92%
of this maximum, equating to an average 5.65× speedup.
OmniTune achieves this without introducing a significant
runtime overhead, and enables portable, cross-device and
cross-program tuning.

1. Introduction
General purpose programming with GPUs has been shown
to provide huge parallel throughput, but poses a significant
programming challenge, requiring application developers to
master an unfamiliar programming model (such as provided
by CUDA or OpenCL) and architecture (SIMD with a multi-
level memory hierarchy). As a result, GPGPU programming
is often considered beyond the realm of everyday develop-
ment. If steps are not taken to increase the accessibility of
such parallelism, the gap between potential and utilized per-

formance will continue to widen as hardware core counts
increases.

Algorithmic skeletons offer a solution to this this pro-
grammability challenge by raising the level of abstraction.
This simplifies parallel programming, allowing developers
to focus on solving problems rather than coordinating par-
allel resources. Skeleton frameworks provide robust parallel
implementations of common patterns of computation which
developers parameterise with their application-specific code.
This greatly reduces the challenge of parallel programming,
allowing users to structure their problem-solving logic se-
quentially, while offloading the cognitive cost of parallel co-
ordination to the skeleton library author. The rising number
of skeleton frameworks supporting graphics hardware illus-
trates the demand for high level abstractions for GPGPU
programming [1, 2]. The challenge is in maintaining portable
performance across the breadth of devices in the rapidly de-
veloping GPU and heterogeneous architecture landscape.

1.1 The Performance Portability Challenge
There are many factors — or parameters — which influence
the behavior of parallel programs. For example, setting the
number of threads to launch for a particular algorithm. The
performance of parallel programs is sensitive to the values
of these parameters, and when tuning to maximize perfor-
mance, one size does not fit all. The suitability of parame-
ter values depends on the program implementation, the tar-
get hardware, and the dataset that is operated upon. Iter-
ative compilation and autotuning have been shown to help
in these cases by automating the process of tuning param-
eter values to match individual execution environments [3].
However, there have been few attempts to develop general
mechanisms for these techniques, and the time taken to de-
velop ad-hoc autotuning solutions and gather performance
data is often prohibitively expensive.

We believe that by embedding autotuning at the skeletal
level, it is possible to achieve performance with algorithmic
skeletons that is competitive with — and in some cases,
exceeds — that of hand tuned parallel implementations
which traditionally came at the cost of many man hours
of work from expert programmers to develop.

Incorporating autotuning into algorithmic skeleton li-
braries has two key benefits: first, it minimizes development
effort by requiring only a modification to the skeleton imple-
mentation rather than to every user program; and second,
by targeting a library, it enables a broader and more sub-
stantive range of performance data to be gathered than with
ad-hoc tuning of individual programs.
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(a) (b)

Figure 1: The performance of different workgroup sizes for
the same stencil program on two different devices: (a) In-
tel CPU, (b) NVIDIA GPU. Selecting an appropriate work-
group size depends on the execution device.

(a) (b)

Figure 2: The performance of different workgroup sizes for
two different stencil programs on the same execution device.
Selecting an appropriate workgroup size depends on the
program.

1.2 Contributions
The key contributions of this work are:

• The design and implementation of a generic toolset for
autotuning: OmniTune is a novel and extensible frame-
work for collaborative autotuning of optimization param-
eters across the life cycle of programs.

• The integration of OmniTune with an established skele-
ton library for CPU and multi-GPU parallelism, SkelCL [4].
We extend SkelCL to provide autotuning for the selection
of OpenCL workgroup size for Stencil skeletons.

• An empirical evaluation of OmniTune across 7 different
architectures, demonstrating that OmniTune achieves
92% of the best possible performance, providing a median
speedup of 5.65× over the best possible statically chosen
workgroup size.

2. Motivation
In this section we will briefly examine the performance
impact of selecting workgroup size for the SkelCL Stencil
skeleton. A full explanation of SkelCL and the workgroup
size parameter space is given Section 4.

SkelCL uses OpenCL to parallelise skeleton operations
across many threads. In OpenCL, multiple threads are
grouped into workgroups. The shape and size of these groups
is known to have a big impact on performance. For the
SkelCL stencil skeleton, the selection of workgroup size
presents a two dimensional parameter space, consisting of a
number of rows and columns (wr × wc). Measuring and
plotting the runtime of stencil programs using different
workgroup sizes allows us to compare the performance of
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Figure 3: OmniTune system architecture, showing the sepa-
rate components and the one to many relationship between
servers to client applications, and remotes to servers.

different workgroup sizes for different combinations of ar-
chitecture and program. Figure 1 shows this performance
comparison for a single stencil program on two different de-
vices, demonstrating that a good choice of workgroup size is
device dependent. The optimization space of the same sten-
cil benchmark on different devices is radically different: not
only does the optimal workgroup size change between de-
vices, but the performance of suboptimal workgroup sizes is
also dissimilar. The optimization space of 1a has a grid-like
structure, with clear performance advantages of workgroup
sizes at multiples of 8 for wc. A developer specifically tar-
geting this device would learn to select workgroup sizes fol-
lowing this pattern. This domain specific knowledge clearly
does not transfer to the device shown in 1b.

In Figure 2, we compare the performance of two dif-
ferent stencil programs on the same device, showing that
workgroup size choice is also program dependent. In each
of these four examples, the optimal workgroup size changes,
as does the relative performance of suboptimal parameters.
The average speedup of the best over the worst workgroup
size is 37.0×, and the best average performance that can be
achieved using a single fixed workgroup size is only 63% of
the maximum.

SkelCL uses a fixed workgroup size by default. Since both
the execution device and the user-provided stencil code are
not known until runtime, selection of workgroup size should
be made dynamically. To the best of our knowledge, there is
currently no such generic system which meets our require-
ments for lightweight runtime machine learning autotuning
with distributed training sets, and as a result, a variety of
autotuners have been developed ad-hoc and on a per-case
basis.

3. The OmniTune Framework
OmniTune is a novel framework for extensible, distributed
autotuning of parameter values at runtime using machine
learning. It serves as a generic platform for developing au-
totuning solutions, aiming to reduce both the engineering
time required to target new optimization parameters, and
the time to deploy on new systems.

It emphasizes collaborative, online learning of optimiza-
tion spaces. A client-server architecture with clearly delin-
eated separation of concerns minimizes the code footprint in
client applications, enabling quick re-purposing for autotun-
ing targets. OmniTune provides a lightweight interface for
communication between each of the components, and aims
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to strike a balance between offering a fully featured environ-
ment for quickly implementing autotuning, while providing
enough flexibility to cater to a wide range of use cases. First,
we describe the overall structure of OmniTune and the ra-
tionale for the design, followed by the interfaces and steps
necessary to apply OmniTune.

3.1 System Architecture
Common implementations of autotuning in the literature
either embed the autotuning logic within each target appli-
cation (e.g. [5]), or take a standalone approach in which the
autotuner is a program which must be externally invoked by
the user to tune a target application (e.g. [6]). Embedding
the autotuner within each target application has the ad-
vantage of providing “always-on” behavior, but is infeasible
for complex systems in which the cost of building machine
learning models must be added to each program run. The
standalone approach separates the autotuning logic, at the
expense of adding one additional step to the build process.
The approach taken in OmniTune aims to combine the ad-
vantages of both techniques by implementing autotuning as
a service, in which a standalone autotuning server performs
the heavy lifting of managing training data and machine
learning models, with a minimal set of lightweight commu-
nication logic to be embedded in target applications.

OmniTune is built around a three tier client-server model,
shown in Figure 3. The applications which are to be au-
totuned are the clients. These clients communicate with a
system-wide server, which handles autotuning requests. The
server communicates and caches data sourced from a remote
server, which maintains a global store of all autotuning data.
There is a many to one relationship between clients, servers,
and remotes, such that a single remote may handle con-
nections to multiple servers, which in turn may accept con-
nections from multiple clients. This design has two primary
advantages: the first is that it decouples the autotuning logic
from that of the client program, allowing developers to eas-
ily repurpose the autotuning framework to target additional
optimization parameters without a significant development
overhead for the target applications; the second advantage
is that this enables collective tuning, in which training data
gathered from a range of devices can be accessed and added
to by any OmniTune server.

The OmniTune framework is implemented as a set of
Python classes which are extended to target specific pa-
rameters. The generic implementation of OmniTune’s server
and remote components consists of 8987 lines of Python and
MySQL code. No client logic is provided, since that is use
case dependent (See Section 4 for an example implemen-
tation for SkelCL). Inter-process communication between
client programs and the server uses the D-Bus protocol. D-
Bus is cross-platform, and bindings are available for most
major programming languages, allowing flexibility for use
with a range of clients. Communication between servers and
remotes uses TCP/IP (we used an Amazon Web Services
database instance for development).

3.2 Autotuning Behavior
The goal of machine learning enabled autotuning is to build
models from empirical performance data of past programs
to select parameter values for new unseen programs. Instead
of an iterative process of trial and improvement, parame-
ter values are predicted, by building correlations between
performance, and features (explanatory variables). The data
used to build such models is called training data. OmniTune

supports autotuning using a separate offline training phase,
online training, or a mixture of both. For each autotuning-
capable machine, an OmniTune server acts as an interme-
diary between training data and the client application, and
hosts the autotuning logic. On launch, a server requests the
latest training data from the remote, which it uses to build
the relevant models for performing prediction of optimiza-
tion parameter values. If additional training data is gathered
by the server, this can be uploaded to the remote.

While the data types of the autotuning interface are
application-specific (e.g. a binary flag or one or more nu-
meric values), the general pattern is that a client application
will request parameter values from an OmniTune server by
sending it a set of explanatory variables. The server will then
use machine learning models to form a prediction for the
optimal parameter values and return these. Crucially, there
is a mechanism provided for the client to refuse parameter
values. This functionality is provided for cases where the
predicted parameter values are in some way invalid and do
not lead to a valid program.

The server contains a library of machine learning tools
to perform parameter prediction, interfacing with the pop-
ular datamining software suite Weka1 using its Java Native
Interface. The provided tools include classifiers, regressors,
and a selection of meta-learning algorithms.

OmniTune servers may perform additional feature ex-
traction of explanatory variables supplied by incoming client
requests. The reason for performing feature extraction on
the server as opposed to on the client side is that this al-
lows the results of expensive operations (for example, ana-
lyzing source code of target applications) to be cached for
use across the lifespan of client applications. The contents
of these local caches are periodically and asynchronously
synced with the remote to maintain a global store of lookup
tables for expensive operations.

3.3 Interfaces
Key design elements of OmniTune are the interfaces exposed
by the server and remote components. Figure 4 shows an
example communication pattern between the three compo-
nents of an OmniTune system using these interfaces. In the
example, a server first requests training data from the re-
mote. A client application then performs a training phase
in which it requests a set of parameters for training, evalu-
ates the performance of the parameters, and then submits
a measured value, which the server uses to update the re-
mote. After training, another client program requests a set
of parameters for performance, refuses them, and makes a
new request.

Client-Server An OmniTune server exposes a public in-
terface over D-Bus with four operations. Client applications
invoke these methods to request parameter values, submit
new training observations, and refuse suggested parameters:

• Request(x : feature vector)→ p : param
Given explanatory variables x, request the parameter val-
ues p which are expected to provide maximum perfor-
mance.

• RequestTraining(x : feature vector)→ p : param
Given explanatory variables x, allow the server to select
parameter values p for evaluating their fitness.

1 http://www.cs.waikato.ac.nz/ml/weka/
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Training

Refuse(x, p)

Client Server Remote

RequestTraining(x) : p

Pull() : x, p, y

Push(x, p, y)
Request(x) : p

Submit(x, p, y)

Request(x) : p

Figure 4: An example communication pattern between Om-
niTune components, showing an offline training phase.

• Submit(x : feature vector, p : param, y : fitness)
Submit an observed measurement of fitness y for param-
eter values p, given explanatory variables x.

• Refuse(x : feature vector, p : param)
Refuse parameter values p, given a set of explanatory
variables x. Once refused, those parameters are black-
listed and will not be returned by any subsequent calls
to Request() or RequestTraining() for the same ex-
planatory variables x.

Server-Remote The role of the remote is to provide book-
keeping of training data for machine learning. Remotes allow
shared access to data from multiple servers using a transac-
tional communication pattern, supported by two methods:
• Push(x : feature vectors,p : params,y : fitnesses)

Asynchronously submit training data as three lists: ex-
planatory variables x, parameter values p, and observed
outcomes y.

• Pull()→ (x : feature vectors,p : params,y : fitnesses)
Request training data as three lists: explanatory vari-
ables x, parameter values p, and observed outcomes y.

3.4 Extensibility
To extend OmniTune to target an optimization parameter,
a developer extends the server class to implement response
handlers for the four public interface operations, and then
inserts client code into the target application to call these
operations. The implementation of these response handlers
and invoking client code determines the type of autotuning
methods supported. Figure 5 shows the flow diagram for an
example OmniTune implementation. The call to Request-
Training() is matched with a response call of Submit(),
showing the client recording a training observation. In the
next Section, we will detail the steps required to apply Om-
niTune to SkelCL.

4. Integration of OmniTune with SkelCL
In this section we demonstrate the practicality of OmniTune
by integrating the framework into an established algorithmic
skeleton library. Introduced in [4], SkelCL allows users to
easily harness the power of GPUs and CPUs for data parallel
computing, offering a set of OpenCL implementations of
data parallel skeletons in an object oriented C++ library.

The goal of SkelCL is to enable the transition towards
higher-level programming of GPUs, without requiring users
to be intimately knowledgeable of the concepts unique to
OpenCL programming, such as the memory or execution
model. SkelCL has been shown to reduce programming effort
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Training?

Training 
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program

Execute with 
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Output DataTraining engine

Feature 
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Figure 5: Predicting parameter values and collecting training
data with OmniTune.

for developing real applications through the use of robust
pattern implementations and automated memory manage-
ment. Skeletons are parameterised with user functions which
are compiled into OpenCL kernels for execution on device
hardware. SkelCL supports operations on one or two dimen-
sional arrays of data, with the Vector and Matrix container
types transparently handling lazy transfers between host
and device memory, and supporting partitioning for multi-
GPU execution. SkelCL is freely available and distributed
under dual GPL and academic licenses2.

4.1 The Stencil Skeleton
Stencils are patterns of computation which operate on uni-
form grids of data, where the value of each grid element
(cell) is updated based on its current value and the value of
one or more neighboring elements, called the border region.
Figure 6 shows the use of a stencil to apply a Gaussian blur
to an image. SkelCL provides a 2D stencil skeleton which
allows users to provide a function which updates a cell’s
value, while SkelCL orchestrates the parallel execution of
this function across all cells [7].

The border region is described by a stencil shape, which
defines an i × j rectangular region around each cell which
is used to update the cell value. Stencil shapes may be
asymmetrical, and are defined in terms of the number of
cells in the border region to the north, east, south, and west
of each cell. Given a function f , a stencil shape S, and an
n×m matrix with elements xij :

Stencil

(
f, S,

[
x11 · · · x1m

...
. . .

...
xn1 · · · xnm

])
→

[
z11 · · · z1m

...
. . .

...
zn1 · · · znm

]
(1)

where:

zij = f

([
xi−Sn,j−Sw · · · xi−Sn,j+Se

...
. . .

...
xi+Ss,j−Sw · · · xi+Ss,j+Se

])
(2)

For border region elements outside the bounds of the matrix,
values are substituted from either a predefined padding
value, or the value of the nearest element within the matrix,
depending on user preference.

2 http://skelcl.uni-muenster.de
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A popular usage of Stencil codes is for iterative problem
solving, whereby a stencil operation is repeated over a range
of discrete time steps 0 ≤ t ≤ tmax, and t ∈ N. An iterative
stencil operation g accepts a customizing function f , a
Stencil shape S, and a matrix M with initial values Minit.
The value of an iterative stencil can be defined recursively
as:

g(f, S, M, t) =
{

Stencil (f, S, g(f, S, M, t− 1)) , if t ≥ 1
Minit, otherwise

(3)

Examples of iterative stencils include cellular automata and
partial differential equation solvers.

In the implementation of the SkelCL stencil skeleton,
each element in the matrix is mapped to a unique thread
(known as a work item in OpenCL) which applies the user-
specified function. The work items are then divided into
workgroups for execution on the target hardware. Each
work-item reads the value of its corresponding matrix el-
ement and the surrounding elements defined by the border
region. Since the border regions of neighboring elements
overlap, the value of all elements within a workgroup are
copied into a tile, allocated as a contiguous region of the
fast, but small local memory. As local memory access times
are much faster than that of global device memory, this
greatly reduces the latency of the border region memory
accesses performed by each work item. Changing the size
of workgroups thus affects the amount of local memory re-
quired for each workgroup, and in turn affects the number
of workgroups which may be simultaneously active on the
device. While the user defines the data size and type, the
shape of the border region, and the function being applied
to each element, it is the responsibility of the SkelCL stencil
implementation to select an appropriate workgroup size to
use.

4.2 Optimization Parameters
SkelCL stencil kernels are parameterised by a workgroup
size w, which consists of two integer values to denote the
number of rows and columns in a workgroup. The space of
optimization parameter values is subject to hard constraints,
and these constraints cannot conveniently be statically de-
termined. Contributing factors are architectural limitations,
kernel constraints, and parameters which are refused for
other reasons. Each OpenCL device imposes a maximum
workgroup size which can be statically checked. These are
defined by architectural limitations of how code is mapped
to the underlying execution hardware. At runtime, once an
OpenCL program has been compiled to a kernel, users can
query the maximum workgroup size supported by that par-
ticular kernel dynamically. This value cannot easily be ob-
tained statically as there is no mechanism to determine the
maximum workgroup size for a given source code and device
without first compiling it, which in OpenCL does not occur
until runtime.

Factors which affect a kernel’s maximum workgroup size
include the number of registers required for a kernel, and
the available number of SIMD execution units for each type
of instructions in a kernel. In addition to satisfying the
constraints of the device and kernel, not all points in the
workgroup size optimization space are guaranteed to provide
working programs. A refused parameter is a workgroup size
which satisfies the kernel and architectural constraints, yet
causes a CL_OUT_OF_RESOURCES error to be thrown when
the kernel is enqueued. Note that in many OpenCL imple-
mentations, this error type acts as a generic placeholder and
may not necessarily indicate that the underlying cause of the

Figure 6: Application of a Gaussian blur stencil operation
to an image, with a border region of radius 1. In a Gaussian
blur, pixel values are interpolated with neighboring pixels,
producing a smoothed effect.

error was due to finite resources constraints. We define a le-
gal workgroup size as one which, for a given scenario s (a
combination of program, device, and dataset), satisfies the
architectural and kernel constraints, and is not refused. The
subset of all possible workgroup sizes Wlegal(s) ⊂ W that
are legal for a given scenario s is then:
Wlegal(s) = {w|w ∈W,w < Wmax(s)} −Wrefused(s) (4)

Where Wmax(s) can be determined at runtime prior to
the kernels execution, but the set Wrefused(s) can only be
determined experimentally.

The oracle workgroup size Ω(s) ∈Wlegal(s) of a scenario
s is the w value which provides the lowest mean runtime.
The relative performance p(s, w) of a particular workgroup
against the maximum available performance for that sce-
nario, within the range 0 ≤ p(s, w) ≤ 1, is the ratio of the
runtime of a program with workgroup size w over the or-
acle workgroup size Ω(s). For a given workgroup size, the
average performance p̄(w) across a set of scenarios S can be
found using the geometric mean of performance relative to
the oracle:

p̄(w) =

(∏
s∈S

p(s, w)

)1/|S|

(5)

4.3 Machine Learning
The optimization space presented by the workgroup size of
OpenCL kernels is large, complex, and non-linear. The chal-
lenge is to design a system which, given a set of prior ob-
servations of the empirical performance of stencil codes with
different workgroup sizes, predict workgroup sizes for unseen
stencils which will maximize the performance. Successfully
applying machine learning requires plentiful training data,
the careful selection of explanatory variables, and appropri-
ate machine learning methods. For the purpose of this work
we use a classification approach, in which a classifier auto-
matically correlates patterns between explanatory variables
and the workgroup sizes which provide optimal performance.
The classifier used is the popular J48 Decision Tree [8], cho-
sen due to its low classification cost and ability to efficiently
handle large dimensionality training data.

For each scenario, a total of 102 explanatory variables are
extracted to capture information about the device, program,
and dataset. Device variables encode the device type (e.g.
CPU or GPU, integrated or external, connection bus), prop-
erties about the host (e.g. system memory, maximum clock
frequency), and numerous properties about the execution
device (e.g. number of compute units, local memory size,
global caches). Program variables include instruction den-
sities for each instruction type, the total number of basic
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blocks, and the total instruction count. They are extracted
using static instruction count passes over an LLVM IR com-
piled version of the user stencil implementation. Compila-
tion to bitcode is a relatively expensive task, so lookup tables
are used to cache repeated uses of the same stencil codes,
identified by a checksum of the source code. Dataset vari-
ables include the data types (input and output), and dimen-
sions of the input matrix and stencil region.

To collect training data, we run multiple iterations of a
stencil program to enumerate the workgroup size optimiza-
tion space, and use the OpenCL’s Profiling API to record
stencil kernel execution times in the client application, which
are then submitted to the OmniTune server. The Request-
Training(x) server interface returns a workgroup size with
a randomly selected even number of rows and columns that
obeys the maximum size constraints.

A parameterised template substitution engine is used to
generate synthetic stencil applications for gathering perfor-
mance data. Stencils templates are parameterised with a
border region size and complexity, a simple metric to broadly
dictate the number of operations in a given stencil code.

Once the performance of different workgroup sizes for
a scenario is assessed, the set of explanatory variables de-
scribing the scenario is paired with the oracle workgroup
size. This process is repeated for multiple scenarios to cre-
ate training data. A classifier learns from this training data
to make predictions for new sets of explanatory variables, by
predicting a workgroup size from the set of oracle workgroup
sizes of the training data.

This approach presents the problem that after training,
there is no guarantee that the set of workgroup sizes which
may be predicted is within the set of legal workgroup sizes
for future scenarios. This may result in a classifier predicting
a workgroup size which is not legal for a scenario, w 6∈
Wlegal(s), either because it exceeds Wmax(s), or because
the parameter is refused. If this occurs, a nearest neighbor
approach is used to select the workgroup size w which is
expected to be legal and has the lowest Euclidian distance
to the predicted value c. This is achieved by comparing row
(r) and column (c) indices:

w = arg min
w∈Wlegal(s)

√
(cr − wr)2 + (cc − wc)2 (6)

This process of selecting alternative parameters will iterate
until a legal parameter is found.

4.4 Implementation
The OmniTune framework consists of 8987 lines of Python
and MySQL code. A further 976 lines are required for the
SkelCL frontend to implement the server response handlers
and database backend. By design, the client-server model
minimizes the impact of number of modifications that are
required to enable autotuning in client applications. The
only modification required to SkelCL is to replace the hard-
coded values for workgroup size with a subroutine to request
a workgroup size from the OmniTune server over a D-Bus
connection. To use the system, a user must download a copy
of SkelCL modified with the OmniTune functionality, and
start a local OmniTune server instance. A configuration file
is used to determine the domain address and authentication
details of the remote server. On first launch, the OmniTune
server will fetch the latest training data from the remote.
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Figure 7: Distribution of runtime samples for test cases from
three devices. Each plot contains a 35-bin histogram of 1000
samples, and a fitted kernel density estimate with bandwidth
0.3. The sample mean is shown as a vertical dashed line. The
top row are from the Intel i5-4570, the second row from the
Nvidia GTX 590, and the third row from the AMD Tahiti
7970. In some of the plots, the distribution of runtimes is bi-
or multi-modal, and skewed to the lower end of the runtimes
range.

5. Experimental Setup
This section describes an exhaustive enumeration of the
workgroup size optimization space for 429 combinations of
architecture, program, and dataset. It contains the method-
ology used to collect empirical performance data on which to
base performance comparisons of different workgroup sizes,
and the steps necessary to obtain repeatable results.

A full enumeration of the workgroup size optimization
spaces was performed across synthetically generated bench-
marks and four reference stencil benchmarks: Canny Edge
Detection, Conway’s Game of Life, Heat Equation, and
Gaussian Blur [4]. Performance data was collected from 7
experimental platforms, comprising 4 GPU devices: AMD
Tahiti 7970, Nvidia GTX 590, Nvidia GTX 690, Nvidia GTX
TITAN; and 3 CPU devices: Intel i5-2430M, Intel i5-4570,
i7-3820. Each platform was unloaded, frequency governors
disabled, and benchmark processes set to the highest prior-
ity available to the task scheduler. Datasets and programs
were stored in an in-memory file system. For each program,
dataset sizes of size 512 × 512, 1024 × 1024, 2048 × 2048,
and 4096× 4096 were used. A minimum of 30 samples were
recorded for each scenario and workgroup size.

Program behavior is validated by comparing program
output against a gold standard output collected by execut-
ing each of the real-world benchmarks programs using the
baseline workgroup size (defined below). The output of real-
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Figure 8: Ratio of 95% confidence interval to mean as a func-
tion of sample size. Two dashed lines indicate the confidence
intervals at the minimum (3.7%) and mean (2.5%) sample
size found in the experimental dataset.

world benchmarks with other workgroup sizes is compared
to this gold standard output to test for correct program ex-
ecution.

6. Evaluation
This section evaluates the performance of OmniTune when
tasked with selecting workgroup sizes for SkelCL stencil
codes. The experimental results consist of measured run-
times for a set of test cases, where each test case τi consists
of a scenario, workgroup size pair τi = (si, wi), and is as-
sociated with a sample of observed runtimes from multiple
runs of the program. A total of 269,813 test cases have been
evaluated with an average sample size of 83 (min 33, to-
tal 16,917,118). This represents an exhaustive enumeration
of the workgroup size optimization space for 429 scenarios,
with an average of 629 (max 7,260) unique workgroup sizes
for each scenario.

6.1 Runtime Noise
First we examine the noise present in program runtime
measurements. The complex interaction between processes
competing for the finite resources of a system introduces
many sources for such noise. Figure 7 plots the distributions
of 1000 runtimes recorded for 9 SkelCL stencil kernels, (a)–
(i). The plots show that the distribution of runtimes is not
Gaussian; rather, it is sometimes multimodal, and generally
skewed to the lower end of the runtime range, with a long
“tail” to the right. This fits our intuition that programs
have a hard minimum runtime enforced by the time taken
to execute the instructions of a program, and that noise
introduced to the system extends this runtime. For example,
preempting an OpenCL process on a CPU so that another
process may run may cause the very long tail visible in
Figure 7a.

It is important to ensure a sufficiently large sample size
when performing optimisations based on empirical perfor-
mance data. A recommendation of ≥ 30 samples is common
in the benchmarking literature [9]. Our experimental results
support this recommendation: Figure 8 plots the ratio of
95% confidence interval to the sample mean for different
sample sizes, showing a 50% reduction in confidence inter-
val size when increasing the sample size from 10 to 30. In
this experimental dataset, the ratio of confidence interval to
mean at the smallest sample size (33) is 3.7%, and 2.5% at
the mean sample size (83).

6.2 OpenCL Workgroup Size Optimization Space
We can calculate an upper bound for the performance im-
pact of the workgroup size parameter by comparing the av-
erage runtimes of the best and worst workgroup size for a
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Figure 9: Accuracy compared to the oracle as a function of
the number of unique workgroup sizes. The greatest accu-
racy that can be achieved using a single statically chosen
workgroup size is 15%. Achieving 50% oracle accuracy re-
quires a minimum of 14 distinct workgroup sizes.

single scenario. Applying this to all scenarios, we find the av-
erage speedup upper bound to be 15.14× (min 1.03×, max
207.72×). This demonstrates the importance of tuning sten-
cil workgroup sizes — if chosen incorrectly, the runtime of
stencil programs can be extended by up to 207.72×. Note
that for 5 of the scenarios, the speedup of the best over worst
workgroup sizes is less than 5%. For these scenarios, there
is little benefit to autotuning; however, this represents only
1.1% of the tested scenarios. For 50% of the scenarios, the
speedup of the best over worst workgroup sizes is greater
than 6.19×.

For the purposes of evaluating autotuning, we use three
baselines to compare program runtimes against. The relative
performance of a workgroup size for a particular scenario is
compared against runtimes for each of three parameters:
• Oracle — The oracle workgroup size is the workgroup

size which provided the lowest mean runtime for a given
scenario. Speedup relative to the oracle is in the range
0 ≤ x ≤ 1, so this can be referred to as performance.

• Baseline — The baseline parameter is the workgroup size
which provides the best overall performance while being
legal for all scenarios. Such a baseline value represents the
best possible performance which can be achieved using
a single, statically chosen workgroup size. By defining
Wsafe ∈ W as the intersection of legal workgroup sizes,
the baseline w̄ can be found using:

Wsafe = ∩{Wlegal(s)|s ∈ S} (7)
w̄ = arg max

w∈Wsafe

p̄(w) (8)

For our experimental data, we find this value to be
w(4×4).

• Human expert — In the original implementation of the
SkelCL stencil skeleton [7], Steuwer et al. selected a
workgroup size of w(32×4), based on an evaluation of 4
stencil programs on a Tesla S1070 system.

Across the 429 scenarios tested, there are 135 unique ora-
cle workgroup sizes. This demonstrates the difficulty in at-
tempting to statically tune for optimal parameter values,
since 31.5% of scenarios have different oracle workgroup
sizes. Figure 9 shows that a minimum of 14 distinct work-
group sizes are needed to achieve just 50% of the oracle
accuracy, although it is important to make the distinction
that oracle accuracy and performance are not equivalent.

We find that the human expert selected workgroup size is
invalid for 2.6% of scenarios, as it is refused by 11 test cases.
By device, these are: 3 on the GTX 690, 6 on the i5-2430M,
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Figure 10: Comparing performance of workgroup sizes rela-
tive to the oracle as a function of: (a) maximum legal size,
(b) number of columns, and (c) number of rows. Each work-
group size is normalized to the maximum allowed for that
scenario, Wmax(s). There is no clear correlation between
workgroup size and performance.

and 2 on the i5-4570. For the purpose of comparing per-
formance against human experts, we will ignore these test
cases, but it demonstrates the utility of autotuning not just
for maximizing performance, but ensuring program reliabil-
ity. For the scenarios where the human expert workgroup
size is legal, it achieves an impressive geometric mean of
79.2% of the oracle performance. The average speedup of
oracle workgroup sizes over the workgroup size selected by
a human expert is 1.37× (min 1.0×, max 5.17×).

The utility of the baseline workgroup size is that it rep-
resents the best performance that can be achieved through
static tuning. The baseline workgroup size achieves only 24%
of the maximum performance. Figures 10 and 11 show box
plots for the performance of all workgroup sizes using differ-
ent groupings: ratio of maximum workgroup size, kernel, de-
vice, and dataset. The plots show the median performance,
interquartile range, and outliers. What is evident is both the
large range of workgroup size performances (i.e. the high
performance upper bounds), and the lack of obvious corre-
lations between any of the groupings and performance.

6.3 Autotuning Workgroup Sizes
To evaluate the performance of machine learning-enabled
autotuning of SkelCL stencils, we partition the experimental
data into training and test sets. The training set is used to
build the machine learning model. The predicted workgroup
size for each entry in the test set is then used to evaluate
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Figure 11: Performance relative to the oracle of workgroup
sizes across all test cases, grouped by: (a) kernels, (b) de-
vices, and (c) datasets. The performance impact is not con-
sistent across kernels, devices, or datasets. The Intel i7-3820
has the lowest performance gains from tuning workgroup
size.

the autotuning performance. We use 5 different approaches
to partitioning the test and training data, which each test
different aspects of the system. The first is a k-fold cross
validation, a standard machine learning model validation
technique in which the set of all data is shuffled and then
divided into k equally sized validation sets. Each validation
set is used to test a model trained on the remaining data [8].
In our evaluation we use a value of k = 10. The second
technique is to partition the data such that it consists of data
gathered from synthetic benchmarks, and use data collected
from real-world benchmarks to test. This tests the utility
of training using synthetically generated benchmarks. The
third, forth, and fifth approaches involve creating leave-one-
out training sets for all data grouped by device, kernel, and
dataset, respectively. This tests the ability to successfully
apply prior knowledge about other devices, kernels, and
datasets, to new unseen cases. For example, of the n devices
used to collect performance data, the model is trained on
data from n−1 devices, and tested against data from the nth.
Table 1 summarizes the results of evaluating the autotuner
using each of the different validation techniques.

The autotuner achieves good performance, with average
speedups over the baseline across all validation sets range be-
tween 4.79× and 5.65×. Importantly, the performance when
validating across devices, kernels, and datasets, is compara-
ble to the 10-fold validation. This demonstrates that the
autotuner is capable of learning across these targets. So if
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Training Dataset Performance
Speedup
over
Baseline

Speedup
over Human
Expert

10-fold 92% 5.65× 1.26×
Synthetic 92% 4.79× 1.13×
n− 1 Device 85% 5.23× 1.17×
n− 1 Kernel 89% 5.43× 1.21×
n− 1 Dataset 91% 5.63× 1.25×
Average 90% 5.45× 1.22×

Table 1: Performance results using a J48 Decision Tree
across different validation sets. Note that the human ex-
pert selected workgroup size is invalid for 2.6% of test cases,
which we excluded for the purpose of performance compar-
isons against human expert.

the autotuner is deployed to a system for which it has no
prior knowledge, it does not suffer a significant drop in per-
formance. The same is true for an unseen kernel, or dataset
type. This, combined with the distributed datasets provided
by the OmniTune framework, demonstrates the utility of au-
totuning at the skeletal level, allowing machine learning to
successfully learn predictions across unseen programs, ker-
nels, and datasets.

Classification using decision trees is a lightweight process
(they can be implemented using a chain of if/else state-
ments). The measured overhead of autotuning is 2.5ms, of
which only 0.3ms is required for classification using Weka,
although an optimized decision tree implementation could
reduce this further. The remaining 2.2ms is required for fea-
ture extraction and the inter-process round trip between the
OmniTune server and client.

6.4 OmniTune Extensibility
The client-server architecture OmniTune neatly separates
the autotuning logic from the target application. This makes
adjusting the autotuning methodology a simple process. To
demonstrate this, we changed the machine learning algo-
rithm from a J48 decision tree to a Naive Bayes classifier,
and duplicated the evaluation. This required only a single
line of source code in the OmniTune server extension to
be changed. Figure 12 visualizes the differences in autotun-
ing predictions when changing between these two classifiers.
While the average performances of the two classifiers is com-
parable, the distribution of predictions is not. For example,
the Naive Bayes classifier predicted the human expert se-
lected workgroup size of w(32×4) more frequently than it was
optimal, while the decision tree predicted it less frequently.
Selection of machine learning algorithms has a large impact
on the effectiveness of autotuning, and the OmniTune client-
server design allows for low cost experimenting with different
approaches. In future work we will investigate meta-tuning
techniques for selecting autotuning algorithms.

6.5 Summary
In this section we have explored the performance impact of
the workgroup size optimization space, and the effectiveness
of autotuning using OmniTune to exploit this. By comparing
the relative performance of an average of 629 workgroup
sizes for each of 429 scenarios, the following conclusions can
be drawn:

• The performance gap between the best and workgroup
sizes for a particular combination of hardware, software,
and dataset is up to 207.72×.
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Figure 12: Heatmaps of autotuner predictions for a subset
of the explored optimization space (wc < 80, wr < 80) using
two different classifiers. The shading in each cells indicates
if it is predicted less frequently (blue), ore more frequently
(red) than it is optimal. Color gradients are normalized
across plots.
• Not all workgroup sizes are legal, and the space of legal

workgroup sizes cannot statically be determined. Adap-
tive tuning is required to ensure reliable performance.

• Statically tuning workgroup size fails to extract the po-
tential performance across a range of programs, architec-
tures, and datasets. The best statically chosen workgroup
size achieves only 26% of the optimal performance.

• Workgroup size prediction using a decision tree achieves
an average 90% of the optimal performance.

• Auotuning provides performance portability across pro-
grams, devices, and datasets. The performance of pre-
dicted workgroup sizes for unseen devices is within 8%
of the performance for known devices.

7. Related Work
Early work in autotuning applied iterative search tech-
niques to the space of compiler optimisations [3, 10]. Since
then, machine learning techniques have been successfully
employed to reduce the cost of iterative compilation [11–
13]. However, optimizing GPGPU programs presents dif-
ferent challenges to that of traditional CPU programming.
Ryoo et al. demonstrated speedups of up to 432× for ma-
trix multiplication in CUDA through the appropriate use of
zero-overhead thread scheduling, memory bandwidth, and
thread grouping. The importance of proper exploitation of
local shared memory and synchronization costs is explored
in [15]. In [5], data locality optimisations are automated us-
ing a description of the hardware and a memory-placement-
agnostic compiler. Magni, Dubach, and O’Boyle use a ma-
chine learning model to predict optimal thread coarsening
factors of OpenCL kernels in [16], demonstrating speedups
between 1.11× and 1.33×.

Auotuning transformations for stencil codes are explored
in [17] using an IR to represent stencils and a CUDA code
generator at the backend. However, they do not optimize
for the GPU memory hierarchy, using only global memory.
In [6], Lutz, Fensch, and Cole demonstrate that optimal
swapping strategy for multi-GPU stencils depends on the
size of the grid, the number of partitions, and the connection
mechanism (e.g. PCI express). Autotuning for algorithmic
skeletons is performed using Nearest Neighbor classification
and Principle Component Analysis in [18].
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OpenTuner is a general purpose toolkit for autotuning
which uses ensemble search techniques to reduce the cost of
exploring an optimization space, rather than the machine
learning approach taken in this work [19]. Since OpenTuner
does not learn optimization spaces as OmniTune does, per-
formance data is not shared across devices. This means that
the search for performant parameter values must be per-
formed by each new device to be autotuned. Our approach
combines machine learning with distributed training sets so
that new users automatically benefit from the collective tun-
ing experience of other users, which reduces the time to de-
ployment.

A “big data” driven approach to autotuning is presented
in [20]. The authors propose the use of “Collective opti-
mization” to leverage training experience across devices, by
sharing performance data, datasets and additional metadata
about experimental setups. In addition to the mechanism for
sharing training datasets, our system provides the capabili-
ties of performing autotuning at runtime using a lightweight
inter-process communication interface. Additionally, Collec-
tive Mind uses a NoSQL JSON format for storing datasets.
The relational schema used in OmniTune offers greater scal-
ing performance and lower storage overhead.

8. Conclusions
As the trend towards increasingly programmable heteroge-
neous architectures continues, the need for high level, ac-
cessible abstractions to manage such parallelism will con-
tinue to grow. Autotuning proves to be a valuable aid for
achieving these goals, provided that the burden of develop-
ment and collecting performance data is lifted from the user.
The system presented in this paper aims to solve this issue
by providing a generic interface for implementing machine
learning-enabled autotuning. OmniTune is a novel frame-
work for autotuning which has the benefits of a fast, “always-
on” interface for client applications, while being able to syn-
chronize data with global repositories of knowledge which
are built up across devices. To demonstrate the utility of
this framework, we implemented a frontend for predicting
the workgroup size of OpenCL kernels for SkelCL stencil
codes. This optimization space is complex, non linear, and
critical for the performance of stencil kernels. Selecting the
correct workgroup size is difficult — requiring a knowledge
of the kernel, dataset, and underlying architecture. The im-
plemented autotuner achieves 92% of the maximum perfor-
mance, and provides performance portability, even achieving
an average of 85% of the maximum performance when de-
ployed on a device for which it has no prior training data.
By performing autotuning at the skeletal level, the system is
able to exploit underlying similarities between pattern im-
plementations which are not shared in unstructured code.
In future work we will explore methods for collaborative ex-
ploration of optimization spaces in parallel across multiple
cooperating devices, and targeting multiple parameters si-
multaneously.
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