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Abstract : We address the task of localizing objects from a given object class in an image. The
image is represented as a collection of “visual words” at interest points. The generative template of
features (GTF) model defines a distribution over visual words and their spatial locations for each part
of the object (Sudderth et al., 2005; Fergus et al., 2005). We show how to derive pose-space prediction
methods (such as the Hough transform) from the GTF.
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Over the last few years there has been a surge of interest in the problem of object recognition
for object classes (as opposed to recognition of specific objects). We distinguish between object
classification (detecting whether there is an object of a given class in an image) and object
localization (specifying the location of an object in an image).

For the object localization problem there are three main approaches:

• Scanning methods that run a detector at different positions and scales in the image,
and report maxima. Such methods have been used e.g. for handwritten digit recognition
(LeCun et al., 1990), face detection (Viola and Jones, 2004) and car detection (Agarwal
et al., 2004).

• Pose-clustering methods (see Forsyth and Ponce, 2003, §18.3). This method can be traced
back at least to Hough (1962). If the detected features are simple then it can be useful
to group features to make tight predictions in pose space. However, with richer features
a single feature can be informative, see e.g. the work of Leibe et al. (2004).

• Interpretation-tree algorithms (Grimson, 1990) that match image features to features in
a model. An example of such an approach for object class recognition is the work on
“constellation models” (Weber et al., 2000; Fergus et al., 2003). Such methods poten-
tially search over all correspondences between image and object features. As this is a
combinatoric search it is very slow unless aggressive pruning of the search tree can be
achieved.

Recently a generative model for object recognition has been proposed by Sudderth et al.
(2005); see also Fergus et al. (2005) for related work. We call this model the generative template
of features (GTF), and it is explained further in section 1. The GTF was described in the context
of an unsupervised learning problem, but it could equally be trained in a supervised fashion.
One way to carry out object localization is to scan this template over an image at various
locations and scales. The goal of this paper is to give a principled derivation of pose-space
prediction methods from the GTF, which we do in section 2.

1 The Generative Template of Features

We assume that an interest point detector has been run on each image, and that a local image
descriptor like Lowe’s SIFT descriptor (Lowe, 2004) has been computed at each interest point.
These descriptors are clustered over a set of training images to produce a dictionary of “visual
words”. Thus for image m with Nm interest points we have pairs (xmi, wmi), i = 1, . . . Nm,
where xmi denotes the position and wmi denotes the identity of the visual word of feature i in
image m. Let these be collected into the matrices Xm, Wm for image m.

Consider an object which has pose variables θ. θ could denote the (x, y) position of the
object in the image, position plus scale and rotation, or be more complex, e.g. including internal
degrees of freedom. Under the model defined in Sudderth et al. (2005) we have

p(θ, Xm, Wm) = p(θ)
Nm∏
i=1

p(xmi, wmi|θ). (1)

Notice that each feature (xmi, wmi) is generated i.i.d., conditional on θ. Of course image features
may be generated either from background clutter or from an object of interest. Thus we choose
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the mixture model

p(xmi, wmi|θ) = (1− α)pb(xmi, wmi) + αpf (xmi, wmi|θ), (2)

where pb denotes a background model, pf a foreground model (of the object) and α is the
probability of choosing to generate from the foreground. The background model will typically
generate features anywhere in the image and with a broad distribution of visual word types,
with pb(x, w) = pb(x)pb(w).

The term pf (xmi, wmi|θ) can be further decomposed using the notion of parts. If zmi is an
indicator variable for each of the P possible parts in the object, then we have

pf (xmi, wmi|θ) =
P∑

zmi=1

pf (xmi|zmi, θ)p(wmi|zmi)p(zmi). (3)

The meaning of eq. 3 is that the location of xmi depends on the part it is derived from and the
object’s instantiation parameters, and wmi is generated from a multinomial distribution1 that
depends on only the identity of the part that the visual word is generated from. pf (xmi|zmi, θ)
could, for example, be a Gaussian distribution. We note that Revow et al. (1996) defined a
similar generative model but for black (ink) pixels, without the visual words component.

One can have a deep discussion over the meaning of the term part, but here we will take it
to mean that if we have a collection of images of a particular object class (e.g. cars) which have
been normalized (e.g. translated, rescaled etc.) so as to be in as good alignment as possible,
then there will tend to be regions in this set of images which have propensities to generate
particular visual words. For example, the wheels on cars tend to be detected by interest point
operators and found towards the bottom left and right hand sides of side views of cars.

Localization of an object with respect to the θ parameters such as position and scale can
be carried out with the GTF by scanning the template over the image at a dense grid of θ
settings, detecting maxima in this space and verifying if these maxima are sufficiently strong to
support the hypothesis. Note that the GTF also allows the probabilistic assignment of features
to the foreground or background given θ by computing the posterior probability

αpf (xmi, wmi|θ)

(1− α)pb(xmi, wmi) + αpf (xmi, wmi|θ)
. (4)

If there are a number of object models O1, O2, . . . then to carry out model comparison we
seek to compute the marginal likelihood

p(Xm, Wm|Oj) =

∫
p(θ, Xm, Wm|Oj)dθ. (5)

In general this integral will not be analytically tractable but if θ is low dimensional it can be
approximated, e.g. by using numerical quadrature based on a grid of points in θ-space, or by
using Laplace’s approximation at a mode of p(θ|Xm, Wm, Oj).

We note that the i.i.d. assumption in the GTF model is quite weak as it does not enforce
generation from particular parts, in contrast to the constellation model.

Dealing with multiple objects in a scene. One way to handle multiple objects in a scene
is to follow the treatment of Sudderth et al. (2005). They extend θ to hold the instantiation

1In fact it is not absolutely necessary to cluster the descriptors into a discrete set of visual words; one could
define p(w|z) over real-valued descriptors, e.g. with a mixture of Gaussians.
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parameters for each object, and define mixing proportions for each object and the background.
This approach ignores occlusion, but it would be quite straightforward to use a layered model
and to reason about occlusion so as to generate only from visible components. Alternatively,
we might expect that individual models could be run to find good regions of θ-space for the
given model, and that the robust background model would explain features from other objects.
This parallels the work of Williams and Titsias (2004) where such an approach was used to
propose good locations for sprite models individually, and a layer ordering was determined in
a second pass.

Limitations of the GTF. The GTF does not enforce generation of features from each
part, as under the generative model there is a non-zero probability that some part is not chosen
on any of the draws from the foreground. This problem was observed by Revow et al. (1996)
where it was called the “beads in white space” problem, as ink generators (beads) could occur
in regions where there were no black (ink) pixels. One way to deal with this is to use the GTF to
find promising regions of θ space, and then evaluate measures of model fit for such instantiated
models which can then be fed to discriminatively-trained classifiers. This strategy was used
by Revow et al. (1996) on the digit recognition problem, and more recently has been used, for
example, by Fritz et al. (2005) for the recognition of cars, motorbikes, cows and horses.

Learning the GTF. In general learning the GTF requires estimation of both the p(x|z)
and p(w|z) distributions for each part. In Sudderth et al. (2005) and Fergus et al. (2005)
training is carried out by using unsupervised learning. However, if we have training data for
each object class annotated with bounding boxes (as in the PASCAL VOC dataset2) then one
can use supervised learning. Each bounding box for a given object class is rescaled so as to be
centered and have the same area as the template. (If separate x and y scaling factors are used
then rectangular bounding boxes can be brought into perfect alignment.) Given these aligned
data it is straightforward to learn the parameters of the template by EM.

2 Making Predictions in Pose-space

As we have said, one way to localize objects in images using the GTF is to scan the template
over the image in a dense grid of θ settings (e.g. position, scale). An alternative approach is to
combine predictions from the various features in pose space to approximate p(θ|Xm, Wm, Oj)
for object class Oj. This idea goes back to the Hough transform (Hough, 1962), although note
that below we do not bin up θ-space. For example, the classical Hough transform for detecting
lines divides parameter space up into bins and each observed point votes for all lines consistent
with it; peaks in the accumulator array are candidates for lines.

By taking logs of eq. 1 we obtain

log p(θ, Xm, Wm) = log p(θ) +
Nm∑
i=1

log p(xmi, wmi|θ). (6)

As the data (Xm, Wm) are fixed we have p(θ, Xm, Wm) ∝ p(θ|Xm, Wm) with p(xmi, wmi|θ)
viewed as a function of θ. Thus the generative model can be used to hypothesize detections
in θ-space by finding the maxima of p(θ|Xm, Wm), e.g. by hill-climbing. Such an explanation
of the probabilistic Hough transform can be found, for example, in Stephens (1991), although

2http://www.pascal-network.org/challenges/VOC/.
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without the use of specific visual word features (which provide more information and thus
tighter distributions).

To spell this out further, consider a distinctive visual word which occurs in only one position
on an object. This feature will be predictive of the location of the centre of the object, but
as it can also be generated from the background part there is also an associated broad outlier
distribution as derived from eq. 3.

Equation 6 shows how to run the generative model backwards to provide predictions in
parameter space. However, given training data with features {(xmi, wmi)} it is natural to build
predictors for p(θ|xmi, wmi), e.g. by creating a Parzen windows estimator for p(θ|xmi, wmi). How
should we then combine these predictions from each feature in order to obtain p(θ|Xm, Wm)?
Fortunately Bayes’ rule comes to our aid, as

p(xmi, wmi|θ) =
p(θ|xmi, wmi)p(xmi|wmi)p(wmi)

p(θ)
. (7)

Here p(θ|xmi, wmi) is obtained from the predictive model, p(wmi) is just the marginal probability
of visual word wmi over the training set, and p(xmi|wmi) is the probability of seeing a visual
word of type wmi in position xi. This could be estimated, e.g. using a density estimator for
the location of features of a given type in the collection of training data. Alternatively, if p(θ)
has a non-informative location component then we might expect that p(xmi|wmi) should be
uniform across locations in the image. This use of Bayes’ theorem to replace likelihood terms
with predictive distributions has been called the scaled likelihood method, see, e.g. Morgan and
Bourlard (1995); Feng et al. (2002).

Putting equations 6 and 7 together we obtain

log p(θ|Xm, Wm) =
Nm∑
i=1

log p(θ|xmi, wmi)− (Nm − 1) log p(θ) + c, (8)

where c is a constant independent of θ. Thus we have shown rigorously how to obtain
p(θ|Xm, Wm) from individual predictions p(θ|xmi, wmi) up to a normalization constant. Note,
however, that to compute the marginal likelihood (eq. 5) from eq. 8 requires additional terms
involving p(xmi|wmi) and p(wmi) to be included.

Recently, Leibe et al. (2004) have used such ideas to predict an object’s location based on
the observed position of visual words. However, we note that the equation they use (their eq.
6), is, in our notation,

scorem(θ) =
Nm∑
i=1

pf (θ|xmi, wmi). (9)

Eq. 9 does not at first sight agree with eq. 1; for a start it sums probabilities rather than
multiplying probabilities or summing log probabilities. However, using eq. 2 we have

Nm∏
i=1

p(xmi, wmi|θ) =
Nm∏
i=1

pb(xmi, wmi)
[
(1− α)Nm + α(1− α)Nm−1

Nm∑
i=1

pf (xmi, wmi|θ)

pb(xmi, wmi)
+ O(α2)

]
.

(10)
If α is small and p(θ) is non-informative w.r.t. location then using eq. 7 for pf (xmi, wmi|θ) we
obtain to first order

p(θ|Xm, Wm) = c0 + c1

Nm∑
i=1

pf (xmi, wmi)

pb(xmi, wmi)
pf (θ|xmi, wmi), (11)
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where c0, c1 depend on the image features but not on θ and pf (xmi, wmi) =
∫

pf (xmi, wmi|θ)p(θ)dθ.
Minka (2003) has also discussed how a robustified product of probabilities gives rise to a sum
of probabilities to first order.

Furthermore, if p(θ) has a non-informative location component then the spatial part of
pf (xmi, wmi) will be non-informative and we can refine eq. 11 to obtain

p(θ|Xm, Wm) = c0 + c2

Nm∑
i=1

pf (wmi)

pb(wmi)
pf (θ|xmi, wmi), (12)

where pf (w) =
∑P

z=1 p(w|z)p(z), i.e. the weighted average of the multinomial vectors in the
foreground parts. Eq. 12 is close to eq. 9, although note the weighting of each predictive
distribution pf (θ|xmi, wmi) by the factor pf (wmi)/pb(wmi). If visual word wmi is more probable
under the background model then its prediction will be discounted. We note that Dorko and
Schmid (2005) have discussed selecting discriminative foreground features for use in eq. 9, but
that their criterion is based on intuitive arguments rather than on a formal derivation.

In future work we plan to investigate how well the approximation of eq. 12 agrees with eq.
9.
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