
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2Plan2: Learning Generalised Policies via Evolutionary
Computation

Citation for published version:
Galea, M & Levine, J 2008 'L2Plan2: Learning Generalised Policies via Evolutionary Computation'.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/l2plan2-learning-generalised-policies-via-evolutionary-computation(8574550d-6002-494d-bb59-870f0f361054).html


L2Plan2: Learning Generalised Policies via Evolutionary Computation

Michelle Galea and John Levine
Department of Computer & Information Sciences

University of Strathclyde
Glasgow G1 1XH, UK

Abstract

L2Plan2 is an evolution-inspired system for inducing gener-
alised planning policies from training data. A policy is here
defined as a list of rules that specify which actions to be per-
formed under which conditions. A policy is domain-specific
and is used in conjunction with an inference mechanism that
stipulates which rule to apply and which variable bindings to
implement in order to formulate plans for problems within that
domain.

Introduction
We presentL2Plan2, an evolution-inspired system that in-
duces generalised policies from available solutions to plan-
ning problems. The term generalised policy was coined by
Martin & Geffner (2004) for a function that maps pairs of ini-
tial and goal states to actions. The actions outputted should,
when performed, achieve the specified goal state from the
specified initial state.

The name L2Plan2 is in recognition of early work
(Khardon 1999) in the induction of policies which has in-
fluenced the current representation used to describe learned
knowledge (Khardon’s system was called L2ACT). The ap-
proach to learning this knowledge is however directly in-
spired by the work of Koza (1992) and Spector (1994), in
applying Genetic Programming to the evolution of lisp-like
problems for solving various blocksworld problems.

The policies induced byL2Plan2 encapsulate a specific
type of control knowledge – they consist of a list ofIF-THEN
rules and each rule describes the conditions necessary for
a particular domain operator/action template to be applied.
Rules within a policy are ordered and the action of the first
rule that may be applied is performed. If more than one valid
combination of variable bindings exists then orderings on the
variables and their values are adopted and the first valid com-
bination is effected.

The next section describes how policies are learned, while
the following describes how they are applied to solving plan-
ning problems.

The Learner
The induction of policies is carried out using Evolutionary
Computation (EC) in a supervised learning context. EC is
the application of methods inspired by Darwinian principles
of evolution to computationally difficult problems, such as

search and combinatorial optimisation. Evolutionary algo-
rithms in general re-iteratively apply genetic-inspired oper-
ators to a population of solutions, with fitter individuals of
a generation (according to some predefined fitness criteria)
more likely to be selected for modification and insertion into
successive generations than weaker members. On average,
therefore, each new generation is expected to be fitter than
the previous one.

Input to L2Plan2consists of an untyped STRIPS domain
description and domain examples on which to evaluate the
policies being learned. The output is a domain-specific policy
that is used in conjunction with an inference mechanism to
solve problems within that domain.

Figure 1 presents an outline of the system. Each itera-
tion starts with an initial randomly-generated populationof
policies. The performance of these policies is evaluated on
training data generated from planning problems from the do-
main under consideration. The resulting measure of fitness
for a policy is used to determine whether it is replicated in
the next iteration – a predefined number of policies with the
highest fitness are inserted straightaway into the next genera-
tion. While the new generation remains underfilled, individu-
als from the current generation are selected and modified and
inserted into the new generation. The system terminates if
a predefined maximum number of generations have been cre-
ated, or a policy attains maximum fitness by correctly solving
all examples.

Since the results of the evaluation process influence the
creation of the next generation, the average fitness of all poli-
cies is expected to improve from one generation to the next.
The fact that several policies are in each iteration allows the
possibility of exploring different regions of the solutionspace
at once. This, coupled with an element of randomness that is
used in the selection of policies for crossover and mutation,
may help to prevent all policies from converging to a local
optimum solution.

The following paragraphs describe in more detail the cre-
ation of the initial population, policy evaluation, and thege-
netic operators used to create new policies from old. Table 1
lists the settings ofL2Plan2parameters.

Generating the Initial Population

L2Plan2first generates an initial – the first generation – pop-
ulation of policies. The number of individuals in a population



(1) Create initial population
(2) WHILE termination criteria false
(3) Evaluate current generation
(4) Select n fittest individuals
(5) Perform local search on selected individuals
(6) Insert individuals into next generation
(7) WHILE new generation not full
(8) With probability Pc

(9) Select 2 individuals (parents)
(10) Perform crossover to produce 2 offspring
(11) Perform mutation (with prob) on offspring
(12) IF elitism=true
(13) Select fittest 2 of parents and offspring
(14) ELSE Select offspring
(15) ENDIF
(16) With probability 1 − Pc

(17) Select 1 individual
(18) Perform mutation on individual
(19) Perform local search on selected individual/s
(20) Insert individual/s into next generation
(21) ENDWHILE
(22) ENDWHILE
(23) Output fittest individual

Figure 1: Pseudocode outline ofL2Plan

Table 1:L2Plan2parameter settings
Parameter Setting

Population size 100
Maximum number of generations 100
Number of fittest policies replicated 1
Crossover probability 0.9
Crossover elitism true
Mutation probability 0.3
Local search branching 10
Local search depth 10
Tournament selection size 2
Minimum number of goal conditions 1
Maximum number of goal conditions 3

is predefined by the user and stays fixed until the system ter-
minates. The number of rules in a policy is randomly set to
be between one and twice the number of operators in the do-
main.

Each IF-THEN rule is also generated randomly. A rule
takes the form:
IF condition AND goalCondition THEN action

with each ofcondition and goalCondition being a
conjunction of unground literals, and where the literals in
condition relate to the current state and those ingoal-
Condition to the goal state. The action, i.e. theTHEN part
of the rule is first selected randomly from all domain actions.

The size ofgoalCondition is determined by drawing
a random integer between user-defined minimum and maxi-
mum values, which determines the number of predicates cho-
sen from the domain description. A predicate is first selected,
and then the appropriate number of variables are randomly
selected from all possible variables (no typing). Predicates
are randomly negated.

The size ofcondition is currently determined by the
number of parameters of the selected action, and a random
selection of predicates. A predicate is selected randomly,and

(:rule position briefcase to pickup misplaced object
:condition (and (at ?x ?to))
:goalCondition (and (not(at ?x ?to)))
:action movebriefcase ?bc ?from ?to)

Figure 2: Example of a briefcase rule with a variable in
condition that is not a parameter of the action

then variables for the predicate are randomly selected from
the action’s parameter list, with the addition of one extra vari-
able, say called?x. Predicates are selected, and variables as-
signed, until all of an action’s parameters and the additional
variable are present in a predicate ofcondition. Each pred-
icate is randomly negated. The extra variable increases the
knowledge that can be expressed by a rule; without it, for in-
stance, the learning process would be unable to discover rules
such as the one shown in Fig. 2; this rule specifies that if an
object is misplaced (i.e. its current location is not the location
specified for it in the goal state), then a briefcase is moved to
the current location of the object.

Note that a policy need not contain a rule to describe each
action in the domain, and that the initially set number of rules
for a policy, and the size of individual rules is liable to change
with the application of genetic operators.

Evaluating a Policy
The training data on which a policy is evaluated is composed
of a number of examples that are generated from a number of
planning problems. Each example consists of a state encoun-
tered on a plan for the problem from which it is extracted, and
a number of actions which may be taken from that state, each
with an associated cost.

Consider a planning problem that includes an initial state
SI and a goal stateSG. A solution is found using an avail-
able planner; currently this is FF (Hoffmann & Nebel 2001)
whose solutions are not guaranteed to be optimal. The length
of the solution is determined and this is considered to be the
benchmark length for this problem. Each possible action that
may be taken fromSI is performed, leading to new states.
For each new state a solution that attainsSG is found, again
using FF. The length of each new solution is determined and
compared to the benchmark length. The first example ex-
tracted from this problem is now created by attaching a cost
to all possible actions fromSI , where the cost for each ac-
tion is the difference between the length of the plan resulting
from that action, and the original benchmark length. Figure3
shows the representation used for a training example, which
is consistent as far as possible with STRIPS syntax.

For each state resulting from each action of the original
FF solution the same procedure is followed as forSI , i.e. all
possible actions from the next state on the original plan, say
Sn, are performed, solutions from each of the resulting states
toSG are found, and costs for each possible action taken from
Sn are determined from the solutions’ lengths. Each training
problem therefore yields as many examples as there are states
encountered on the original FF plan.

The fitness of a policy is determined by averaging its per-
formance over all examples, where for each example pre-
sented it is scored based on whether the selected action forms



(define (example blocks1 1)
(:domain blocksworld)
(:objects 5 4 3 2 1)
(:initial ... )
(:goal ... )
(:actions
(move-b-to-b 1 3 4) 1
(move-b-to-b 1 3 5) 1
(move-b-to-b 4 2 1) 1
(move-b-to-b 4 2 5) 1
(move-b-to-t 1 3) 0
(move-b-to-t 4 2) 0
(move-t-to-b 5 1) 2
(move-t-to-b 5 1) 2) )

Figure 3: A training example generated from a blocksworld
problem

part of a known shorter or longer plan. Formula (1) below de-
scribes the fitness function wherem is the number of training
examples andactionCosti is the cost of the action taken by
the policy for training examplei:

fitness =
1

m

m∑

i=1

1

1 + actionCosti
(1)

Creating a New Generation of Policies

CurrentL2Plan2settings are such that the fittest individual of
the current generation is automatically replicated into the next
generation, after a local search procedure has been performed
(Fig. 1 lines 4–6).

The remainder of the next generation is populated by re-
peatedly selecting (with replacement) individuals from the
current generation, modifying them and inserting the result-
ing individuals into the next generation (lines 7–21). With
a certain probability crossover (also known as recombina-
tion) is performed (line 8), or reproduction (line 16). If the
first case then two individuals (parents) are selected from the
current population and a crossover operation is carried out
producing two new individuals (offspring). With a prede-
fined probability mutation is peformed on the offspring. If
crossover elitism is set, then the fittest two individuals ofthe
parents and offspring are selected, local search is performed
on them, and then they are inserted into the next generation.
Otherwise the offspring are selected and inserted into the next
generation after local search has been performed.

If crossover is not carried out then a single individual from
the current generation is selected for reproduction (copying).
Mutation may be performed, then local search and the result-
ing individual is inserted into the next generation.

There are three types of crossover operations and six types
of mutations. When crossover or mutation is to be performed
the specific type applied is selected randomly from those de-
scribed below:

Single Point Rule Level Crossover A crossover point is
randomly chosen in each of the two policies, with valid points
being before any of the rules (points need not be the same in
the two policies). Two offspring policies are then created by
merging part of the policy of one parent (as delineated by the
crossover point), with a part of the other parent (the first part
of parent A with the second part of parent B, and the second
part of parent A with the first part of parent B).

Single Rule Swap Crossover A randomly selected rule
from policy A is swapped with a randomly selected rule from
policy B, resulting in two new policies. The replacing rule
is inserted in the same position in the policy as the one it is
replacing.

Similar Action Rule Crossover Two rules with the same
action are randomly selected from two parent policies, one
from each. Two new rules are created from the rules by ran-
domly selecting a point in theIF- part of each rule and swap-
ping over parts of thecondition and/orgoalCondition
with each other. The new rules replace the originals in the
parent policies.

Rule Addition Mutation A new rule is generated and in-
serted at a random position in the policy.

Rule Deletion Mutation A randomly selected rule is re-
moved from the policy (if the policy contains more than one
rule).

Rule Swap Mutation Two randomly selected rules have
their positions swapped in a policy (if the policy has more
than one rule).

Rule Literal Addition A predicate is randomly selected
from the domain, populated with variables, and inserted into
a randomly selected rule of a policy.

Rule Literal Deletion A randomly selected literal in a ran-
domly selected rule of a policy is deleted.

Rule Condition Replacement The IF- part of a randomly
selected rule of a policy is deleted and a new part is generated
randomly to replace it.

Selection of individuals for crossover and reproduction is
done using tournament selection with a size of two (Miller &
Goldberg 1995) – this biases the selection towards individ-
uals that have higher fittness values (exploitation of learned
knowledge). However, randomness still plays a part in their
selection and in the application of some genetic operators
(those involving the selection of individual rules in a policy),
in an attempt to avoid local minima (and encourage explo-
ration of new areas of the solution space).

The local search procedure currently used is aimed at
increasing the fitness of a policy as quickly as possible.
It performs rule condition mutations – rule literal addi-
tion/deletion, rule condition replacement – on a policy a pre-
defined number of times, called the local search branching
factor. If no mutant is fitter than the original policy then the
search stops. If a mutant is fitter then it replaces the original
policy. The search is repeated (assuming a mutant is fitter
than an original policy) a predefined maximum number of
times, called the local search depth factor.

The Planner
In this work we abstract Martin’s & Geffner’s view of gener-
alised policies and make a distinction between a policy – the
knowledge used to solve a problem, and the inference mech-
anism that utilises the policy – the decision procedure that
dictates when and how the knowledge is applied. Figure 4
presents a simplified view of a planner based on this distinc-
tion. A domain model defines a specific domain in terms of
relevant objects, predicates, operators and their effects.

The policies induced byL2Plan2consist of a list ofIF-
THEN rules where each rule describes the conditions nec-



Domain C

Domain B

Domain C

Domain B

Domain A
model

Domain A
policy

Planner

Inference
method

Problem Plan

Figure 4: Planning using policies and inference mechanisms

essary for a particular domain operator to be applied. If
variable-value bindings exist such that ground literals in
condition match with the current state, and ground literals
in goalConditionmatch with the goal state, then the action
maybe performed. Note though that the action’s precondition
must also be satisfied in the current state.

Which rule is actually applied and which variable-value
bindings are implemented is decided by the inference mecha-
nism. The list of rules is ordered and the first applicable rule
is used. Variable and domain orderings are followed if more
than one combination of bindings is valid.

Current induced policies may not encapsulate sufficient
learned knowledge to solve all problems within a domain –
before the goal is achieved they may be unable to suggest
an action in a particular state, or degenerate into a looping
behaviour executing the same two actions over and over. If
such a situation is reached then a backup planner – FF – is
used to suggest the next action. Planning then reverts back to
the use of theL2Plan2policy.

References
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search.Journal of
Artificial Intelligence Research14:263–302.
Khardon, R. 1999. Learning action strategies for planning
domains.Artificial Intelligence113:125–148.
Koza, J. R. 1992.Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. Bradford
Book, The MIT Press.
Martin, M., and Geffner, H. 2004. Learning generalized
policies from planning examples using concept languages.
Applied Intelligence20:9–19.
Miller, B. L., and Goldberg, D. E. 1995. Genetic algorithms,
tournament selection, and the effects of noise. Technical Re-
port 95006, Department of General Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL.
Spector, L. 1994. Genetic programming and AI planning
systems. InProc. 12th National Conference on Artificial
Intelligence (AAAI-94), 1329–1334.


