

Edinburgh Research Explorer

Traversing Grammar-Compressed Trees with Constant Delay

Citation for published version:
Lohrey, M, Maneth, S & Reh, CP 2016, Traversing Grammar-Compressed Trees with Constant Delay. in
2016 Data Compression Conference. 2016 Data Compression Conference , Snowbird, United States,
29/03/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2016 Data Compression Conference

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/traversing-grammarcompressed-trees-with-constant-delay(6e7c108d-8c03-4aa7-91b9-83da6a0c4ed4).html

Traversing Grammar-Compressed Trees with Constant Delay

Markus Lohrey∗, Sebastian Maneth†, and Carl Philipp Reh∗

∗Universität Siegen †University of Edinburgh
Hölderlinstraße 3 Crichton Street

57076 Siegen, Germany Edinburgh, EH8 9AB, UK
{lohrey|reh}@eti.uni-siegen.de smaneth@inf.ed.ac.uk

Abstract

A grammar-compressed ranked tree is represented with a linear space overhead so that a single
traversal step, i.e., the move to the parent or the ith child, can be carried out in constant time. The
data structure is extended so that equality of subtrees can be checked in constant time.

1 Introduction

Context-free grammars that produce single strings are a widely studied compact string representa-
tion known as straight-line programs (SLPs). For instance, the string (ab)1024 can be represented
by the SLP with the rules A0 → ab and Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10. In general, an SLP of size
n can produce a string of length 2Ω(n). Besides compressors (e.g. LZ78, RePair, or BISECTION,
see [1]) generating an SLP from a given string, algorithmic problems on SLPs such as pattern
matching and indexing have been investigated thoroughly, see [2] for a survey. Motivated by ap-
plications where large tree structures occur, like XML processing, SLPs have been extended to tree
straight-line programs (TSLPs), see [3] for a survey and references. A TSLP is a linear context-free
tree grammar that produces a single node-labeled ranked ordered tree. TSLPs generalize dags (di-
rected acyclic graphs), which are widely used as compact tree representation. While dags can share
repeated subtrees, TSLPs can also share repeated tree patterns (i.e., connected subgraphs). Every
n-node tree over a fixed set of node labels can be produced by a TSLP of size O(n/ log n) (the
information-theoretic limit) [2, Thm. 3]. Various algorithmic problems on TSLPs such as XPath
querying, evaluating tree automata, and pattern matching have been studied too [2, Section 4].

In this paper we investigate the problem of navigating in a TSLP-represented tree: given a TSLP
G for a tree t, the task is to precompute in time O(|G|) an O(|G|)-space data structure that allows to
move from a node of t in time O(1) to its parent node or to its ith child and to return in time O(1)
the node label of the current node. Here the nodes of t are represented in space O(|G|) in a suitable
way. Such a data structure has been developed for string SLPs in [4]; it allows to move from left to
right over the string produced by the SLP requiring time O(1) per move. We first extend the data
structure from [4] so that the string can be traversed in a two-way fashion, i.e., in each step we can
move either to the left or right neighboring position in constant time. This data structure is then
used to navigate in a TSLP-represented tree.

TSLPs are typically used for the compression of ranked trees, i.e., trees where the maximal
number r of children of a node is bounded by a constant. In many applications, r is indeed bounded
(e.g., r = 2 for the following two encodings of unranked trees). For unranked trees where r is
unbounded, it is more realistic to require that the data structure supports navigation to (i) the parent
node, (ii) the first child, (iii) the right sibling, and (iv) the left sibling. We can realize these operations
using well-known constant-rank encoding of unranked trees with maximal rank r: (1) in the first-
child/next-sibling encoding fcns(t), the left (resp. right) child of a node is the first child (resp., right
sibling) in t. Here we can supportO(1) time navigation for (ii)–(iv), but the parent move (i) requires
O(r) time. (2) The binary encoding bin(t) adds for every node v of rank s ≤ r a binary tree of

depth dlog se with s many leaves, the root of which is v and the leaves of which are the children of
v. This introduces at most 2s many new binary nodes, i.e., |bin(t)| ≤ 3|t|. Every navigation step in
the original tree can be simulated by O(log r) many navigation steps in bin(t).

Our second main result concerns subtree equality checks. This is the problem of checking for
two given nodes of a tree whether the subtrees rooted at these two nodes are identical. We extend our
data structure for tree navigation such that subtree equality checks can be done in time O(1). The
problem of checking equality of subtrees occurs in several different contexts, see for instance [5]
for details. Typical applications are common subexpression detection, unification, and non-linear
pattern matching. For instance, checking whether the pattern f(x, f(y, y)) is matched at a certain
tree node needs a constant number of navigation steps and a single subtree equality check.

A full version of this paper with further details can be found in [6].
Related work. The ability to navigate efficiently in a tree is a basic prerequisite for most tree
querying procedures. For instance, the DOM representation available in web browsers through
JavaScript provides tree navigation primitives (see, e.g., [7]). Tree navigation has been intensively
studied in the context of succinct tree representations. Here, the goal is to represent a tree by a bit
string, whose length is asymptotically equal to the information-theoretic lower bound. For instance,
for binary trees of n nodes the information-theoretic lower bound is 2n + o(n) and there exist
succinct representations (e.g., the balanced parentheses representation) that encode a binary tree of
size n by a bit string of length 2n+o(n). In addition there exist such encodings that allow to navigate
in the tree in constant time (and support many other tree operations), see e.g. [8] for a survey.
Recently, grammatical formalisms for the compression of unranked trees have been proposed as
well, such as the top dags of [9]. Top dags can be seen as a variant of TSLPs for unranked trees.
Every n-node tree has a top dag of size O(n · log logn/ log n) [10]; it is open whether the bound
can be improved to the information-theoretic limit O(n/ log n). The navigation problem for top
dags is studied in [9]. The authors show that a single navigation step in t can be carried out in time
O(log |t|) in the top dag. Nodes are represented by their preorder numbers, which need O(log |t|)
bits. In [11] an analogous result has been shown for unranked trees that are represented by string
SLPs for their balanced parentheses representation. This result covers also TSLPs: From a TSLP G
for a tree t one can compute in linear time an SLP for the balanced bracket representation of t.
In some sense our results are orthogonal to the results of [11]: We can navigate, determine node
labels, and check equality of subtrees in time O(1), but our representation of tree nodes needs space
O(|G|), whereas Bille et al. [11] can navigate and do some other tree queries in time O(log |t|), but
their node representation (preorder numbers) only needs space O(log |t|) ≤ O(|G|).

Checking equality of subtrees is trivial for minimal dags, since every subtree is uniquely rep-
resented. For so called SL grammar-compressed dags (which can be seen as TSLPs with certain
restrictions) it was shown in [12] that equality of subtrees can be checked in time O(log |t|) for
given preorder numbers.

2 Preliminaries

For an alphabet Σ, Σ∗ denotes the set of all strings over Σ including the empty string ε. For a string
w = a1 · · · an (ai ∈ Σ) we denote by alph(w) the set of symbols {a1, . . . , an} occurring in w.
Moreover, let |w| = n, w[i] = ai and w[i : j] = ai · · · aj where w[i : j] = ε, if i > j. Let
w[: i] = w[1 : i] and w[i :] = w[i : n].

A straight-line program (SLP) is a triple P = (N,Σ, rhs), where N is a finite set of nonter-
minals, Σ is a finite set of terminals (Σ ∩ N = ∅), and rhs : N → (N ∪ Σ)∗ is a mapping such
that the binary relation {(A,B) ∈ N ×N | B ∈ alph(rhs(A))} is acyclic. This condition ensures
that every nonterminal X ∈ N produces a unique string valP(X) ∈ Σ∗. It is obtained from the
string X by repeatedly replacing nonterminals A by rhs(A) until no nonterminal occurs. We write
A → α if rhs(A) = α and call it a rule of P . Usually, an SLP has a start nonterminal, but for
our purpose it is more convenient to consider SLPs without a start nonterminal. The size of P is

2

|P| =
∑

A∈N |rhs(A)|, i.e., the total length of all right-hand sides. A simple induction shows that
for every SLP P of size m and every nonterminal A, |valP(A)| ∈ O(3m/3) [1, proof of Lemma 1].
On the other hand, it is straightforward to define an SLP P of size 2n such that |val(P)| ≥ 2n.
Hence, an SLP can be seen as a compressed string representation that can achieve exponential com-
pression ratios. In Section 5 we need the following algorithmic facts about SLPs (see [2]).

Proposition 1 Let P and P ′ be SLPs and i, j ∈ N. In polynomial time, one can compute (i) the
symbol val(P)[i], (ii) an SLP for the string val(P)[i : j], and (iii) the length of the longest common
prefix of val(P) and val(P ′).

We now extend SLPs to trees. A ranked alphabet is a set Σ such that every a ∈ Σ has an associated
rank rank(a) ∈ N. Let Σi = {a ∈ Σ | rank(a) = i}. Fix ranked alphabets F and N of terminal
symbols and nonterminal symbols such that for every i ≥ 0, Fi and Ni are countably infinite.
Moreover, let X = {x1, x2, . . . } be the set of parameters. We assume that the three sets F ,N , and
X are pairwise disjoint. A labeled tree t = (V,E, λ) is a finite, directed and ordered tree t with set
of nodes V , set of edgesE ⊆ V ×N×V , and labeling function λ : V → F∪N ∪X . We require for
every node v ∈ V that if λ(v) ∈ Fk∪Nk, then v has k distinct children u1, . . . , uk, i.e., (v, i, u) ∈ E
if and only if 1 ≤ i ≤ k and u = ui. A leaf of t is a node with zero children. We require that every
node v with λ(v) ∈ X is a leaf of t. The size of t is |t| = |V |. We denote trees by their usual term
notation, e.g. a(b, c) denotes the tree with an a-labeled root node that has a first child labeled b and a
second child labeled c. We define T as the set of all labeled trees. Let labels(t) = {λ(v) | v ∈ V }.
For L ⊆ F ∪ N ∪ X we let T (L) = {t ∈ T | labels(t) ⊆ L}. The tree t ∈ T is linear if there
do not exist different leaves that are labeled with the same parameter. A tree straight-line program
(TSLP) is a triple G = (N,S, rhs), where N ⊆ N is a finite set of nonterminals, S ∈ N0 ∩N is the
start nonterminal, and rhs : N → T (F ∪N ∪X) is a mapping so that (1) for every A ∈ N , the tree
rhs(A) is linear and if A ∈ Nk (k ≥ 0) then X ∩ labels(rhs(A)) = {x1, . . . , xk}, and (2) the binary
relation {(A,B) ∈ N × N | B ∈ labels(rhs(A))} is acyclic. These conditions ensure that from
every nonterminal A ∈ N ∩ Nk exactly one linear tree valG(A) ∈ T (F ∪ {x1, . . . , xk}) is derived
by applying the rules A → rhs(A) as rewrite rules in the usual sense. More generally, for every
tree t ∈ T (F ∪ N ∪ {x1, . . . , xn}) we can derive the unique tree valG(t) ∈ T (F ∪ {x1, . . . , xn})
by applying the rules of G. The tree defined by G is val(G) = valG(S). As for SLPs, we also write
A→ t if rhs(A) = t. The following example shows the derivation of val(G) for a TSLP G.

Example 1 Let G = ({S,A,B, . . . , F}, S, rhs), a ∈ F0, b ∈ F2, and rhs be given by the rules
S → A(B), A → C(F, x1), B → E(F), C → D(E(x1), x2), D → b(x1, x2), E → D(F, x1),
and F → a. We obtain the derivation S → A(B) → C(F,B) → D(E(F), B) → b(E(F), B) →
b(D(F, F), B) → b(b(F, F), B) → b(b(a, F), B) → b(b(a, a), B) → b(b(a, a), E(F)) →
b(b(a, a), D(F, F))→ b(b(a, a), b(F, F))→ b(b(a, a), b(a, F))→ b(b(a, a), b(a, a)) = val(G).

The size |G| of a TSLP G = (N,S, rhs) is defined as |G| =
∑

A∈N |rhs(A)|. A TSLP G =
(N, rhs, S) is monadic if N ⊆ N0 ∪N1, i.e., every nonterminal has rank at most one. We make use
of the following results.

Proposition 2 (cf. [2, Theorem 1]) From a given TSLP G, where r and k are the maximal ranks
of terminal and nonterminal symbols appearing in a right-hand side, one can construct in time
O(r · k · |G|) a monadic TSLPH such that val(H) = val(G) and |H| ∈ O(r · |G|).

Proposition 3 (cf. [2, Theorem 5]) For TSLPs G1 and G2 one can check in polynomial time whether
val(G1) = val(G2).

Let us finally explain our computation model. In the following sections, we use the word RAM
model, where registers have a certain bit length w. Arithmetic operations and comparisons of regis-
ters can be done in time O(1). The space of a data structure is measured by the number of registers.
Our algorithms need the following register lengths w, where G is the input TSLP and t = val(G).

3

a

C

B

A

S

D

b a b

D

C

A B

S

Figure 1: The tries TL(a), TL(b) (left), and TR(a), TR(b) (right) for the SLP from Example 2.

• For navigation (Section 4) we need a bit length of w = O(log |G|), since we only have to
store numbers of length at most |G|.

• For equality checks (Section 5) we need a bit length of w = O(log |t|) ≤ O(|G|), which is
the same assumption as in [9, 11].

3 Two-Way Traversal in SLP-Compressed Strings

In [4] the authors present a data structure of sizeO(|P|) for storing an SLP P that allows to produce
valP(A) with time delay of O(1) per symbol. That is, the symbols of valP(A) are produced from
left to right and for each symbol constant time is needed. In a first step, we enhance the data
structure from [4] for traversing SLP-compressed strings in such a way that both operations of
moving to the left and right symbol are supported in constant time. For this, we assume that the
SLP P = (N,Σ, rhs) has the property that |rhs(A)| = 2 for each A ∈ N . Every SLP P with
|val(P)| ≥ 2 can be transformed in linear time into an SLP P ′ with this property and so that
val(P ′) = val(P), see, e.g., [6]. Note that the positions in valP(X) correspond to root-leaf paths in
the (binary) derivation tree of P that is rooted in the nonterminal X . We represent such a path by
merging successive edges where the path moves in the same direction (left or right) towards the leaf.
To formalize this idea, we define for every α ∈ N ∪ Σ the strings L(α), R(α) ∈ N∗Σ inductively
as follows: for a ∈ Σ let L(a) = R(a) = a. For A ∈ N with rhs(A) = αβ (α, β ∈ N ∪ Σ) let
L(A) = AL(α) and R(A) = AR(β). Note that for every A ∈ N , the string L(A) has the form
A1A2 · · ·Ana with Ai ∈ N , A1 = A, and a ∈ Σ. We define ωL(A) = a. The terminal ωR(A) is
defined analogously by referring to the string R(A).

Example 2 Let P = ({S,A,B,C,D}, {a, b}, rhs), where rhs is given by S → AB, A → BC,
B → CC, C → aD, D → ab. Then L(S) = SABCa, L(A) = ABCa, L(B) = BCa,
L(C) = Ca, L(D) = Da, R(S) = SBCDb, R(A) = ACDb, R(B) = BCDb, R(C) = CDb,
R(D) = Db. Moreover, ωL(X) = a and ωR(X) = b for all X ∈ {S,A,B,C,D}.

We store all strings L(A) (for A ∈ N) in |Σ| many tries: fix a ∈ Σ and let w1, . . . , wn be all strings
L(A) such that ωL(A) = a. Let vi be the string wi reversed. Then, a, v1, . . . , vn is a prefix-closed
set of strings (except that the empty string is missing) that can be stored in a trie TL(a). Formally,
the nodes of TL(a) are the strings a, v1, . . . , vn, where each node is labeled by its last symbol (so
the root is labeled with a), and there is an edge from aw to awA for all appropriate w ∈ N∗ and
A ∈ N . The tries TR(a) are defined in the same way by referring to the strings R(A). Note that
the total number of nodes in all tries TL(a) (a ∈ Σ) is exactly |N |+ |Σ|. In fact, every α ∈ N ∪ Σ
occurs exactly once as a node label in the forest {TL(a) | a ∈ Σ}. Figure 1 shows the tries TL(a),
TL(b), TR(a), and TR(b) for the SLP from Example 2. Next, we define two alphabets L and R:
L = {(A, `, α) | α ∈ alph(L(A)) \ {A}} and R = {(A, r, β) | β ∈ alph(R(A)) \ {A}}. Note

4

that the sizes of these alphabets are quadratic in the size of P . On the alphabets L and R we define
the partial operations reduceL : L → L and reduceR : R → R as follows. Let (A, `, α) ∈ L. We
can write L(A) as Auαv for some strings u and v. If u = ε, then reduceL(A, `, α) is undefined.
Otherwise, we can write u as u′B for some B ∈ N . Then we define reduceL(A, `, α) = (A, `,B).
The definition of reduceR is analogous: if (A, r, α) ∈ R, then we can write R(A) as Auαv for
some strings u and v. If u = ε, then reduceR(A, r, α) is undefined. Otherwise, we can write u as
u′B for some B ∈ N and define reduceR(A, r, α) = (A, r,B).

Example 3 (Example 2 continued) The sets L and R are L = {(S, `, A), (S, `,B), (S, `, C),
(S, `, a), (A, `,B), (A, `, C), (A, `, a), (B, `, C), (B, `, a), (C, `, a), (D, `, a)} andR = {(S, r,B),
(S, r, C), (S, r,D), (S, r, b), (A, r, C), (A, r,D), (A, r, b), (B, r, C), (B, r,D), (B, r, b), (C, r,D),
(C, r, b), (D, r, b)}. For instance, reduceL(S, `, a) = (S, `, C) and reduceR(B, r,D) = (B, r, C)
whereas reduceL(S, `, A) is undefined.

An element (A, `, α) can be represented by a pair (v1, v2) of different nodes in the forest {TL(a) |
a ∈ Σ}, where v1 (resp. v2) is the unique node labeled with α (resp., A). Note that v1 and v2 belong
to the same trie and that v2 is below v1. This observation allows us to reduce the computation of
the mapping reduceL to a so-called next link query: from the pair (v1, v2) we have to compute
the unique child v of v1 such that v is on the path from v1 to v2. If v is labeled with B, then
reduceL(A, `, α) = (A, `,B), which is represented by the pair (v, v2). Clearly, the same remark
applies to the map reduceR. The following result is mentioned in [4], see Section 6 for a discussion.

Proposition 4 A trie T can be represented in space O(|T |) such that any next link query can be
answered in time O(1). Moreover, this representation can be computed in time O(|T |) from T .

We represent a path in the derivation tree of P with root X by a sequence of triples

γ = (A1, d1, A2)(A2, d2, A3) · · · (An−1, dn−1, An)(An, dn, a) ∈ (L ∪R)+

such that n ≥ 1, A1 = X , a ∈ Σ, and, for 1 ≤ i ≤ n − 1, di = ` if and only if di+1 = r. We call
such a sequence a valid X-sequence for P in the following, or briefly a valid sequence if X is not
important and P is clear from the context. Note that γ indeed defines a unique path in the derivation
tree rooted at X that ends in an a-labeled leaf. This path, in turn, defines in the string valP(X) a
unique position that we denote by pos(γ).

One can now define a procedure right (and analogously a procedure left) that transforms a valid
X-sequence γ into a validX-sequence γ′ such that pos(γ′) = pos(γ)+1 in case the latter is defined
(and otherwise returns “undefined”), see [6] for details. It is based on the obvious fact that in order
to move in a full binary tree from a leaf to the next leaf (where “next” refers to the natural left-to-
right order on the leaves) one has to repeatedly move to parent nodes as long as right-child edges
are traversed (in the opposite direction); when this is no longer possible, the current node is the left
child of its parent p. One now moves to the right child of p and from here repeatedly to left children
until a leaf is reached. Each of these four operations can be implemented in constant time on valid
sequences, using the fact that (i) consecutive edges to left (resp., right) children are merged into a
single triple from L (resp., R) in our representation of paths and (ii) that the mappings reduceL and
reduceR can be computed in constant time by Proposition 4. Thereby γ is used as a stack that is
only modified at its right end.

4 Traversal in TSLP-Compressed Trees

In this section, we extend the traversal algorithm from the previous section from SLPs to TSLPs.
We only consider monadic TSLPs. If the TSLP is not monadic, then we can transform it into a
monadic TSLP using Proposition 2. We fix the monadic TSLP G = (N, rhs, S). One can modify
G so that for all A ∈ N , rhs(A) has one of the following four forms (we write x for the parameter
x1), see [6] for details:

5

(a) B(C) for B,C ∈ N (b) B(C(x)) for B,C ∈ N (c) a ∈ F0

(d) f(A1, . . . , Ai−1, x, Ai+1, . . . , An) for A1, . . . , Ai−1, Ai+1, . . . , An ∈ N , f ∈ Fn, n ≥ 1.

We write Nx (x ∈ {a, b, c, d}) for the set of all nonterminals whose right-hand side is of the above
type (x). Let N1 = Na ∪Nb and N2 = Nc ∪Nd. Note that if we start with a nonterminal A ∈ Na

and then replace nonterminals from N1 by their right-hand sides repeatedly, we obtain a tree that
consists of nonterminals from Nd followed by a single nonterminal from Nc. After replacing these
nonterminals by their right-hand sides, we obtain a caterpillar tree which is composed of right-hand
sides of the form (d) followed by a single constant fromF0. Hence, there is a unique path of terminal
symbols from F , and we call this path the spine path of A. All other nodes of the caterpillar tree
are leaves and labeled with nonterminals of rank zero to which we can apply again the TSLP rules.
The size of a caterpillar tree and therefore a spine path can be exponential in the size of the TSLP.

Given the TSLP of the above form, we define its derived SLP P = (N1, N2, rhs1). If A ∈ N1

with rhs(A) = B(C) or rhs(A) = B(C(x)), then rhs1(A) = BC. The triple alphabets L and R
defined above Example 3 refer to this SLP P . Moreover, we define M to be the set of all triples
(A, k,Ak) where A ∈ Nd, rhs(A) = f(A1, . . . , Ai−1, x, Ai+1, . . . , An) and k ∈ {1, . . . , n} \ {i}.

Note that the nodes of the tree val(G) can be identified with the nodes of G’s derivation tree that
are labeled with a nonterminal from N2 (every nonterminal from N2 has a unique occurrence of a
terminal symbol on its right-hand side). A valid sequence for G is a sequence

γ = (A1, e1, A2)(A2, e2, A3) · · · (An−1, en−1, An)(An, en, An+1) ∈ (L ∪R ∪M)∗

such that n ≥ 0, e1, . . . , en ∈ {`, r}] N, if S ∈ Na then n ≥ 1, if n ≥ 1 then A1 = S and
An+1 ∈ N2, and if ei, ei+1 ∈ {`, r} then ei = ` if and only if ei+1 = r. Such a valid sequence
represents a path in the derivation of the TSLP G from the root to an N2-labeled node, and hence
represents a node of the tree val(G). Note that in case S ∈ Nc the empty sequence is valid too
and represents the root of the single-node tree val(G). Moreover, if the last triple (An, en, An+1)
belongs to M , then we must have An+1 ∈ Nc, i.e., rhs(An+1) ∈ F0. Here is an example.

Example 4 Consider the monadic TSLP G with nonterminals S,A,B, . . . , I and rules S → A(B),
A→ C(D(x)),B → C(E),C → f(F, x)D → f(x, F),E → D(F), F → G(H),G→ I(I(x)),
H → a, and I → g(x). We have N1 = {S,A,B,E, F,G} and N2 = {C,D, I}. The SLP P
consists of the rules S → AB, A → CD, B → CE, E → DF , F → GH , and G → II
(the terminal symbols are C,D,H, I). The triple set M is M = {(C, 1, F), (D, 2, F)}. A valid
sequence is for instance (S, `, A)(A, r,D)(D, 2, F)(F, `, I).

Using valid sequences of G and the SLP-traversal algorithms sketched in the previous section, it is
straightforward to do a single navigation step in constant time. Let us fix a valid sequence γ. We
consider the following possible navigation steps: move to the parent node (if it exists) and move to
the ith child (if it exists). Consider for instance the navigation to the ith child (similar arguments can
be used to navigate to the parent node). If γ is empty or ends with a triple fromM∪(N×{`, r}×Nc),
then γ represents a leaf node of val(G); hence the ith child does not exist. Otherwise let β 6= ε be
the maximal suffix of γ, which belongs to (L ∪ R)∗. Then β represents a path in the derivation
tree of the string SLP P that is rooted in a certain nonterminal A ∈ Na and that leads to a certain
nonterminal B ∈ Nd. This path corresponds to a node of valG(A) that is located on the spine path
of A. We can now apply our SLP-navigation algorithms left and right to the sequence β in order to
move up or down on the spine path. More precisely, let β end with (C, d,B) (d ∈ {`, r}, B ∈ Nd).
We can now distinguish the following cases, where f(A1, . . . , Aj−1, x, Aj+1, . . . , An) is the right-
hand side of B: (i) if i 6= j, then we obtain the ith child by appending to γ the triple (B, i, Ai) ∈M
followed by the path that represents the root of Ai (which consists of at most one triple). (ii) If
i = j, then we obtain the ith child of the current node by moving down on the spine path. Thus, we
replace the suffix β by right(β). The following theorem summarizes the above discussion.

6

f

f

A f

C f

A a

E

•

•

A B

•

C •

D E

bb
a

$a

b$

ba

$ b
$a

b$

0

3

A B

2

C 3

D E

Figure 2: Caterpillar tree (left), Patricia tree (middle) and its modified version (right)

Theorem 1 Given a monadic TSLP G we can compute in linear time on a word RAM with register
lengthO(log |G|) a data structure of sizeO(|G|) that allows to do the following computations in time
O(1), where γ is a valid sequence that represents the tree node v: (i) compute the valid sequence
for the parent node of v, and (ii) compute the valid sequence for the ith child of v.

5 Equality checks

Consider a monadic TSLP G = (N, rhs, S), where again the right-hand side of every rule has one
of the four forms (a)–(d) shown at the beginning of Section 4. Let t = val(G). The goal of this
section is to extend the navigation algorithm from the previous section such that for two nodes of
t (represented by valid sequences) we can test in O(1) time whether the subtrees rooted at the two
nodes are equal. The rough idea is as follows. Recall from the beginning of Section 4 the string
SLP P derived from the TSLP G. We show that subtree equality checks for the tree t can be reduced
to queries of the following form: is the length of the longest common suffix of valP(A)[: nA] and
valP(B)[: nB] at least k? HereA,B ∈ Na and the nX (X ∈ Na) are precomputed positions. Using
a Patricia tree data structure, these queries can be answered in constant time.

Recall from the end of Section 2 that we use the word RAM model with registers of length
O(log |t|) in this section. The same assumption is also used in [9, 11]. As before, the preprocessed
data structure has size O(|G|) and the query time is O(1). However this time, the preprocessing
time is polynomial in the TSLP size |G| and not just linear. It will be hard to reduce this to linear
time preprocessing. The best known algorithm for checking equality of SLP-compressed strings has
quadratic complexity [13], and from two SLPs P1 and P2 we can easily compute a TSLP for a tree
t whose root has two children in which val(P1) and val(P2) are rooted as linear chains.

We assume that G is reduced in the sense that valG(A) 6= valG(B) for allA,B ∈ N withA 6= B.
Reducing the TSLP does not increase its size and the reduction can be done in polynomial time
(recall that we allow polynomial time preprocessing) by Proposition 3. To motivate the forthcoming
definitions, we first give an example of two equal subtrees produced by a single TSLP.

Example 5 Consider the reduced TSLP G with the rules S → G(A), A → a, B → f(A, x)
C → B(A), D → f(C, x), E → D(C), F → f(x,E), G → H(I(x)), H → F (B(x)),
I → D(B(x)). The caterpillar tree of S is given in the left of Figure 2. The subtree rooted in the
node that is marked by a circle is the same as the one produced by E.

We use the notations introduced in the previous section. For a string w = A1A2 · · ·AnAn+1 ∈
N∗dNc we define valG(w) = valG(A1(A2(· · ·An(An+1) · · ·))). The SLP P = (N1, N2, rhs1)
derived from G as defined in the beginning of Section 4 is: if A ∈ N1 with rhs(A) = B(C)
or rhs(A) = B(C(x)), then rhs1(A) = BC. So, for every A ∈ Na we have valP(A) =

7

A1A2 · · ·AnAn+1 for some n ≥ 1, whereAi ∈ Nd for 1 ≤ i ≤ n andAn+1 ∈ Nc. Let `(A) = n+
1 (this is the length of the spine path of A), A[i : j] = AiAi+1 · · ·Aj , A[i :] = Ai · · ·AnAn+1, and
A[: i] = A1 · · ·Ai. We define s(A) as the smallest number i ≥ 2 such that valG(A[i :]) = valG(B)
for some nonterminal B ∈ N of rank zero. This unique nonterminal B is denoted by A′. Moreover,
let rA(x) = rhs(As(A)−1) be the right-hand side of As(A)−1 ∈ Nd. Hence, rA(x) is a tree of the
form f(X1, . . . , Xi−1, x,Xi+1, . . . , Xm) for X1, . . . , Xi−1, Xi+1, . . . , Xm ∈ N , f ∈ Fm, m ≥ 1.
With these notations, we have valG(A[s(A)− 1 :]) = valG(rA(A′)). Note that s(A), rA, and A′ are
well-defined since valG(A[n+ 1 :]) = valG(An+1) and An+1 has rank zero.

Example 5 (Continued) The derived SLP P of G has the rules S → GA, C → BA, E → DC,
G→ HI , H → FB, I → DB. We have valP(S) = FBDBA, valG(DBA) = f(f(a, a), f(a, a))
= valG(E), but valG(BDBA) = f(a, f(f(a, a), f(a, a))) is not equal to one of the trees valG(X)
for a nonterminal X of rank zero. Hence, we have S′ = E, s(S) = 3, and rS = rhs(B) = f(A, x).

The proofs of the following two lemmas are presented in the long version [6] of this paper.

Lemma 1 For every nonterminal A ∈ Na, we can compute s(A), rA and A′ in polynomial time.

Lemma 2 For A,B ∈ Na and 1 ≤ i < s(A), 1 ≤ j < s(B), the following two conditions are
equivalent: (i) valG(A[i :]) = valG(B[j :]) and (ii) valP(A[i : s(A)− 2]) = valP(B[j : s(B)− 2])
and rA(A′) = rB(B′).

Consider a valid sequence γ ∈ (L ∪R ∪M)∗ for G. We can uniquely factorize γ as

γ = γ1(A1, k1, B1)γ2(A2, k2, B2) · · · γn−1(An−1, kn−1, Bn−1)γn, (1)

where γi ∈ (L ∪R)∗ (1 ≤ i ≤ n) and (Ai, ki, Bi) ∈M (1 ≤ i ≤ n− 1). To simplify the notation,
let us set B0 = S. Hence, every γi is either empty or a valid Bi−1-sequence for the SLP P , and
we have defined the position pos(γi) in the string valP(Bi−1) according to Section 3. It is easy to
modify our traversal algorithms from the previous section such that for every 1 ≤ i ≤ n we store in
the sequence γ also the nonterminal Bi−1 and the number pos(γi) right after γi (if γi 6= ε), i.e., just
before (Ai, ki, Bi). We do not explicitly write these nonterminals and positions in valid sequences
in order to not complicate the notation.

We would like to use Lemma 2 for equality checks. To do this, we have to assume that pos(γi) <
s(Bi−1) in (1) for every 1 ≤ i ≤ n with γi 6= ε (this corresponds to the assumptions 1 ≤ i < s(A)
and 1 ≤ j < s(B) in Lemma 2). To do this, we have to modify the traversal algorithms sketched in
the previous section as follows. Assume that the current valid sequence is γ from (1). As remarked
above, we store the numbers pos(γi) right after each γi. Assume that the final number pos(γn) has
reached the value s(Bn−1)−1 and we want to move to the ith child of the current node. We proceed
as described at the end of Section 4 with one exception: in Case (ii) (before Theorem 1) we would
increase pos(γi) to s(Bn−1). To avoid this, we start a new valid sequence for the root of the tree
valG(B′n−1). Note that by the definition of B′n−1, this is exactly the tree rooted at the ith child of
the node represented by γ. So, we can continue the traversal in the tree valG(B′n−1). Therefore, we
continue with the sequence γ | root(B′n−1), where | is a separator symbol, and root(B′n−1) is the
sequence that represents the root of valG(B′n−1) (either ε or a triple of the form (B′n−1, `, C) for
some C ∈ Nd). The navigation to the parent node can be easily adapted as well.

Let us now consider two sequences γ1 and γ2 (that may contain the separator symbol | as
explained in the previous paragraph). Let vi be the node of val(G) represented by γi and let ti be
the subtree of val(G) rooted in vi. We want to check in time O(1) whether t1 = t2. We can first
compute in time O(1) the labels of the nodes v1 and v2, respectively. In case one of these labels
belongs to F0 (i.e., one of the nodes v1, v2 is a leaf) we can easily determine whether t1 = t2.
Hence, we can assume that neither v1 nor v2 is a leaf. In particular we can assume that γ1 6= ε 6= γ2

8

(recall that ε is a valid sequence only in case val(G) consists of a single node) and that neither γ1

nor γ2 ends with a triple from M . Let us factorize γi as γi = αiβi, where βi is the maximal suffix
of γi that belongs to (L ∪R)∗. Hence, we have β1 6= ε 6= β2.

Assume that βi is a validCi-sequence ofP , and that ni = pos(βi). Thus, the suffix βi represents
the nith leaf of the derivation tree of P with root Ci. Recall that we store Ci and ni at the end of
the sequence γi. Hence, we have constant time access to Ci and ni. We have Ci ∈ Na and
ni < s(Ci). With the notation introduced before, we get ti = valG(Ci[ni :]). Since n1 < s(C1)
and n2 < s(C2), Lemma 2 implies that t1 = t2 if and only if the following two conditions hold:
(i) valP(C1[n1 : s(C1)− 2]) = valP(C2[n2 : s(C2)− 2]) and (ii) rC1(C ′1) = rC2(C ′2).

Condition (ii) can be checked in time O(1), since we can precompute in polynomial time rA
and A′ for every A ∈ Na by Lemma 1. So, let us concentrate on Condition (i). First, we check
whether s(C1) − n1 = s(C2) − n2. If not, then the lengths of valP(C1[n1 : s(C1) − 2]) and
valP(C2[n2 : s(C2)− 2]) differ and we cannot have equality. Hence, assume that k := s(C1)− 1−
n1 = s(C2)−1−n2. Let ` be the length of the longest common suffix of valP(C1[: s(C1)−2]) and
valP(C2[: s(C2)−2]). Then, it remains to check whether k ≤ `. Clearly, in spaceO(|G|) we cannot
store explicitly all these lengths ` for allC1, C2 ∈ Na. Instead, we precompute in polynomial time a
modified Patricia tree for the set of strings wA := valP(A[: s(A)−2])rev$ ($ is a new symbol that is
appended in order make the set of strings prefix-free and wrev is the string w reversed) for A ∈ Na.
Then, we need to compute in time O(1) the length of the longest common prefix for two of these
strings wA and wB . Recall that the Patricia tree for a set of strings w1, . . . , wn is obtained from the
trie for the prefixes of the wi by eliminating nodes with a single child. But instead of labeling edges
of the Patricia tree with factors of the wi, we label every internal node with the length of the strings
that lead from the root to the node. Let us give an example instead of a formal definition.

Example 6 Consider the strings wA = abba$, wB = abbb$, wC = ba$, wD = baba$ and wE =
babb$. Figure 2 shows their Patricia tree (center) and the modified Patricia tree (right).

Since our modified Patricia tree has |Na| many leaves (one for each A ∈ Na) and every internal
node has at least two children, we have at most 2|Na| − 1 many nodes in the tree and every internal
node is labeled with a (log |t|)-bit number (note that the length of every string valP(A) (A ∈ Na)
is bounded by |t|. Hence, on the word RAM model we can store the modified Patricia tree in space
O(|G|). Finally, the length of the longest common prefix of two string wA and wB can be obtained
by computing the lowest common ancestor of the two leaves corresponding to the strings wA and
wB in the Patricia tree. The number stored in the lowest common ancestor is the length of the longest
common prefix of wA and wB . Using a data structure for computing lowest common ancestors in
time O(1) [14, 15] we obtain an O(1)-time implementation of subtree equality checking. Finally,
from Proposition 1 it follows that the modified Patricia tree for the strings wA (A ∈ Na) can be
precomputed in polynomial time. The following theorem is the main result of this section.

Theorem 2 Given a monadic TSLP G for a tree t = val(G) we can compute in polynomial time
on a word RAM with register length O(log |t|) a data structure of size O(|G|) that allows to do
the following computations in time O(1), where γ and γ′ are valid sequences (as modified in this
section) that represent the tree nodes v and v′, respectively: (i) compute the valid sequence for the
parent node of v, (ii) compute the valid sequence for the ith child of v, and (iii) check whether the
subtrees rooted in v and v′ are equal.

6 Discussion

We have presented a data structure to traverse grammar-compressed ranked trees with constant delay
and to check equality of subtrees. The solution is based on the ideas of [4] and the fact that next
link queries can be answered in time O(1) (after linear time preprocessing). It would be interesting
to develop an efficient implementation of the technique. Next link queries can be implemented in

9

many different ways. The solution given in [4] is based on a variant of the lowest common ancestor
(LCA) algorithm due to Schieber and Vishkin [15] (described in [16]). Another alternative is to
store the first-child/next-sibling encoded binary trees of the tries TL(a) and TR(a) for a ∈ Σ. The
first-child/next-sibling encoding is defined for ordered trees, whereas the tries TL(a) and TR(a) are
unordered. Hence we order the children of a node in an arbitrary way. Then the next link of v1

above v2 is equal to the LCA of v2 and the last child of v1 in the original trie. This observation
allows to use simple and efficient LCA data structures like the one from [14].

[1] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat, “The
smallest grammar problem,” IEEE Trans. Inf. Theory, vol. 51, pp. 2554–2576, 2005.

[2] M. Lohrey, “Algorithmics on SLP-compressed strings: A survey,” Groups Complexity Cryp-
tology, vol. 4, pp. 241–299, 2012.

[3] ——, “Grammar-based tree compression,” in Proc. DLT 2015, 2015, pp. 46–57.

[4] L. Gasieniec, R. M. Kolpakov, I. Potapov, and P. Sant, “Real-time traversal in grammar-based
compressed files,” in Proc. DCC 2005, 2005, p. 458.

[5] J. Cai and R. Paige, “Using multiset discrimination to solve language processing problems
without hashing,” Theor. Comput. Sci., vol. 145, pp. 189–228, 1995.

[6] M. Lohrey, S. Maneth, and C. P. Reh, “Traversing grammar-compressed trees with constant
delay,” arXiv.org, Tech. Rep., 2015, http://arxiv.org/abs/1511.02141.

[7] O. Delpratt, R. Raman, and N. Rahman, “Engineering succinct DOM,” in Proc. EDBT 2008,
2008, pp. 49–60.

[8] G. Navarro and K. Sadakane, “Fully functional static and dynamic succinct trees,” ACM
Trans. Algorithms, vol. 10, pp. 16:1–16:39, 2014.

[9] P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann, “Tree compression with top trees,” Inf.
Comput., vol. 243, pp. 166–177, 2015.

[10] L. Hübschle-Schneider and R. Raman, “Tree compression with top trees revisited,” in
Proc. SEA 2015, 2015, pp. 15–27.

[11] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann, “Random access
to grammar-compressed strings and trees,” SIAM J. Comput., vol. 44, pp. 513–539, 2015.

[12] M. Bousquet-Mélou, M. Lohrey, S. Maneth, and E. Noeth, “XML compression via DAGs,”
Theor. Comput. Syst., vol. 57, no. 4, pp. 1322–1371, 2015.

[13] A. Jez, “Faster fully compressed pattern matching by recompression,” ACM Transactions on
Algorithms, vol. 11, pp. 20:1–20:43, 2015.

[14] M. A. Bender and M. Farach-Colton, “The LCA problem revisited,” in Proc. LATIN 2000,
2000, pp. 88–94.

[15] B. Schieber and U. Vishkin, “On finding lowest common ancestors: Simplification and paral-
lelization,” SIAM J. Comput., vol. 17, pp. 1253–1262, 1988.

[16] D. Gusfield, Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

10

