

Edinburgh Research Explorer

AppPAL for Android: Capturing and Checking Mobile App
Policies

Citation for published version:
Hallett, J & Aspinall, D 2016, AppPAL for Android: Capturing and Checking Mobile App Policies. in ESSoS:
International Symposium on Engineering Secure Software and Systems. 8th International Symposium of
Engineering Secure Software and Systems 2016, London, United Kingdom, 6/04/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ESSoS: International Symposium on Engineering Secure Software and Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://www.research.ed.ac.uk/portal/en/publications/apppal-for-android-capturing-and-checking-mobile-app-policies(b769c5fd-a71d-4df1-a241-6386173684de).html

AppPAL for Android
Capturing and Checking Mobile App Policies

Joseph Hallett and David Aspinall

School of Informatics, University of Edinburgh

Abstract. It can be difficult to find mobile apps that respect one’s
security and privacy. Businesses rely on employees enforcing company
mobile device policies correctly. Users must judge apps by the information
shown to them by the store. Studies have found that most users do not pay
attention to an apps permissions during installation [19] and most users
do not understand how permissions relate to the capabilities of an app [30].
To address these problems and more, we present AppPAL: a machine-
readable policy language for Android that describes precisely when apps
are acceptable. AppPAL goes beyond existing policy enforcement tools,
like Kirin [16], adding delegation relationships to allow a variety of
authorities to contribute to a decision. AppPAL also acts as a “glue”,
allowing connection to a variety of local constraint checkers (e.g., static
analysis tools, packager manager checks) to combine their results. As
well as introducing AppPAL and some examples, we apply it to explore
whether users follow certain intended policies in practice, finding privacy
preferences and actual behaviour are not always aligned in the absence
of a rigorous enforcement mechanism.

1 Introduction

Finding the right apps can be tricky. Users need to discover which are not going
to abuse their data. This can be difficult as it isn’t obvious how apps use the
data each has access to. Consider a user attempting to buy a flashlight app. By
searching the Play store the user is presented with a long list of apps. Clicking
through each one they can find the permissions each requests but not the reasons
why each was needed. They can see review scores from users but not from tools
to check apps for problems and issues like SSL misconfigurations [17]. If they
want to use the app at work will it break their employers rules for mobile usage?

App stores give some information about their apps; descriptions, screenshots
and review scores. Android apps show a list of permissions when they’re first
installed. In Android Marshmallow apps will display permissions requests when
the app first tries to access sensitive data (such as contacts or location informa-
tion). Users do not understand how permissions relate to their device [19,46].

The final publication is available at link.springer.com.

link.springer.com

Ultimately the decision of which apps to use and which permissions to grant
must be made by the device user.

Some apps are highly undesirable. Many potentially unwanted programs (PUP)
are being propagated for Android devices [47,45]. Employees are increasingly
using their own phones for work. An employer may restrict which apps their
employees can use. The IT department may set a mobile device policy—a series of
rules describing what kinds of apps may be used and how—to prevent information
leaks. Some users worry that apps will misuse their personal data—sending their
address book or location to an advertiser without their permission. Such a user
avoids apps which can access their location, or address book; they may apply
their own personal security policies when downloading and running apps.

These policies can only be enforced by the users continuously making the
correct decision when prompted about apps. An alternative is to write the policy
down and make the computer enforce it. To implement this we propose using a
logic of authorization—a language designed to express rules about permissible
actions.

We present AppPAL, an instantiation of Becker et al.’s SecPAL [6] with
constraints (statements checkable using information external to the language
such as the time of day or static analysis tools) and predicates that allow us to
decide which apps to run or install. The language allows us to reason about apps
using statements from third parties. AppPAL allows us to enforce the policies
on a device. We can express trust relationships amongst these parties and use
constraints to do additional checks, such as using security checks. This lets us
enforce more complex policies than existing tools such as Kirin [16] which are
limited to permissions checks. Policies can be enforced by the stores selling the
apps, on the devices installing apps or by third-parties providing app vetting
services.

Consider the following example: a user, Alice, may have rules she has to follow
when using apps for work and her own policies when using apps at home in her
private life. Using AppPAL we can write policies for work and home, and decide
which policy to enforce using a user’s location, or the time of day:
’ alice ’ says App isRunnable

if ’home−policy’ isMetBy(App)
where at(’work’) = false.

’ alice ’ says App isRunnable
if ’work−policy’ isMetBy(App)
where beforeHourOfDay(’17’) = true.

We can delegate policy specification to third parties or roles, and assign principals
to roles:
’ alice ’ says ’ it−department’ can-say ’work−policy’ isMetBy(App).
’ alice ’ says ’ alice ’ can-act-as ’it−department’.

We can write policies specifying which permissions an app must or must not
have by its app store categorization. For example, it would be okay allowing a
photography app access to the camera, but not to allow access to location data
if the user doesn’t want their photos geotagged.
’ alice ’ says App isRunnable

if ’ permissions−policy’ isMetBy(App).

’ alice ’ says ’permissions−policy’ isMetBy(App)
if App isAnApp
where

category(App, ’Photography’),
hasPermission(App, ’LOCATION’) = false,
hasPermission(App, ’CAMERA’) = true.

There has been much work developing app analysis tools for Android. Tools
such as Stowaway [18] detect over-privileged apps. TaintDroid [15] and Flow-
Droid [1,33] can do taint and control flow analysis; sometimes even between
app components. Other tools like QUIRE [11] can find privilege escalation at-
tacks between apps. ScanDAL [31] and SCanDroid [21] help detect privacy leaks.
Appscopy [20] searches for specific kinds of malware. Tools like DroidRanger [49]
scan app markets for malicious apps. Various tools such as AppGuard [3], Dr. An-
droid & Mr. Hide [29] or AppFence [27] can control the permissions or data an
app can get. MalloDroid [17] looks for apps configured to use SSL incorrectly
(for instance by not verifying hostnames or certificates).

AppPAL can act as a “glue” between static analysis tools and the app
installation policies device owners are trying to enforce. This avoids creating
tools with hard-coded fixed policies. For example a store might not want to sell
apps with SSL errors or apps flagged by an anti-virus tool. Using AppPAL we
can combine tools for checking apps to implement the store’s policies.
’ play−store’ says App isSellable

if App isAnApp
where mallodroidCheck(App) = true,

mcafeeAVCheck(App) = true.

No additional attempt is made to ensure these static analysis tools are sound.
The policy designer must be aware of the tool’s limitations. Black or whitelisting
may have to be used to avoid some false positives or negatives.

2 Enforcing A Policy At Work

An employee Alice works for Emma. Emma allows Alice to use her personal
phone as a work phone but has some specific concerns.

– Alice shouldn’t run any apps that can track her movements. Alice’s workplace
is at a secret location and it mustn’t be leaked.

– Apps should come from a reputable source, such as the Google Play Store.
– Emma uses an anti-virus (AV) program by McAfee. It should check all apps

before they’re installed.

To ensure this policy is met Alice promises to follow it. She might even sign
a document promising never to break the rules within the policy. This is error-
prone—what if she makes a mistake or misses an app that breaks her policy?
Alternatively Emma’s policy could be partially enforced using existing tools.
Google’s Device Policy for Android [23] could configure Alice’s device to disallow

apps from outside the Google Play Store and let Emma set the permissions
granted to each app [40].

We could implement Emma’s policy using existing tools (such as an AV checker,
and a taint analysis tool like Flowdroid [1,33]) but it is a clumsy solution—they
are not flexible. Each has to be configured separately to implement only part of
the policy. If Emma changes her policy or Alice changes jobs she must recheck her
apps and then alter or remove the software on her phone to ensure compliance.
It isn’t clear what an app must do to be run, or what checks have been done if
it is already running on the phone. The relationship between Alice (the user),
Emma (the policy setter) and the tools Emma trusts to implement her policy
isn’t immediately apparent.

What happens when Alice goes home? Emma shouldn’t be able to overly
control what Alice does in her private life. Alice might not be allowed to use
location tracking apps at work but at home she might want to (to meet friends,
track jogging routes or find restaurants for example). Some mobile OSs, such
as iOS and the latest version of Android, allow app permissions to be enabled
and disabled at run time. Can we enforce different policies at different times or
locations?

Alice’s Phone

AppPAL Apps

filters
AppPAL enhanced store

AppPALPolicy

App Store

Apps

buys from

buys from

Policy

Employer

User

Policy

describes

company

policy

Vetting service

Tool

checks

apps

Policy

«composes»

describes

checks

describes

personal

policy

Developer

Policy

sells

apps on

Fig. 1. Ecosystem of devices and stores with AppPAL.

We propose using the mobile ecosystem shown in Figure 1. People have
policies which are enforced by AppPAL on their devices. They can be composed
with policies from employers or others to create enhanced devices that ensure
apps meet the policies of their owners. The device can make use of vetting services
which run tools to infer complex properties about apps. Users can buy from
enhanced stores which ensure the only apps they sell are the apps which meet
the store’s explicit policies, or ones requested by users. Developers could decide
which stores to sell their apps in on the basis of policies about stores.

3 Expressing Policies In AppPAL

In section 2, Alice and Emma had policies they wanted to enforce but no means
to do so. Instead of using several tools to enforce Emma’s policy disjointedly,

we could use an authorization logic. In Figure 2 we give an AppPAL policy
implementing Emma’s app concerns on Alice’s phone.

SecPAL is a logic of authorization for access control decisions in distributed
systems. It has a clear and readable syntax, as well as rich mechanisms for
delegation and constraints. SecPAL has already been used as a basis for other
policy languages in areas such as privacy preferences [7] and data-sharing [2]. We
present AppPAL as a modified form of SecPAL, aimed at mobile apps.

Other access control languages, such as XACML 3.0 [37], could also have
been used as the basis for AppPAL. SecPAL however can capture distribution
and delegation relationships between principles and serves as a simplified model
of a more complex system like XACML, and has a well defined semantics, and
decidability.

1 ’ alice ’ says ’emma’ can-say inf
2 App isRunnable.
3

4 ’emma’ says App isRunnable
5 if ’no−tracking−policy’ isMetBy(App),
6 ’ reputable−policy’ isMetBy(App),
7 ’ anti−virus−policy’ isMetBy(App).
8

9 ’emma’ says
10 ’ reputable−policy’ isMetBy(App)
11 if App isBuyable.
12

13 ’emma’ says ’google−play’ can-say
14 App isBuyable.

15 ’emma’ says ’anti−virus−policy’ isMetBy(App)
16 if App isAnApp
17 where
18 mcafeeAVCheck(App) = true.
19

20 ’emma’ says ’no−location−permissions’
21 can-act-as ’no−tracking−policy’.
22

23 ’emma’ says
24 ’no−location−permissions’ isMetBy(App)
25 if App isAnApp
26 where
27 hasPermission(App, ’COARSE LOCATION’)=false,
28 hasPermission(App, ’FINE LOCATION’)=false.

Fig. 2. AppPAL policy implementing Emma’s security requirements.

In line 2 Alice lets Emma specify whether an App (a variable) isRunnable; she
allows her to delegate the decision (can-say inf). Emma specifies her concerns
as policies to be met in line 4: if Emma is convinced that these are met then she
will say the App isRunnable. In line 10 and line 14 Emma specifies that an app
meets the reputable-policy if the App isBuyable; with ’google−play’ deciding of
what is buyable or not. Google is not allowed to delegate the decision further,
i.e. Google is not allowed to specify Amazon as a supplier of apps as well. Emma
specifies the ’ anti−virus−policy’ in line 15 using a constraint. When checking
the policy the mcAfeeVirusCheck should be run on the App. Only if this returns
false will the policy be met. To specify the ’no−tracking−policy’ Emma says that
the ’no−location−permissions’ rules implement the ’no−tracking−policy’ (line 21).
Emma specifies this in line 24 by checking the app is missing two permissions.

Alice wants to install a new app (com.facebook.katana) on her phone. She
collects statements to show the app meets the isRunnable predicate.

– ’google−play’ says ’com.facebook.katana’ isReputable. Required to convince
Emma that the app came from a reputable source.

– ’emma’says ’anti−virus−policy’ isMetBy(’com.facebook.katana’). She can ob-
tain this by running the AV program on her app.

– ’emma’says ’no−locations−permissions’ isMetBy(’com.facebook.katana’). Needed
to show the App meets Emma’s no-tracking-policy. Emma will say this if the
app has no location permissions.

These last two statements require the checker to do some extra checks to satisfy
the constraints. To get the second statement AppPAL must run the AV program
on her app and check the result. The results from the AV program may change
with time as its signatures are updated; so the checker must re-run this check
every time it wants to obtain the statement connected to the constraint. For the
third statement the AppPAL checker needs to examine the permissions of the
app. It could do this by looking in the MANIFEST.xml inside the app itself, or
through the Android package manager if it is running on a device.

We could also imagine Emma wanting a personalised app store where all
apps sold meet her policy. With AppPAL this can be implemented by taking an
existing store and selectively offering only the apps which will meet the user’s
policy. This gives us a filtered store which, from an existing set of apps, we get a
personalised store that only sells apps that meet a policy.

4 AppPAL

AppPAL is implemented as a library for Android and Java. The parser is imple-
mented using ANTLR4. AppPAL’s syntax is inherited from SecPAL [6] (shown
in Figure 3).

speaker︷ ︸︸ ︷
‘user’ says

fact︷ ︸︸ ︷
subject︷︸︸︷
App

predicate︷ ︸︸ ︷
isRunnable

condition︷ ︸︸ ︷
if App isFree

constraint︷ ︸︸ ︷
where hasPermission(App, ‘INTERNET’) = true .

〈Assertion〉 := 〈E〉 says 〈Fact〉
(if (〈Fact〉,)+)?.
(where 〈Constraint〉)?

〈Fact〉 := 〈E〉 (isRunable | . . .)
| 〈E〉 can-say inf? 〈Fact〉
| 〈E〉 can-act-as 〈E〉

〈E〉 := Variable | ‘constant’

Fig. 3. Structure and simplified grammar of an AppPAL assertion.

In SecPAL the precise nature of predicates and constraints is left open. In
instantiating SecPAL, AppPAL makes the predicates and constraints explicit.
AppPAL policies can make use of the predicates and constraints in Table 1.
Additional predicates can be created in the policy files, however constraints
must be implemented individually. For example, on Android the hasPermission
constraint uses the Android package manager to check what permissions an app
requests, but the Java version uses the Android platform tools to check.

Splitting the decision about whether an app is runnable into a series of policies
that must be met gives us flexibility in how the decision is made. It allows us
to describe multiple means of making the same decision, and provide backup

Name Description

App isRunnable Says an app can be run.
App isInstallable Says an app can be installed.
App isAnApp Tells AppPAL that an app exists.
Policy isMetBy(App) Used to split policies into smaller components.
hasPermission(App, Permission) Constraint to check if an app has a permission.
beforeHourOfDay(time) Constraint used to check the time.
ToolCheck(App, Property) Constraint to run an analysis tool on an app.

Table 1. AppPAL predicates and constraints.

routes when one fails. Some static analysis tools are not quick to run. Even taking
minutes to run a battery draining analysis can be undesirable: if a user wants to
download an app quickly they may not be willing to wait to check that a policy
is met. In that case, it may be preferable to delegate to an online database.

In section 2 and section 3 we described a no-tracking-policy to prevent
a user’s location being leaked. In Emma’s policy we checked this using the
app’s permissions; if the app couldn’t get access to the GPS sensors (using
the permissions) then it meets this policy. Some apps may want to access this
data, but may not leak it. We could use a taint analysis tool to detect this
(e.g. FlowDroid [1,33]). Our policy becomes:

’emma’ says ’no−locations−permissions’
can-act-as ’no−tracking−policy’.

’emma’ says ’no−locations−permissions’ isMetBy(App)
if App isAnApp
where

hasPermission(App, ’ACCESS FINE LOCATION’) = false,
hasPermission(App, ’ACCESS COARSE LOCATION’) = false.

’emma’ says ’location−taint−analysis’
can-act-as ’no−tracking−policy’.

’emma’ says ’location−taint−analysis’ isMetBy(App)
if App isAnApp
where

flowDroidCheck(App, ’Location’, ’Internet’) = false.

Sometimes we might want to use location data. For instance Emma might
want to check that Alice is at her office. Emma might track Alice using a location
tracking app. Provided the app only talks to Emma, and it uses SSL correctly
(using MalloDroid [17]) she is happy to relax the policy.

’emma’ says ’relaxed−no−tracking−policy’ canActAs ’no−tracking−policy’.
’emma’ says ’relaxed−no−tracking−policy’ isMetBy(App)

if App hasCategory(’tracking’)

where
mallodroidSSLCheck(App) = false,
connectionsCheck(App, ’[https://emma.com]’) = true.

This gives us four different ways of satisfying the no-tracking-policy: with
permissions, with taint analysis, with a relaxed version of the policy, or by Emma
directly saying the app meets it. When we come to check the policy if any of
these ways give us a positive result we can stop our search.

4.1 Policy Checking
AppPAL has the same policy checking rules as SecPAL [6]. AppPAL uses an
assertion context of known facts and rules, as well as facts deduced while checking.
While Becker et al. used a DatalogC based checking algorithm, we have imple-
mented the rules directly in Java as no DatalogC library is currently available
for Android. Pseudo-code is shown in Figure 4.

On a mobile device memory is at a premium. We want to keep the assertion
context as small as possible. For some assertions (like isAnApp) we derive them by
checking the arguments at evaluation time. This gives us greater control of the
evaluation and how the assertion context is created. For example, when checking
the isAnApp predicate; we can fetch the assertion that the subject is an app based
on the app in question. When delegating we will also be able to request facts
from the delegated party dynamically (although this is not yet implemented).

def evaluate(ac, rt, q, d)
return rt[q, d] if rt.contains q, d
p = cond(ac, rt, q, d)
if p.isValid then

return (Proven, rt.update q, d, p)
p = canSay_CanActAs(ac, rt, q, d)
if p.isValid then

return (Proven, rt.update q, d, p)
else

return (Failure, rt.update q, d, Failure)

def canSay_CanActAs(ac, rt, q, d)
ac.constants.each do |c|

if c.is_a :subject
p = canActAs ac, rt, q, d
return Proven if p.isValid

elsif c.is_a :speaker
p = canSay ac, rt, q d
return Proven if p.isValid

return Failure

def cond(ac, rt, q, d)
ac.add q.fetch if q.isFetchable
ac.assertions.each do |a|

if (u = q.unify a.consequent) &&
(a = u.sub a).variables == none

return checkConditions ac, rt, a, d
return Failure

def checkConditions(ac, rt, a, d)
getVarSubs(a,ac.constants).each do |s|

sa = s.sub a
if sa.antecedents.all

{ |a| evaluate(ac, rt, a, d).isValid }
p = evaluateC sa.constraint
return Proven if p.isValid

return Failure

Fig. 4. Partial-pseudocode for AppPAL evaluation.

4.2 Benchmarks
When AppPAL runs on a mobile phone, apps should be checked as they are
installed. Since policy checks may involve inspecting many rules and constraints

one may ask whether the checking will be acceptably fast. Downloading and
installing an app takes about 30 seconds on a typical Android phone over wifi.
If checking a policy delays this even further a user may become annoyed and
disable AppPAL.

The policy checking procedure is at its slowest when having to delegate
repeatedly; the depth of the delegation tree is the biggest factor for slowing the
search. Synthetic benchmarks were created to check that the checking procedure
performed acceptably. Each benchmark consisted of a chain of delegations. The
1 to 1 benchmark consists of a repeated delegation between all the principals.
In the 1 to 2 benchmark each principal delegated to 2 others and in the 1 to 3
benchmark each principal delegated to 3 others. These benchmarks are reasonable
as they model the slowest kinds of policies to evaluate—though worse ones could
be designed by delegating even more or triggering an expensive constraint check.

For each benchmark we controlled the number of principals in the policy file:
as the number of principals increased so did the size of the policy. The results
are shown in Figure 5. We have only used a few delegations per decision when
describing hypothetical user policies. We believe the policy checking performance
of AppPAL is acceptable as unless a policy consists of hundreds of delegating
principals the overhead of checking an AppPAL policy is negligable.

Delegations Principals Time (s)

1 to 1 10 0.01
1 to 1 100 1.00
1 to 1 500 20.90
1 to 1 1000 88.73

1 to 2 10 0.01
1 to 2 100 0.43
1 to 2 500 7.36
1 to 2 1000 27.47

1 to 3 10 0.01
1 to 3 100 0.24
1 to 3 500 3.99
1 to 3 1000 15.28

1

10

100

10 100 500 1000

Principals

C
h
e
c
k
 t
im

e
 (

s
)

Delegations

1 to 1

1 to 2

1 to 3

Fig. 5. Benchmarking results on a Nexus 4 Android phone.

5 Measuring Policy Compliance

Throughout we have asserted that users often have informal policies and that
there is a need for policy enforcement tools. Corporate mobile security bring
your own device (BYOD) policies have started appearing and NIST have issued
recommendations for writing them [41,44]. In a study of 725 Android users,
Lin et al. found four patterns that characterise user privacy preferences for
apps [35] demonstrating a refinement of Westin’s privacy segmentation index [32].

Using app installation data from Carat [38,12] we used AppPAL to find the apps
satisfying each policy Lin et al. identify and measure the extent that each user
was following a policy.

Lin et al. identified four types of user. The Conservative (C) users were
uncomfortable allowing an app access to any personal data for any reason. The
Unconcerned (U) users felt okay allowing access to most data for almost any
reason. The Advanced (A) users were comfortable allowing apps access to location
data but not if it was for advertising. Opinions in the largest cluster, Fencesitters
(F), varied but were broadly against collection of personal data for advertising.
We wrote AppPAL policies to describe each of these behaviours as increasing
sets of permissions. These simplify the privacy policies identified by Lin et al. as
we do not take into account the reason each app might have been collecting each
permission (we could write more precise rules if we could determine why each
permission was requested). Lin et al. used Androguard [13] as well as manual
analysis to determine the precise reasons for each permission [35].

Policy C A F U

GET ACCOUNTS 7 7 7 7

ACCESS FINE LOCATION 7 7 7

READ CONTACT 7 7 7

READ PHONE STATE 7 7

SEND SMS 7 7

ACCESS COARSE LOCATION 7

It is also interesting to discover when people install apps classified as malware.
McAfee classify malware into several categories, and provided us with a dataset
of apps classified as malware and PUPs. The malicious and trojan categories
describe traditional malware. Other categories classify PUP such as aggressive
adware. Using AppPAL we can write policies to differentiate characterising users
who allow dangerous apps and those who install poor quality ones.

’ user ’ says ’mcafee’ can-say
’malware’ isKindOf(App).

’mcafee’ says ’trojan ’ can-act-as ’malware’.
’mcafee’ says ’pup’ can-act-as ’malware’.

If a user is enforcing a privacy policy we might also expect them to install less
malware. We can check this by using AppPAL policies to measure the number of
malwares each user had installed.

We now want to test how closely user behavior follows policies. Installation
data was taken from a partially anonymized1 database of installed apps captured
by Carat [38]. By calculating the hashes of known package names we see who
installed what. The initial database has over 90,000 apps and 55,000 users. On
average each Carat user installed around 90 apps each; 4,300 apps have known
1 Users are replaced with incrementing numbers, app names are replaced with hashes

to protect sensitive names.

names. Disregarding system apps (such as com.android.vending) and very
common apps (Facebook, Dropbox, Whatsapp, and Twitter) we reduced the set
to an average of 20 known apps per user. To see some variation in app type, we
considered only the 44,000 users who had more than 20 known apps. Using this
data, and the apps themselves taken from the Google Play Store and Android
Observatory [4], we checked which apps satisfied which policies.

0

10000

20000

30000

0.00 0.25 0.50 0.75 1.00

%age of user’s apps meeting policy

U
s
e

r
c
o

u
n

t

variable

C

A

F

U

(a) Uptake of Lin et al.’s policies.

0

50

100

150

0.7 0.8 0.9 1.0

%age of user’s apps meeting policy

U
s
e

r
c
o

u
n

t

variable

not PUP

not Malware

(b) Uptake of malware and PUPs.

Fig. 6. Policy compliance graphs. Each histogram shows the number of users who
followed a policy to a certain extent. Users who installed no malware have been omitted
from Figure 6(b).

Figure 6(a) shows that very few users follow Lin et al.’s policies most of the
time. Whilst the AppPAL policy we used was a simplified version of Lin et al.’s
policy, it suggests that there is a disconnect between user’s privacy preferences
and their behaviour (reminiscent of the privacy paradox); assuming the user
population studied by Lin et al. behave similarly to data from the Carat study.
A few users, however, did seem to be installing apps meeting these policies most
of the time. This suggests that while users may have privacy preferences the
majority are not attempting to enforce them. Policy enforcement tools, like
AppPAL, can help users enforce their own policies which they cannot do easily
using the current ad hoc, manual means available to them.

We found that 1% of the users had a PUP or malicious app installed. Fig-
ure 6(b) shows that infection rates for PUPs and malware is low; though a user
is 3 times more likely to have a PUP installed than malware. Users who were
complying more than half the time with the conservative or advanced policies
complied with the malware or PUP policies fully (Figure 7(a)). This suggests
that policy enforcement is worthwhile: users who can enforce policies about their
apps experience less malware.

The MalloDroid tool [17] can scan apps for SSL misconfigurations. SSL
misconfigurations are dangerous as they can undermine any privacy guarantees
that SSL/TLS gives. MalloDroid distinguishes cases where the app is definitely

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00

%age of user’s apps meeting ‘Advanced’ policy

%
a

g
e

 o
f

u
s
e

r’
s
 a

p
p

s
 m

e
e

ti
n

g
 ‘
N

o
t−

P
U

P
’
p

o
lic

y

(a) Advanced and non-PUP policies.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

%age of user’s apps meeting ‘Advanced’ policy

%
a

g
e

 o
f

u
s
e

r’
s
 a

p
p

s
 m

e
e

ti
n

g
 ‘
S

S
L’

 p
o

lic
y
 (

in
c
lu

d
in

g
 m

a
y
b

e
)

(b) Advanced and SSL policies.

Fig. 7. Compliance with the advanced policy and the non-PUP and SSL policies. Each
data-point represents a user. In (a) we see that users who followed the Advanced policy
more than 50% of the time did not install any malware. In (b) we see that even users
who followed the Advanced policy were no better at avoiding apps with SSL problems
than any other users.

misconfigured from those where there is some doubt. We set up AppPAL to use
MalloDroid results as a constraint and measured the percentage of apps each
Carat user had installed that did not have issues or suspected issues when scanned
with MalloDroid. Users who were complied with the advanced policy were no
better at avoiding apps with SSL errors than any other users, see Figure 7(b).
This emphasizes that AppPAL can help enforce complex policies that cannot be
checked without additional tools.

There are limitations in this study: first, we do not have the full user purchase
history, and we can only find out about apps whose names match those in
available databases. So a user may have apps installed that break the policy
without us knowing. Second, recently downloaded apps used for experiment may
not be the same version that users had, in particular, their permissions may
differ. Permissions tend to increase in apps over time [48]; so a user may be more
conservative than our analysis suggests. Finally, as mentioned, we have compared
a different set of users to the ones Lin et al. looked at. We plan to do a more
comprehensive user study in the future that investigates AppPAL in use with
different communities.

6 Related Work

Authorization logics have been used to enforce policies in several other domains.
The earliest such logic, PolicyMaker [10], was general and undecidable. Logics that
followed like KeyNote [9] and SPKI/SDSI [14] looked at public key infrastructure.
The RT-languages [34] were designed for credential management. Cassandra [8]
was used to model trust relationships in the British national health service.

SELinux is used to describe policies for Linux processes, and for access control
(on top of the Linux discretionary controls). It was ported to Android [43] and
is used in the implementation of the permissions system. SELinux describes
the capabilities (in terms of system calls and file access) of processes, it cannot
describe app installation policies or delegation relationships. Google also offer the
Device Policy for Android app. This lets businesses configure company-owned
devices to be trackable, remote lockable, set passwords and sync with their servers.
It cannot be used to describe policies about apps, or describe trust relationships.

The SecPAL language is designed for access control in distributed systems.
We picked SecPAL as the basis for AppPAL because it is readable, extensible,
and is a good fit for the mobile ecosystem setting [26]. It has also been used to
describe data usage policies [2] and inside Grid data systems [28]. Other work has
added various features such as existential quantification [5] and extended to the
DKAL family of languages [24,25]. DKAL contains more modalities than says,
which lets policies describe actions principals carry out rather than just their
opinions. For example in AppPAL a user might say an app is installable if they
would install it ("user" says App isInstallable). In DKAL they can describe
the conditions that would force them to install it ("user" installs App). With
DKAL we can guarantee that the action was completed, whereas in AppPAL
we do not know if the user actually installed a particular app. We chose to use
SecPAL as the basis for AppPAL as we did not need the extra features DKAL
added to express app installation policies for our initial applications.

Kirin [16] is a policy language and tool for enforcing app installation policies
to prevent malware. Policy authors can specify combinations of permissions
and broadcast events that should not appear together. For example, to stop
malware sending premium rate text messages, we prevent an app having both the
SEND SMS and WRITE SMS permissions one could write: restrict permission
[SEND SMS] and permission [WRITE SMS].

By analyzing apps which broke their policies Enck et al. found vulnerabilities
in Android, but were ultimately limited by being restricted to permissions and
broadcast events.

The Kirin approach has been shown to help identify malware, but it is less
suitable for detecting PUPS. The behaviours and permissions PUP displays aren’t
necessarily malicious. One user may not want apps which need in-app-purchases
to play, but another may enjoy them. With Kirin we are restricted to permitting
or allowing apps. AppPAL can describe more scenarios than just allow or forbid,
and use more app information than just permissions, such as constraints and
static analysis results. By allowing delegation relationships we can understand
the provenance and trust relationships in these rules.

7 Conclusions and Further Work

We have presented AppPAL: a language for describing app installation policies to
help achieve security and privacy objectives but which can also lock down devices
in other ways, e.g. restricting the use of certain apps while at work. We showed

how static analysis tools can be connected to AppPAL to compose complex
properties.

Further work is needed to tightly integrate AppPAL into Android. One way
to integrate AppPAL on Android would be as a required checker : a program that
checks all apps before installation. Google uses the required checker API to check
for known malware and jailbreak apps. We would use AppPAL to check apps
meet policies before installation. The API is protected, however, and it would
require the phone to have a custom firmware. This is undesirable as it would
make AppPAL difficult to install for most users, and negate the other security
enhancements (such as timely updates and patches) provided by the standard
Android system. AppPAL could be integrated as a service to reconfigure app
permissions. Android Marshmallow has an iOS like permissions model where
permissions can be granted and revoked at any time. These will be manually
configurable by the user through the settings app. We can imagine AppPAL
working to reconfigure these settings (and set the device’s initial grant or deny
states) based on a user’s policy, as well as the time of day or the user’s location. A
policy could deny notifications while a user is driving, for example, by checking if
they are using Android Auto [22] (an app to interact with a car’s center console)
or moving along a road at high speed.

Future work includes developing and testing, policies for users. Here we
described a policy being specified by a user’s employer. For most end-users
writing a policy in a formal language unrealistic. With Ad-blocking software
users subscribe to filter policies written by experts, such as EasyList [39]. We
can imagine a similar scheme working well for app installation policies. Users
subscribe to different policies by experts (examples could include no tracking
apps, nothing with adult content, no in-app-purchase apps). Optionally the users
could customize the policies further.

Policy composition raises further questions: what should happen when user’s
personal and work policies overlap or contradict? Future work will look at
detecting these problems as well as integrating strategies to resolve them.

Another question might be whether we can use evidence to speed re-checking
apps against a policy. Some static analysis tools, such as Evicheck [42], can create
evidence that lets you check an app doesn’t have certain behavior faster than
it would be to infer the same property in the app without it, similar to proof-
carrying code [36]. We can also imagine apps being distributed with evidence
that proves the app meets an AppPAL policy but avoids the need to check the
against the policy explicitly.

We might attempt to learn policies from existing user’s behavior. Given app
usage data, from a project like Carat [38], we could identify security conscious
users. If we can infer these users policies we may be able to describe new policies
that the less technical users may want. Given a set of apps one user has already
installed, we could learn policies about what their personal security relevant
installation policy is. This may help stores show users apps they’re more likely
to buy, and users apps that already behave as they want.

AppPAL gives us a framework for describing and evaluating policies for
Android apps. The work provides new, rigorous, ways for machines to enforce
user’s and device-owner’s rules about how apps should behave. These policies can
be enforced more reliably, and with less interaction from the person operating
the device.

Acknowledgements

Thanks to Igor Muttik at McAfee, and N Asokan at Aalto University and the
University of Helsinki for discussions and providing us with data used in section 5.
Thanks also to the App Guarden project and colleagues at the University of
Edinburgh for their comments, and the referees for their feedback. This work
was supported by the App Guarden project (EPSRC EP/K032666/1).

References

1. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. Programming Languages Design and Imple-
mentation 49(6), 259–269 (Jun 2014)

2. Aziz, B., Arenas, A., Wilson, M.: SecPAL4DSA. Cloud Computing and Intelligence
Systems (2011)

3. Backes, M., Gerling, S., Hammer, C., Maffei, M.: AppGuard–Enforcing User Re-
quirements on Android Apps. Tools and Algorithms for the Construction and
Analysis of Systems 7795(Chapter 39), 543–548 (2013)

4. Barrera, D., Clark, J., McCarney, D., van Oorschot, P.C.: Understanding and
improving app installation security mechanisms through empirical analysis of
android. Security and Privacy in Smartphones and Mobile Devices pp. 81–92 (Oct
2012)

5. Becker, M.Y.: Secpal formalization and extensions. Tech. rep., Microsoft Research
(2009)

6. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of a
decentralized authorization language. Computer Security Foundations (2006)

7. Becker, M.Y., Malkis, A., Bussard, L.: A framework for privacy preferences and
data-handling policies. Tech. rep., Microsoft Research (2009)

8. Becker, M.Y., Sewell, P.: Cassandra: flexible trust management, applied to electronic
health records. Computer Security Foundations pp. 139–154 (2004)

9. Blaze, M., Feigenbaum, J., Keromytis, A.D.: KeyNote: Trust Management for Public-
Key Infrastructures. International Workshop on Security Protocols 1550(Chapter
9), 59–63 (Jan 1999)

10. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. Security and
Privacy pp. 164–173 (1996)

11. Bugiel, S., Davi, L., Dmitrienko, A.: Towards taming privilege-escalation attacks
on Android. Network and Distributed System Security Symposium (2012)

12. Chia, P.H., Yamamoto, Y., Asokan, N.: Is this App Safe? World Wide Web (Apr
2012)

13. Desnos, A.: Androguard. https://github.com/androguard/androguard
14. Ellison, C., Frantz, B., Lainpson, B., Rivest, R., Thomas, B.: RFC 2693: SPKI

certificate theory. The Internet Society (1999)

15. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.: TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones. Operating
Systems Design and Implementation (2010)

16. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. Computer and Communications Security pp. 235–245 (Nov 2009)

17. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.: Why
Eve and Mallory Love Android. ASIA Computer and Communications Security pp.
50–61 (Oct 2012)

18. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. Computer and Communications Security pp. 627–638 (Oct 2011)

19. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. Symposium On Usable Privacy
and Security p. 3 (Jul 2012)

20. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection of
Android malware through static analysis. In: Foundations of Software Engineering.
pp. 576–587. ACM Request Permissions, New York, New York, USA (Nov 2014)

21. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: SCanDroid: Automated security certifica-
tion of Android applications. USENIX Security Symposium (2009)

22. Google: Android Auto. com.google.android.projection.gearhead
23. Google: Google Apps Device Policy. com.google.android.apps.enterprise.dmagent
24. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.

Computer Security Foundations pp. 149–162 (2008)
25. Gurevich, Y., Neeman, I.: DKAL 2. Tech. Rep. MSR-TR-2009-11, Microsoft Re-

search (Feb 2009)
26. Hallett, J., Aspinall, D.: Towards an authorization framework for app security

checking. In: ESSoS Doctoral Symposium. University of Edinburgh (Feb 2014)
27. Hornyack, P., Han, S., Jung, J., Schechter, S.: These aren’t the droids you’re looking

for: retrofitting android to protect data from imperious applications. In: Computer
and Communications Security (2011)

28. Humphrey, M., Park, S.M., Feng, J., Beekwilder, N., Wasson, G., Hogg, J., LaMac-
chia, B., Dillaway, B.: Fine-Grained Access Control for GridFTP using SecPAL .
Grid Computing (2007)

29. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Millstein,
T.: Dr. Android and Mr. Hide: fine-grained permissions in android applications.
Security and Privacy in Smartphones and Mobile Devices pp. 3–14 (Oct 2012)

30. Kelley, P.G., Consolvo, S., Cranor, L.F., Jung, J., Sadeh, N., Wetherall, D.: A
Conundrum of Permissions. Useable Security (Feb 2012)

31. Kim, J., Yoon, Y., Yi, K., Shin, J., S Center: ScanDal: Static analyzer for detecting
privacy leaks in android applications. Mobile Security Technologies (2012)

32. Krane, D., Light, L., Gravitch, D.: Privacy On and Off the Internet. Harris Interac-
tive 18(5), 345–359 (Oct 2002)

33. Li, L., et al.: IccTA: Detecting Inter-Component Privacy Leaks in Android Apps.
IEEE/ACM 37th IEEE International Conference on Software Engineering (2015)

34. Li, N., Mitchell, J.C.: Design of a role-based trust-management framework. Security
and Privacy pp. 114–130 (2002)

35. Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling Users’ Mobile App Privacy Prefer-
ences. Symposium On Usable Privacy and Security (2014)

36. Necula, G.C., Lee, P.: Proof-carrying Code. Tech. Rep. CMU-CS-96-165, Carniegie
Mellon University (1996)

37. Oasis: eXtensible Access Control Markup Language (XACML) Version 3.0 (Jan
2013)

38. Oliner, A.J., Iyer, A.P., Stoica, I., Lagerspetz, E.: Carat: Collaborative energy
diagnosis for mobile devices. In: Embedded Network Sensor Systems (2013)

39. Petnel, R.: The Official EasyList Website. https://easylist.adblockplus.org/
en/ (2016)

40. Poiesz, B.: Android M Permissions. In: Google I/O (2015)
41. Scarfone, K., Hoffman, P., Souppaya, M.: NIST Special Publication 800-46: Guide

to Enterprise Telework and Remote Access Security (Jun 2009)
42. Seghir, M.N., Aspinall, D.: EviCheck: Digital Evidence for Android. Automated

Technology for Verification and Analysis (2015)
43. Smalley, S., Craig, R.: Security Enhanced (SE) Android: Bringing Flexible MAC to

Android. Network & Distributed System Security (2013)
44. Souppaya, M., Scarfone, K.: NIST Special Publication 800-124: Guidelines for

Managing the Security of Mobile Devices in the Enterprise (Jun 2013)
45. Svajcer, V., McDonald, S.: Classifying PUAs in the Mobile Environment. sophos.com

(Oct 2013)
46. Thompson, C., Johnson, M., Egelman, S., Wagner, D., King, J.: When it’s better

to ask forgiveness than get permission. In: the Ninth Symposium. p. 1. ACM Press,
New York, New York, USA (2013)

47. Truong, H.T.T., Lagerspetz, E., Nurmi, P., Oliner, A.J., Tarkoma, S., Asokan, N.,
Bhattacharya, S.: The Company You Keep. World Wide Web pp. 39–50 (Apr 2014)

48. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the Android
ecosystem. In: Anual Computer Security Applications Conference. pp. 31–40. ACM
Request Permissions, New York, New York, USA (Dec 2012)

49. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets. Network & Distributed
System Security (2012)

https://easylist.adblockplus.org/en/
https://easylist.adblockplus.org/en/

	AppPAL for Android

