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Two themes are emerging regarding themolecular genetic aetiology of intelligence. The first is that intelligence is
influenced bymany variants and those that are tagged by common single nucleotide polymorphisms account for
around 30% of the phenotypic variation. The second, in linewith other polygenic traits such as height and schizo-
phrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work
together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end
of the normal distribution describing individual differences in cognitive ability across a population. Here, we
examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability
(NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelli-
gence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England
and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically
related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly
enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in
which mutations can have a large and deleterious effect on intelligence are not associated with variation across
the range of intelligence differences.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Keywords:
Genetics
Intellectual disabilities
Gene set analysis
GWAS
1. Introduction

The general factor of cognitive ability, termed general intelligence
(or g), accounts for around 40% of the variation in any battery of cogni-
tive tests which spans multiple cognitive domains (Carroll, 1993). It is
also predictive of matters of importance such as educational and occu-
pational outcomes, as well as disease status including cardiovascular
disease and mortality (Deary, 2012). Population based studies using
common single nucleotide polymorphisms (SNPs) as measured in
en very low intelligence and the
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Genome Wide Association Studies (GWAS) of intelligence indicate
that common SNPs account for at least one third of phenotypic variation
in intelligence differences (Benyamin et al., 2013; Davies et al., 2011;
Kirkpatrick, McGue, Iacono, Miller, & Basu, 2014; Marioni et al.,
2014a). These studies have, however, identified only three SNPs, at in-
dependent loci, at the genome-wide levels of significance required,
and these jointly account for a very small amount of intelligence varia-
tion (Davies et al., 2015). Therefore, many genetic variants related to in-
telligence differences are yet to be found, suggesting that an alternative
discovery strategies would be of value.

In traits such as height (Wood et al., 2014) and schizophrenia
(Schizophrenia Working Group of the Psychiatric Genomics Consortium,
2014), where very large samples been assembled, the variants discov-
ered have been shown to cluster in amuch smaller number of biological
systems. This in turn suggests that if such pathways could be identified
for intelligence, they would present much richer candidates for gene
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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discovery. More generally, this approach, of incorporating information
from neurobiology or related phenotypes to prioritise specific regions
of the genome, is termed pathway analysis or more accurately as
gene-set analysis. Gene-set analysis can increase the power to detect
an association by summing the variance captured by many SNPs
(Hill et al., 2014b; Liu et al., 2010; Torkamani, Topol, & Schork, 2008)
and decreasing the number of tests made. Some progress has been
made in this direction, for instance by examining the role of genetic var-
iation in systems such as the N-methyl-D-aspartate receptor complex
(NMDA-RC), linked to learning, it was shown that this system is also in-
volved in intelligence differences (Hill et al., 2014a). This increase in sta-
tistical power makes gene-set analysis a powerful tool with which to
seek replicable findings regarding themolecular genetic underpinnings
of intelligence.

The rationale for the present study is that, like other complex traits
such as height (Wood et al., 2014) and body mass index (Locke et al.,
2015), mutations that result in large deleterious effects in a trait can
occur in the same genes underlying the normal variation of a trait. To
date many genes have been associated with intellectual disability
(de Ligt et al., 2012; Ellison, Rosenfeld, & Shaffer, 2013; Veltman &
Brunner, 2012) providing a number of candidate genes for analysis. In
the case of intelligence, we exploit the existing knowledge of non-
syndromic autosomal recessive intellectual disabilities (NS-ARID)
(Musante & Ropers, 2014) to examine if these same genes are enriched
for quantitative trait loci (QTL) associated with variation in the normal
range of intelligence differences.

Intellectual disability (ID) is characterised by a significant impair-
ment in cognitive ability. Within the DSM V (American Psychiatric
Association, 2000), for a diagnosis of ID to be made, symptoms should
be present before the age of 18 years, and IQ should be less than 70
(i.e., more than two standard-deviations below the population
mean in the typical scoring system for IQ that use a mean of 100 and
standard-deviation of 15). ID can be further divided into syndromic
andnon-syndromic forms. In syndromic ID, cognitive deficits are caused
by identified medical problems such as phenylketonuria or foetal
alcohol exposure. Non-syndromic ID is characterised by a lack of
known pathology.

Genes associatedwithNS-ARID therefore form targets for understand-
ing normal variation in intelligence, because they represent genes which,
when mutations arise, can produce variation in cognitive ability without
the presence of neurological abnormalities. Jointly, if normal variation in
IQ is associated with genes which themselves can cause large changes
in intellectual ability when mutated, then we should find excess associa-
tion in these genes compared to genes outside this set.

To date, forty genes have been implicated in NS-ARID (Musante &
Ropers, 2014). Eight of these (PRSS12, CRBN, CC2D1A, GRIK2, TUSC3,
TRAPPC9, ZC3H14, MED23) were found by examining consanguineous
families suffering with NS-ARID. The remaining 32 (ADK, ADRA2B,
ASCC3, ASCL1, C11orf46, TTI2, RABL6, CASP2, CCNA2, COQ5, EEF1B2,
ELP2, ENTPD1, FASN, HIST3H3, INPP4A, MAN1B1, NDST1, PECR, PRMT10,
PRRT2, RALGDS, RGS7, SCAPER, TRMT1, UBR7, ZCCHC8, ZNF526,
CRADD, KIAA1033, ST3GAL3, and ZNF526), were identified using
next-generation whole exome sequencing. This group of 40 genes was
used as the statistical unit of association to examine whether common
genetic variation in genes associated with NS-ARID were associated
with intelligence.

It is widely accepted that genes typically exert their effects as a part
of pathways or networks of several genes each contributing to the activ-
ity of a biological system (Schadt, 2009). We therefore supplemented
the core set of 40 NS ARID genes identified in (Musante & Ropers,
2014), by incorporating additional genes known to lie in pathways de-
fined by these 40 core genes. In so doing, we hoped to increase our
power to elucidate the mechanisms involved in intelligence (Lee et al.,
2012b). The large (2 standard deviation of 30 IQ points) effect sizes as-
sociated with mutations in the NS-ARID gene set (Musante & Ropers,
2014) indicate how crucial a role these gene play in brain development
and function. It is possible, therefore, that genes with such potentially
catastrophic effects are under strong purifying selection to exclude all
functional variation due to the crucial role these gene play. Indeed,
evolutionary theories indicate that genetic variation resulting in a
large reduction of a trait related to fitness, such as intelligence, will be
subject to negative selection resulting in such variants remaining at a
low frequency (Marioni et al., 2014b). This would mean that, although
(rare) mutations in the NS-ARID gene-set can produce large deleterious
effects on intelligence, common variation in the same genes might not
be involved in variation in the normal range. If this is the case, we
might expect to findno enrichment for normal variation in IQ in this set.

However, the mutations in the genes responsible for NS-ARID can
also be viewed as causing variation in the function of the biological sys-
tems of which they are a part. Whereas mutations in the genes of the
NS-ARID set lead to a large effect in the biological mechanisms they
are in, common genetic variation throughout the rest of the system
could result in more minor perturbations, which may underlie smaller
decrements in cognitive ability.

To quantify the biological relationships between the 40 genes in the
NS-ARID set, a statistical text-mining analysis tool was used in the
present study, Gene Relationships Across Implicated Loci (GRAIL)
(Raychaudhuri et al., 2009). This information was used to mine Gene
Ontology (GO) (Ashburner et al., 2000) to extract gene sets indicated
by the relationships between the genes of the NS-ARID set. By
prioritising gene-sets linked to the shared function of the 40 NS-ARID
gene-sets, statistical power can be kept high as only sets presumed
relevant to intelligence would be tested.

There were four goals to this series of analyses. Firstly, the common
SNPs in the genes of the NS-ARID set were analysed to determine if
there was an association with the normal range of intelligence in a
GWAS data set. Secondly, the effects of multiple SNPs were combined
into a gene-based statistic to test the hypothesis that individual mem-
bers of the NS-ARID gene set show an association with intelligence.
The third aim was to determine if, in a GWA study of intelligence, the
most significant SNPs are preferentially located in the NS-ARID gene
set. The fourth aim was to prioritise gene sets based on functional
relationships of the genes of the NS-ARID gene set and to test these
additional functionally-related sets for an enriched association with
intelligence.

2. Methods

2.1. Participants

Five independent cohorts forming the Cognitive Ageing Genetics
in England and Scotland (CAGES) consortiumwere used. The individual
cohorts usedwere the LothianBirth Cohorts of 1921 and 1936 (LBC1921
and LBC1936)(Deary, Gow, Pattie, & Starr, 2012), the Aberdeen Birth
Cohort of 1936 (ABC1936)(Whalley et al., 2011), and the Manchester
and Newcastle Longitudinal Studies of Cognitive Ageing Cohorts
(Rabbitt et al., 2004). This gave a combined sample size of 3511 healthy
older individuals who live independently within the community.

Most of the LBC1921 took part in the Scottish Mental Survey 1932
(Deary, Whalley, & Starr, 2009; Deary, Whiteman, Starr, Whalley, &
Fox, 2004; Scottish Council for Research in Education, 1933). Individuals
were identified and contacted through their general practitioner at
around age 79 (M= 79.1, SD = 0.6 years). A total of 550 (316 female)
of those individuals, living in Edinburgh and the surrounding Lothian
regions, consented to recruitment to the LBC1921 cohort. Following in-
formed consent, venous whole blood was collected for DNA extraction.
Ethical approval was granted from the Lothian Research Ethics
Committee.

Most of the LBC1936 (Deary et al., 2007) took part in the Scottish
Mental Survey 147. This cohort was identified and contacted through
their general practitioner at around age 70 (M = 69.5, SD = 0.8
years). A total of 1091 (543 female) of those individuals, living in
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Edinburgh and the surrounding Lothian regions, consented to recruit-
ment to the LBC1936 cohort. The LBC1936 cohort is composed of
healthy individuals who live independentlywithin the community. Fol-
lowing informed consent, venous whole blood was collected for DNA
extraction. Ethical approval was granted from Scotland's Multicentre
Research Ethics Committee and the Lothian research Ethics Committee.

Most of the ABC1936 (Whalley et al., 2011) took part in the Scottish
Mental Survey 1947. These individuals were identified and contacted
through their general practitioner at around age 64 (M = 64.6, SD =
0.9 years). A total of 498 (255 female) of those individuals, now living
in Aberdeen and the surrounding Grampian regions, consented to re-
cruitment to the ABC1936 cohort. Following informed consent, venous
whole blood was collected for DNA extraction. The Grampian Research
Ethics Committee granted ethical approval.

The Manchester and Newcastle Longitudinal study of Cognitive
Ageing Cohorts (Rabbitt et al., 2004) started in 1983/84; 6063 (4238
female) participants were examined over a 20-year time span. The
ages range from 44 to 93 years (median 65). DNAwas extracted follow-
ing informed consent from 805 (572 females) participants from
Manchester and 758 (536 female) of those from Newcastle. Ethical
approval was granted from the University of Manchester.

A replication sample was formed using a total of 2062 participants
(1093 female) of the Brisbane Adolescent Twin Study (BATS)(Wright
& Martin, 2004) as well as those who have had cognitive phenotypes
collected as a part of neuroimaging and cognitive studies (de
Zubicaray et al., 2008; Wright et al., 2001). The sample was drawn
from928 families that included 339monozygotic twin pairs and a single
set of monozygotic triplets. Participants ranged in age from 15.4–
29.6 years (mean=16.6, SD=1.5 years). DNAwas extracted following
informed consent. These studieswere approved by theHumanResearch
Ethics Committee at QIMR Berghofer and the institutional ethics boards
of the University of Queensland and the Wesley Hospital.

2.2. Cognitive phenotypes

Fluid cognitive ability (gf), crystallised cognitive and general cogni-
tive ability were all tested for association with the NS-ARID gene set.
Fluid ability represents an individual's ability to process information
on-the-spot; test items measuring gf typically make use of novel infor-
mation, and tend not to be solve-able by using general knowledge
(Horn, 1994). In each of the three Scottish cohorts gfwas derived sepa-
rately using the raw scores from each test. First, a principal components
analysis was used and a score on the first unrotated componentwas ex-
tracted using regression. Second, for each component the standardised
residuals were extracted from each model using age and sex as the
predictor variables and the first unrotated component as the outcome
variable.

In the LBC1921 cohort gf was derived from four tests. The Moray
House Test (Scottish Council for Research in Education, 1933), Raven's
Standard ProgressiveMatrices (Raven, Court, & Raven, 1977), phonemic
Verbal Fluency (Lezak, Howieson, & Loring, 2004), and the Wechsler
Logical Memory test (Wechsler, 1987) scores. In LBC1936 six tests
taken from The Wechsler Adult Intelligence Scale IIIUK (WAIS-IIIUK)
were used. These were the Digit Symbol Coding, Block Design,
Matrix Reasoning, Digit Span Backwards, Symbol Search, and the
Letter–Number Sequencing tests (Wechsler, 1998). To derive gf
in ABC1936, four tests were used: the Rey Auditory Verbal Learning
Test (Lezak et al., 2004), the Uses of Common objects (Guildford,
Christensen, Merrifield, & Wilson, 1978), Raven's Standard Progressive
Matrices (Raven et al., 1977), and the Digit Symbol (Wechsler, 1981)
from the WAIS revised (WAIS-R).

In order to derive gf in The Manchester and Newcastle Longitudinal
study of Cognitive Ageing Cohorts, age and sex were first controlled for
using residualisation. The standardised residuals from each test were
then used in a maximum likelihood factor analysis where a general fac-
tor was extracted using regression and missing data points were
imputed by sampling the posterior distribution of factor scores using
Mplus (Muthen, Asparouhov, & Rebollo, 2006). The tests used for gf in
the English cohorts were the two parts of the Alice Heim test 4 (Heim,
1970) and the four subtests of the Culture Fair Test (Cattell & Cattell,
1960).

Crystallised ability reflects an individual's level of acquired knowl-
edge. Verbal tests such as vocabulary or reading ability provide a good
measure of crystallised ability (Horn, 1994). In LBC1921, LBC1936
and ABC1936 the same test was used in each cohort, the National
Adult Reading Test (NART)(Nelson & Willison, 1991). The Manches-
ter and Newcastle Longitudinal study of Cognitive Ageing Cohorts
used sections A and B from the Mill Hill Vocabulary Test (Raven,
1965). For each of the five cohorts, the raw scores from each test
were used as the outcome variable in a linear regression, with age and
sex used as predictors. The standardised residuals from these models
formed the crystallised factor and were then carried forward to the
genetic analyses.

The general factor of cognitive ability was derived in the same fash-
ion as inHill et al. (2014a). The same testswere used as for the construc-
tion of the fluid phenotype along with the addition of the total number
of correct responses on the NART test. A principal components analysis
was then carried out within each cohort and each participant's score on
the first unrotated component was used to represent general cognitive
ability. Next, the effects of age and sex were controlled for using regres-
sion. For the Manchester and Newcastle cohorts the effects of age and
sex were regressed out of the standardised residuals for the gf and the
crystallised ability factor. The mean of these two cognitive phenotypes
was used to represent the general factor.

The BATS cohort used a performance IQphenotype. Thiswas derived
using the Spatial and Objects Assembly tests scored from the Multidi-
mensional Aptitude Battery (Jackson, 1984). The effects of age and sex
were controlled for by regression.

2.3. Genotyping and quality control

The procedures implemented here have been described previously
(Hill et al., 2014a). The 3782 participants in the CAGES consortium
have been genotyped for 599,011 common SNPs using the Illumina610
QuadV1 chip (Illumina, San Diego, CA, USA). Following quality control,
549,692 SNPs remained from 3511 individuals. Individuals were ex-
cluded from the analysis following evidence of recent non-Caucasian
descent, sex discrepancies, relatedness (at the level of second degree
relatives), or a call rate of b0.95. SNPs were included in the analyses if
they had a call rate of N0.98, a Hardy–Weinberg equilibrium test of
P N 0.001 and aminor allele frequency of N0.01. Population stratification
was assessed using multidimensional scaling analysis (MDS) with out-
liers being removed. The first four MDS components were retained
and included as covariates in subsequent GWA analysis. Imputation
was performed within each cohort using MACH (v1.0.16) and the
HapMap phase II CEU (NCBI build 36 release 22). SNPs were retained
for analysis with an imputation quality score of greater than 0.3 and a
minor allele frequency of N0.005.

The genotyping and quality control procedures used on the BATS
sample have been described previously (Medland et al., 2009). A total
of 4391 individuals (twins and their non-twin siblings and parents)
had DNA extracted from blood which was then genotyped using the
Illumina Human 610-Quad chip (Illumina) and resulting in genotyping
for 2062 twins and singletons (1,093 females) following quality control
procedures. Individuals were excluded from the study if there was evi-
dence of non-Caucasian descent or an unresolved gender discrepancy.
SNPs which failed the call rate criteria of N0.95, minor allele frequency
N0.01 and a Hardy–Weinberg equilibrium test of p N 0.000001 were
excluded from the study (Medland et al., 2009). In order to control for
the effects of population stratification, three multidimensional scaling
components were included along with age and sex as covariates. Anal-
yses were run on imputed dosage data (Release 6). The imputed data
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was generated from a set of SNPs common to 10 Illumina subsamples
(19,275 individuals; 271,069 common SNPs). Imputation used HapMap
release 22, build 36 as the reference panel. SNPswere dropped if the im-
putation quality score was b0.3 and MAF b0.01.

2.4. NS-ARID gene set

The 40 genes that were examined for an enriched association with
cognitive abilities have each been previously linked with NS-ARID
(Musante & Ropers, 2014) indicating that mutations in these genes
have a large and deleterious effect on cognitive abilities with a loss of
at least 30 IQ points. Whereas a sharp distinction between syndromic
and non-syndromic ID is not always possible, the reduction in cognitive
ability associated with the mutations in these genes is not merely the
result of these mutations playing a causal role in other neurological
disorders. Eight of these genes were identified using microsatellite
based homozygosity mapping of large consanguineous families. These
were followed up with mutation screening to identify the most likely
gene responsible (Musante & Ropers, 2014). The remaining 32 were
identified using Next-Generation Sequencing (NGS) methods including
Whole Exome Sequencing (WES) and the enrichment and sequencing
of exons fromhomozygous linkage intervals in consanguineous families
(Musante & Ropers, 2014). Due to the overlap in rationale between this
study and that of Franić et al. (2015) their set of 43 genes was analysed
at the single marker, gene-based, and gene-set level. These results are
found in the supplementary results sections and in Supplementary
table 1.

2.5. Statistical analysis

Four levels of analyses were performed to interrogate the NS-ARID
gene-set: Single marker analysis, gene level analysis, gene-set analysis,
and systems level analysis.

2.6. Single marker analysis

Firstly, using data from the GWAS on fluid and crystallised ability,
single marker analysis was conducted examining the 6,956 SNPs that
were found within NS-ARID genes and within ±50 kb of the known
gene boundaries. Statistical significance was set to α = 7.188039e-06
(i.e., 0.05/6956).

2.7. Gene level analysis

Secondly, a gene-based statistic was derived by combining the effect
of each SNPwithin a gene and the 50 kb boundary. Combining the effect
ofmultiple SNPs has the potential to capture a greater proportion of var-
iancewhichwill lead to an increase in power (Hill et al., 2014b; Liu et al.,
2010). Gene-based statisticswere derived usingVEGAS (Liu et al., 2010)
in which a test statistic is calculated from the sum of test statistics with-
in a gene region with linkage disequilibrium (LD) being taken into ac-
count using the HapMap phase II CEU (NCBI build 36 release 22)
reference panel for each gene and the 50 kb boundary. The statistical
significance of this statistic is calculated using simulations. With 40
genes in the NS-ARID set the alpha level was 0.00125 (i.e., 0.05/40).

2.8. Gene-set analysis

Thirdly, a gene-set analysis was performed. In gene-set analysis, ge-
netic data is aggregated from multiple genes that are united by sharing
certain biological, functional, or statistical characteristics. This aggrega-
tion provides the advantage of reducing the multiple testing burden, as
the whole gene set forms the statistical unit of association making it
possible to detect small but consistent deviations from the chance
level of association. Gene-set analysis has also been shown to be able
to increase statistical power because, as is found in gene level analysis
by contrast with single marker analysis, the effect of multiple SNPs is
summed (Hill et al., 2014b). Gene-set analysis can be subdivided into
self-contained testing and competitive testing. The difference between
these two depends on the null hypothesis being tested. Self-contained
tests examine if the a priori gene-set shows an association with the
trait of interest, whereas competitive tests are used to show that the a
priori gene-set shows a greater level of association compared to other
gene sets. As there are more low p-values in a GWAS thanwould be ex-
pected under the null hypothesis, self-contained tests will inflate the
type 1 error rate; for this reason competitive testing is recommended.

In order examine the NS-ARID gene set, INRICH (Lee, O'Dushlaine,
Thomas, & Purcell, 2012a) was used. A gene-set analysis using INRICH
proceeds through a number of steps. Firstly, regions of the genome
showing evidence of association are identified using the clump function
in PLINK (Purcell et al., 2007). These regions were derived by selecting
SNPs, termed index SNPs, where the p-value is below 0.0005. Regions
around these index SNPs are included by adding SNPs which are nomi-
nally significant, within 250 kb and correlated (in LDof r2 N 0.5 using the
HapMap2 CEU reference panel) with the index SNP. This creates regions
of the genome (genomic intervals) that show evidence of association
that is independent of associations found in the other regions. Genomic
intervals were excluded from subsequent analysis if they did not over-
lap within 20 kb (5′ or 3′) of any known gene according to the UCSC
human genome browser hg 18 assembly. Secondly, a test statistic de-
scribing the level of association between the a priori gene-set and the
phenotype is derived. This is defined by counting the number of times
the independent genomic intervals overlapped with the a priori gene-
set. The total number of times the independent intervals overlap with
the gene-set is the test statistic. Thirdly, the statistical significance of
this test statistic is determined using a competitive test. This is carried
out by creating genomic intervals that contain the same number of
genes, SNP density and LD structure as the independent genomic inter-
vals derived using evidence of association with the phenotype. 10,000
permutations were used to derive an empirical p-value for the gene
set defined as the proportion of permuted statistics that are equal to
or exceed the observed gene set statistic.
2.9. Systems level analysis

The fourth analysis carried out aimed to quantify the biological
relationship between the genes of the NS-ARID set and to use this
knowledge to test the systems and pathways that reflect these process-
es for an association with intelligence. Here, Gene Relationships Across
implicated Loci (GRAIL) (Raychaudhuri et al., 2009) was used to exam-
ine the 40 genes of the NS-ARID gene set and identify common cellular
process or pathways. This was carried out using a text mining algorithm
to derive a set of statistically significant keywords describing the rela-
tionship between the 40 NS-ARID genes. Using the a priori gene-set
GRAIL can be used to identify a subset of genes that are more related
than chance as well as to assign statistically significant keywords sug-
gesting a pathway or system that unites the members of the gene-set.
Importantly, this metric is derived without the use of the phenotype,
meaning that potentially biased ideas about which pathways or biolog-
ical functions influence the phenotype cannot dominate the analysis.
Additionally, undocumented or distant relationships between the
members of the gene-set can be indicated.

These keywords were derived using a database of 259,638 abstracts
taken from PubMed before December 2006. This date was selected as it
is prior to the mainstream application of GWAS, as abstracts detailing
the regions identified by GWAS would be expected to confound the
analysis by describing the NS-ARID gene set as being associated
with NS-ARID. The GRAIL parameters applied were as follows: release
22/HG 18; HapMap population: CEU; Functional Data source PubMed
Text (December 2006); Gene size Correction on; Gene lists; All human
genes within the database.
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Each of these abstracts was converted into a vector of word counts
and, for each gene, a vector consisting of averaged word counts is de-
rived. The relationship between any pair of genes is defined as the cor-
relation between the two vectors of averaged word counts. This means
that if two genes are described using the samewords theywill receive a
high similarity score; however, they do not need to bementioned in the
same abstract in order to be classed as similar. After the relationship be-
tween the members of the gene-set has been examined, keywords are
derived. These keywords are defined as those that have the greatest
weight across all of the text vectors for the genes of the gene-set. Key-
words are restricted to those that appear in N500 abstracts and contain
N3 letters and no numbers.

Following the generation of the keywords, Gene Ontology (GO)
(Ashburner et al., 2000) was mined. Here, the keywords derived by
GRAIL to suggest pathways or systems common to the NS-ARID gene-
set were used as search terms in GO. All gene-sets with at least five
human genes were extracted and examined using INRICH to discover
whether these showed significant overlap with the intervals generated
from theGWASdata. Asmultiple gene-sets are being tested in this section
of the study, the p-value generated for each gene-set will need to be
corrected for the number of testsmade. As the gene-sets are not indepen-
dent, corrections such as the Bonferroni or false discovery rate will yield
Fig. 1. These qq plots show the full complement of 6,956 SNPs influid ability (top left), crystallis
distribution of−log10 p-values should they follow the null hypothesis of no association wher
deviate from the diagonal line indicate SNPs that deviate from the null hypothesis of no ass
which would be expected under the null hypothesis of no association.
an overly conservative estimate of significance (Holmans et al., 2009),
and so a bootstrap approachwas used. Firstly, one of the 10,000permuted
interval sets was selected at random to serve as the observed interval set.
Secondly, the statistical significance for the interval set serving as the ob-
served data was derived as before by generating intervals across the ge-
nome and comparing the overlap with the gene-sets. Finally, the
corrected p-value is the proportion of bootstrapped samples where the
minimum gene p-value over all the gene-sets is at least as significant as
the p-value for the gene-set being corrected for (Lee et al., 2012a). By
using GRAIL to examine the functional relationship between the genes
of the NS-ARID gene-set followed by GO to construct gene sets based on
these shared functions, this series of analyses tests the hypothesis that
the genes responsible for NS-ARID are functionally related to systems
where common SNP variation can explain variation in intelligence.

3. Results

3.1. Single marker analysis

None of the 6,956 SNPs tested in either the fluid ability, crystallised
ability, or general cognitive ability attained statistical significance
where α = 7.188039e-06 (Fig. 1). Supplementary Tables 2, 3, and 4,
ed ability (right), and general cognitive ability (bottom left). The x-axis shows the expected
eas the y-axis shows the observed values. Each point represents a single SNP. Points that
ociation. These plots indicate that, for both phenotypes, there is no deviation from that
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show the most significant 50 SNPs for fluid, crystallised, and general
cognitive ability.

3.2. Gene-based analysis

VEGAS (Liu et al., 2010) was used to examine the contribution each
gene in the NS-ARID gene-set made to both fluid, crystallised, and gen-
eral cognitive ability. No single gene-based statistic was significant at
the adjusted alpha level of 0.00125 (see Table 1). Three nominally
significant genes were found for gf (CCNA2, C8orf41, ELP2), one for
crystallised ability (ST3GAL3), and four for general cognitive ability
(ST3GAL3, CCNA2, C8orf41, SCAPER); these results are consistent with
what would be expected under the null hypothesis.

3.3. Gene-set analysis

In order to conduct a gene-set analysis of the NS-ARID set using
INRICH (Lee et al., 2012a), a series of LD independent genomic intervals
were created. Using the clump function for the fluid phenotype, 407
genomic intervals were created, of which 248 overlapped within
20 kb of a known gene. Overlapping intervals were thenmerged leaving
176 LD independent intervals to be analysed for enrichment. For the
crystallised ability, 403 intervals were produced with 221 overlapping
known genes and the 20 kb boundary. Once overlapping intervals
had been merged for the crystallised ability phenotype, 166 non-
overlapping intervals were created and tested for an enriched
Table 1
Gene based analysis results for the 40 NS-ARID genes in the CAGES consortium. p-values repor

Chr Gene ID nSNPs Start Stop

1 HIST3H3 48 226679168 226679649
1 RGS7 804 239005439 239587101
1 ST3GAL3 233 43945804 44169418
2 ADRA2B 29 96142349 96145615
2 EEF1B2 67 206732562 206735898
2 INPP4A 117 98427844 98570598
2 PECR 130 216611355 216654777
3 CRBN 132 3166695 3196390
4 CCNA2 74 122957048 122964538
4 LOC90826 55 148778982 148824730
4 PRSS12 134 119421864 119493370
5 NDST1 99 149880622 149917966
6 ASCC3 404 101063328 101435945
6 GRIK2 868 101953625 102624651
6 MED23 104 131936798 131991056
7 CASP2 69 142695523 142714907
8 C8orf41 109 33475777 33490245
8 NIBP 738 140811769 141537860
8 TUSC3 490 15442100 15666366
9 C9orf86 57 138822201 138855460
9 MAN1B1 41 139101199 139123460
9 RALGDS 104 134962927 135014409
10 ADK 376 75580970 76139066
10 ENTPD1 220 97461525 97627013
11 C11orf46 110 30301224 30315741
12 ASCL1 11 101875581 101878424
12 COQ5 66 119425464 119451347
12 CRADD 239 92595281 92768662
12 KIAA1033 159 104025621 104087036
12 ZCCHC8 41 121523387 121551471
14 UBR7 91 92743153 92765314
14 ZC3H14 71 88099066 88149606
15 SCAPER 298 74427591 74963247
16 PRRT2 17 29730909 29734703
17 FASN 52 77629502 77649395
18 ELP2 144 31963884 32008605
19 CC2D1A 35 13878051 13902692
19 GPSN2 68 14501381 14537792
19 TRMT1 32 13076714 13088332
19 ZNF526 16 47416331 47424193

Three genes were nominally associated with fluid ability, one was nominally associated with
include the ±50 kb boundary. Bold indicates nominally significant (p b 0.05) genes.
association with the NS-ARID gene set. For general cognitive ability,
the clump procedure left 398 genomic intervals, of which 222 over-
lappedwith known genes.When overlapping interval had beenmerged
there were 172 independent intervals taken forward for analysis.
10,000 permutations were used to assess statistical significance.

For gf, one member of the NS-ARID gene set, TTI2, overlapped with
one of the LD independent genomic intervals on chromosome 8 spread-
ing from 33398369 to 33503864. This overlap was not significant, p =
0.520. For crystallised ability and general cognitive ability none of the
most significant regions in the GWAS overlapped with the NS-ARID
gene set.

3.4. Systems level analysis

In order to assemble a list of gene sets thatweremost likely to be in-
volved in variation in intelligence GRAIL was used to derive 18 key-
words describing the relationship between the 40 NS-ARID genes (see
Table 2). These keywords were then used as search terms to mine
Gene Ontology, producing 180 gene sets which were then tested for
an enriched association with gf and crystallised ability. Table 3 shows
the most significant gene sets for fluid ability. The overlap between
the most significant LD regions in the GWAS and GO:0006814, sodium
ion transporters, was statistically significant after controlling for multi-
ple tests. Table 4 shows the results for crystallised ability and Table 5
shows themost significant gene sets for general cognitive ability.Whilst
the overlap with the 180 gene sets produced using GRAIL and Gene
ted are uncorrected.

Fluid p-value Crystallised p-value General cognitive ability

0.203 0.734 0.305
0.983 0.997 0.998
0.378 0.025 0.084
0.091 0.599 0.538
0.747 0.444 0.829
0.138 0.89 0.338
0.221 0.379 0.146
0.883 0.299 0.508
0.016 0.054 0.016
0.482 0.116 0.221
0.06 0.404 0.253
0.661 0.185 0.753
0.128 0.575 0.456
0.435 0.775 0.802
0.982 0.598 0.94
0.885 0.502 0.96
0.014 0.313 0.041
0.732 0.851 0.685
0.105 0.441 0.129
0.979 0.822 0.982
0.947 0.809 0.925
0.893 0.995 0.992
0.983 0.312 0.996
0.642 0.455 0.444
0.680 0.663 0.375
0.950 0.05 0.508
0.553 0.397 0.445
0.485 0.239 0.272
0.567 0.265 0.427
0.549 0.204 0.326
0.751 0.886 0.703
0.904 0.292 0.585
0.298 0.051 0.037
0.393 0.471 0.705
0.514 0.276 0.510
0.044 0.123 0.248
0.657 0.722 0.734
0.074 0.223 0.104
0.633 0.811 0.657
0.509 0.595 0.627

crystallised ability, and four with general cognitive ability. Start and end positions do not



Table 2
This shows the statistically significant keywords describing the shared biological functions
of the NS-ARID genes indicating the systems they are found in. This set was ascertained
through an automatic literature search implemented in GRAIL.

Keywords Gene symbols

Synthase (2 genes) ST3GAL3, ELP2
Reductase (3
genes)

FASN, ENTPD1, ADK

Mitochondrial (7
genes)

CASP2, ECR, CRADD, RABL6, TECR, ADK, FASN

Apoptosis (7
genes)

RABL6, ELP2, FASN, ENTPD1, HIST3H3, MED23, ADK

Methyltransferase
(1 gene)

HIST3H3

Elegans (11 genes) CASP2, TRMT1, TUSC3, SCAPER, RABL6, ASCC3, TRAPPC9, ADK,
PRSS12, CRADD, EEF1B2

Complex (12
genes)

MED23, EEF1B2, CRADD, HIST3H3, CASP2, SCAPER, TRAPPC9,
TECR, ASCC3, MAN1B1, RALGDS, TTI2

Death (4 genes) TRAPPC9, FASN, ENTPD1, NDST1
Genome (10
genes)

TRAPPC9, ELP2, TECR, RABL6, TRMT1, COQ5, EEF1B2, PRSS12,
TUSC3, MED23

Histone (2 genes) CC2D1A, MED23
Enzyme (12 genes) ADK, TUSC3, ST3GAL3, PECR, PRSS12, MAN1B1, FASN, ENTPD1,

CASP2, TECR, SCAPER, HIST3H3
Trna (3 genes) ELP2, TUSC3, TECR
Adenosine (1
gene)

NDST1

Elongation (5
genes)

ELP2, PECR, MED23, RALGDS, TUSC3

Fatty (3 genes) PECR, ADK, CASP2
Saccharomyces (9
genes)

ELP2, ASCC3, MAN1B1, COQ5, EEF1B2, TECR, ADK, NDST1,
MED23

Cerevisiae (9
genes)

TRMT1, ASCC3, MAN1B1, COQ5, EEF1B2, TECR, ADK, NDST1,
MED23

Yeast (13 genes) COQ5, EEF1B2, TRMT1, ASCC3, RABL6, TECR, MAN1B1, MED23,
RALGDS, SCAPER, HIST3H3, TRAPPC9, NDST1

Abbreviation: NS-ARID, non-syndromic autosomal recessive intellectual disability. Trna,
Transfer Ribonucleic acid.
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Ontology did not survive multiple correction, GO:0006354 is nominally
significant in both gf and crystallised ability and this is partly due to the
same genes, POLR2B on chromosome 5 and POLR2E on chromosome 19
being tagged by the LD independent intervals for both the fluid and the
crystallised phenotypes.

3.5. Replication

In order to try and replicate the over-representation of the genes
from the Sodium ion transport gene-set with fluid ability, the perfor-
mance IQ phenotype from the BATS cohort was used. The same data
processing pipeline was used to assemble independent intervals. Ob-
served intervals from the BATS cohort overlapped with one gene from
the Sodium ion transport gene-set, SLC6A5. This overlap was not statis-
tically significant p = 0.922. None of the other nominally significant
Table 3
The five most significant Gene Ontology gene sets for the functional gene group analysis and t

GO term Name Number of
genes

Total N
hit

GO:0006814 Sodium ion transport 165 11

GO:0055029 Nuclear DNA-directed RNA polymerase complex 97 4
GO:0030880 RNA polymerase complex 98 4
GO:0006354 DNA-templated transcription, elongation 85 3
GO:0016591 DNA-directed RNA polymerase II, holoenzyme 86 3

Number of genes total pertains to the full number of genes in the gene set. Number of genes N h
set. Abbreviations: GO, Gene Ontology.
gene-sets contained genes which overlapped with the intervals of the
BATS cohort and so no p-value could be derived.

4. Discussion

GWAS on intelligence have so far found three independent loci
harbouring potentially causal variants (Davies et al., 2015). In the
current study we sought to increase power to detect such variants by
limiting the search to a smaller region of the genome. GWAS for quanti-
tative traits, such as height, have shown that genetic variants contribut-
ing toward variance in the normal range are concentrated in the same
genomic regions as rare variants of large effect (Wood et al., 2014).
Using a set of forty genes where mutations are associated with large
effects on intelligence, we examined if these same genes were also
enriched for common variants of small effect, as would be predicted if
the genetic architecture for intelligence followed the trend for other
quantitative traits, such as height. No evidence for enrichment was
found indicating that different regions of the genome are involved in
the normal arrange of intelligence compared to the extreme ends of
the distribution.

Four analysis strategies were used to examine whether genes in-
volved in large deficits of cognitive ability also harbour common vari-
ants responsible for some of the variation in the normal range of
intelligence differences. The first test examined each SNP using single
marker analysis and found no evidence for a role in intelligence for
any single SNP examined. The second strategy adopted was to sum
the effect of multiple SNPs into a gene-based statistic using VEGAS
(Liu et al., 2010) in an effort to capture a greater proportion of signal
and so increase statistical power. Here, none of the 40 genes tested
withstood correction for multiple comparisons. The third test examined
thewhole NS-ARID gene-set as the statistical unit of association. INRICH
was used for this test and found that the most significant hits in the
GWAS did not overlap with the genes found in the NS-ARID set more
than would be expected by chance. This does not provide evidence
that common variants in the genes involved inmajor deleterious devia-
tions in cognitive ability also account for intelligence differences.

The lack of association between the NS-ARID SNPs, genes and gene-
set raises the possibility that intellectual disability is genetically distinct
from the normal variation of intelligence differences. Evidence to
support this comes from a study conducted examining the siblings of
children affected by severe mental retardation, classified as those
whose IQ was b50, and those with mild mental retardation, IQ 50-69
(Nichols, 1984). Itwas found that the siblings of those affected by severe
mental retardation had an average IQwhen compared to the population
(mean=103.4, SD=12.1) andnone of the siblingswere sufferingwith
any form of mental retardation. This contrasts with the siblings of chil-
dren with mild mental retardation whose mean level fell below that of
the population (mean = 84.8, SD = 18.1). In addition, 20.7% of these
siblings also suffered with mental retardation.
heir association with fluid cognitive ability.

p-value Genes in LD independent intervals

Enrichment Corrected

7.9e−5 0.014 SLC10A7, SLC8A1, SLC5A1, SLC4A5, SLC4A10, ACCN1,
SLC9A10, SLC9A9, SLC17A8, NEDD4L, SLC34A2

0.015 0.685 SUPT3H, POLR2E, POLR2B, POLR3F
0.015 0.695 SUPT3H, POLR2E, POLR2B, POLR3F
0.023 0.810 POLR2E, POLR2B, POLR3F
0.059 0.958 POLR2E, POLR2B, POLR3F

it indicates howmany of the independent intervals overlappedwith the genes of the gene



Table 4
The five most significant Gene Ontology gene sets for the functional gene group analysis and their association with crystallised cognitive ability.

GO term Name Number of
genes

p-value Genes in LD independent intervals

Total N hit Enrichment Corrected

GO:0032781 Positive regulation of ATPase activity 19 3 0.002 0.174 TPM1, RYR2, UHRF1
GO:0006353 DNA-templated transcription, termination 82 4 0.003 0.218 DHX38, CCNH, POLR3B, POLR2E
GO:0006354 DNA-templated transcription, elongation 85 4 0.004 0.299 CCNH, POLR3B, POLR2E, POLR2B
GO:0043462 Regulation of ATPase activity 29 3 0.004 0.302 TPM1, RYR2, UHRF1
GO:0006368 Transcription elongation from RNA polymerase II promoter 65 3 0.012 0.569 CCNH, POLR2E, POLR2B

Number of genes total pertains to the full number of genes in the gene set. Number of genes N hit indicates howmany of the independent intervals overlappedwith the genes of the gene
set. Abbreviations: GO, Gene Ontology.
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The fourth analysis was conducted using GRAIL (Raychaudhuri
et al., 2009) to quantify the relationship between the genes of the
NS-ARID set with the goal of using this knowledge to examine the
systems and pathways that reflect these processes to find a gene-
set associated with intelligence. Whereas the genes of the NS-ARID
gene-set (Musante & Ropers, 2014) may not be directly involved in
the normal range of intelligence differences, they may be genes of
particular importance and should variation occur here it may have
deleterious consequences for any system that they are a part of.
The goal of the GRAIL analysis was to identify the systems and pro-
cesses they are a part of, as these may be more tolerant of functional
variation and so may be involved in intelligence differences. The re-
sults of GRAIL identified 180 systems and processes which were then
used to construct gene sets from Gene Ontology (Ashburner et al.,
2000) following which they were examined for overrepresentation.
One gene set, sodium ion transport, GO:0006814 remained signifi-
cant for fluid ability after correction for the 180 gene-sets examined.
This gene set is involved in the directed movement of sodium ions
across the boundary of a cell by means of a transporter or a pore
(Ashburner et al., 2000). Such actions are found in the nervous sys-
tem in the form of the sodium–potassium pumps of the neuron.
These pumps are responsible in establishing the resting potential of
neurons where they serve to keep the concentration of sodiumwith-
in the neuron low by moving against the gradient of electrostatic
pressure. By the same means they also re-establish this gradient fol-
lowing depolarisation. This indicates a role for genetic variation of
the neuron being involved in fluid cognitive abilities. However, this
association failed to replicate in the younger BATS cohort, indicating
that the initial significant result might be a type 1 error. It is also pos-
sible that the effect size in the discovery sample was overestimated
(The winner's curse) (Ioannidis, 2008) meaning that the replication
sample lacked the statistical power needed for replication.

The difference between the age of the discovery and replication
cohorts may also have contributed toward the lack of replication. The
genetic correlation between intelligence in old age and in childhood is
estimated at 0.71 (SE = 0.101, p = 2.256e-12)(Hill, et al., in press), in-
dicating that there is substantial pleiotropy between intelligence in
childhood and old age. However, different genetic factors underlie cog-
nitive ability in old age as indicated by the finding that the rs10119
Table 5
The five most significant Gene Ontology gene sets for the functional gene group analysis and t

GO term Name Numb
genes

Total

GO:0005665 Positive regulation of ATPase activity 15
GO:0043462 DNA-templated transcription, termination 28
GO:0035098 DNA-templated transcription, elongation 12
GO:0031062 Regulation of ATPase activity 17
GO:0031060 Transcription elongation from RNA polymerase II promoter 24

Number of genes total pertains to the full number of genes in the gene set. Number of genes N h
set. Abbreviations: GO, Gene Ontology.
variant in the APOE/TOMM40 region has a greater deleterious effect on
cognitive function as age increases (Davies et al., 2015).

Another finding was that the DNA-templated transcription, elonga-
tion gene-set (GO:0006354) was nominally significant in both the fluid
and the crystallised phenotypes which correlate phenotypically at 0.58
in this sample. Whilst gene set analysis does not require the same genes
to show an effect across two phenotypes for significance of the set to be
established, in this instance two genes, POLR2B on chromosome 5 and
POLR2E on chromosome 19, were found to tag SNPswith lowp-values in-
dicated by their presence in the LD independent intervals. The DNA-
templated transcription, elongation gene set is described by Gene Ontol-
ogy as being involved in the extension of the RNAmolecule following the
initiation of transcription and promoter clearance at DNAdependent RNA
polymerase promoters through the inclusion of ribonucleotides catalysed
by an RNA polymerase. Whilst this may indicate that themechanisms in-
volved in transcription, particularly elongation, are involved in cognitive
abilities, it should be noted that, in the BATS sample, none of the genes
from the DNA-templated transcription, elongation gene-set overlapped
with any of the LD independent intervals.

The strengths of this study include the construction of a candidate
gene set based on the rationale that, like other complex traits including
height (Wood et al., 2014) and body mass index (Locke et al., 2015),
common variants underlying normal variation in intelligence cluster
in genes and pathways associated with rare variants of large effect. By
including single marker analysis, gene-based analysis, gene set analysis
and systems level analysis, a thorough interrogation of the NS-ARID set
was performed. In addition, where statistical significance was found
replication was sought.

The limitations of this study include the modest sample sizes used,
as well as the use of Gene Ontology. Whilst mining Gene Ontology for
gene sets using GRAIL represents a method to focus our investigation
on potentially relevant gene sets, it may also omit causal pathways as
gene-sets not implicated will be absent from the analysis. In addition,
phenotypic heterogeneity may be a limitation, as different cognitive
tests were used to derive a general factor of cognitive ability in each
sample. However, it should be noted that the correlation between gen-
eral factors derived from different sets of tests in the same sample is
high (Davies et al., 2015; Johnson, Bouchard, Krueger, McGue, &
Gottesman, 2004; Johnson, te Nijenhuis, & Bouchard, 2008).
heir association with general cognitive ability.

er of p-value Genes in LD independent intervals

N hit Enrichment Corrected

2 0.005 0.481 POLR2E, POLR2B
3 0.005 0.481 TPM1, PLN, UHRF1
2 0.005 0.537 EED, MTF2
2 0.012 0.795 EED, MTF2
2 0.028 0.942 EED, MTF2

it indicates howmany of the independent intervals overlappedwith the genes of the gene
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In conclusion, this study foundno evidence that the genetic architec-
ture of NS-ARID involves the same genes as those responsible for the
normal range of intelligence differences. This indicates that NS-ARID is
not the lower tail of the intelligence distribution, but is genetically dis-
tinct. In addition, there was tentative evidence that the sodium ion
transporters may underlie genetic variation in fluid ability in older
adults.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.intell.2015.11.005.
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