
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On training the recurrent neural network encoder-decoder for
large vocabulary end-to-end speech recognition
Citation for published version:
Lu, L, Zhang, X & Renals, S 2016, On training the recurrent neural network encoder-decoder for large
vocabulary end-to-end speech recognition. in 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, pp. 5060-5064, 41st IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2016, Shanghai, China, 20/03/16. DOI:
10.1109/ICASSP.2016.7472641

Digital Object Identifier (DOI):
10.1109/ICASSP.2016.7472641

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICASSP.2016.7472641
https://www.research.ed.ac.uk/portal/en/publications/on-training-the-recurrent-neural-network-encoderdecoder-for-large-vocabulary-endtoend-speech-recognition(c2307a55-be29-4c92-89d7-05519e874012).html


ON TRAINING THE RECURRENT NEURAL NETWORK ENCODER-DECODER FOR
LARGE VOCABULARY END-TO-END SPEECH RECOGNITION

Liang Lu1, Xingxing Zhang2, and Steve Renals1

1Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK
2Institute for Language, Cognition and Computation, University of Edinburgh, Edinburgh, UK

{liang.lu, x.zhang, s.renals}@ed.ac.uk

ABSTRACT

Recently, there has been an increasing interest in end-to-end speech
recognition using neural networks, with no reliance on hidden
Markov models (HMMs) for sequence modelling as in the standard
hybrid framework. The recurrent neural network (RNN) encoder-
decoder is such a model, performing sequence to sequence mapping
without any predefined alignment. This model first transforms the
input sequence into a fixed length vector representation, from which
the decoder recovers the output sequence. In this paper, we extend
our previous work on this model for large vocabulary end-to-end
speech recognition. We first present a more effective stochastic gra-
dient decent (SGD) learning rate schedule that can significantly im-
prove the recognition accuracy. We then extend the decoder with
long memory by introducing another recurrent layer that performs
implicit language modelling. Finally, we demonstrate that using
multiple recurrent layers in the encoder can reduce the word error
rate. Our experiments were carried out on the Switchboard cor-
pus using a training set of around 300 hours of transcribed audio
data, and we have achieved significantly higher recognition accu-
racy, thereby reduced the gap compared to the hybrid baseline.
Index Terms: end-to-end speech recognition, deep neural networks,
recurrent neural networks, encoder-decoder.

1. INTRODUCTION

The neural network/hidden Markov model (NN/HMM) hybrid ap-
proaches have redefined state-of-the-art speech recognition [1, 2, 3].
In this framework, a neural network is used to estimate the poste-
rior probabilities of HMM states, while the main sequential mod-
elling is carried out by the HMM, incorporating context-dependent
phone models, pronunciation models, and language models (LMs).
The past few years have seen significant advancements in speech
recognition based on this hybrid architecture including using differ-
ent neural network architectures [4, 5, 6], sequence training [7, 8, 9]
and speaker adaptation [10, 11, 12]. However, there has been rel-
atively little focus on the fundamentals of the hybrid architecture.
The main advantage of the hybrid approach is that it factorizes the
speech recognition problem into several relatively independent sub-
tasks based on a few assumptions and approximations; each mod-
ule deals with only one of the sub-tasks, thus simplifying the objec-
tive. For instance, using neural networks to classify each acoustic
frame into one of the HMM states based on the conditional indepen-
dence assumption is much simpler compared to classifying a set of

This work is funded by the EPSRC Programme Grant EP/I031022/1,
Natural Speech Technology (NST). The NST research data collection may
be accessed at http://datashare.is.ed.ac.uk/handle/10283/786.

variable length sequences directly. However, the cost of this divide-
and-conquer strategy is that it is difficult to optimise all the modules
jointly.

Recently, there has been an increasing interest in end-to-end
speech recognition using neural networks without using HMM se-
quence modelling. One approach is based on the connectionist tem-
poral classifier (CTC) that uses a recurrent neural network (RNN) for
feature extraction [13], and competitive results have been achieved
on a few tasks [14, 15, 16, 17]. CTC does not rely on a prior align-
ment between input and output sequences, but integrates over all
possible alignments during the model training. The alignment is
computed by the forward-backward algorithm as part of the model
training. The key difference compared to HMMs is that the out-
put labels can be letters or phonemes instead of the HMM states,
and it introduces the blank label to discard those frames that are
not informative or are noisy when computing the optimal output se-
quence. However, similar to HMMs, CTC still predicts labels for
every frame, and relies on the conditional independence assumption.

Another approach is based on the RNN encoder-decoder which
was firstly proposed for machine translation [18, 19], and has
been applied to image captioning [20], as well as speech recogni-
tion [21, 22, 23, 24]. This model transforms the input sequence of
variable length into a fixed dimensional vector representation us-
ing the RNN encoder, and the RNN decoder recovers the output
sequence from this vector representation. Unlike CTC, this model
does not require the alignments between the input and output to-
kens, and it does not rely on the conditional independence assump-
tion. This model has achieved competitive phoneme recognition ac-
curacy on the TIMIT database [21], and word recognition accuracy
on WSJ [23]. Recently, Chan et al [24] obtained good results on the
large scale Google Voice Search task. Previously, we investigated
this approach for large vocabulary speech recognition on the Switch-
board corpus [22], where we focused on architectural and speedup
issues for this model. In this paper, we present training strategies that
can significantly reduce the word error rate (WER). In particular, we
show that improved scheduling of the SGD learning rates can signif-
icantly improve the recognition accuracy, and extending the memory
of the RNN decoder can further reduce the WER. Finally, using mul-
tiple recurrent layers in the encoder can result in a higher recognition
accuracy.

2. RNN ENCODER-DECODER WITH ATTENTION

2.1. The model

For sequence to sequence learning, the RNN encoder-decoder di-
rectly computes the conditional probability of the output sequence
given the input sequence without assuming a fixed alignment. The



key idea is to introduce the context vector obtained from the RNN
encoder as a representation of the input sequence, so that the condi-
tional probability can be approximated as

P (y1, . . . , yO|x1, . . . ,xT ) ≈
OY

o=1

P (yo|y1, . . . , yo−1, co), (1)

co = Encoder(x1, . . . ,xT ). (2)

Note that the context vector co is updated for each output token
yo. For speech recognition, {x1, . . . ,xT } is usually a sequence of
acoustic feature vectors, while {y1, . . . , yO} is usually a sequence
of class indices corresponding to the output units such as phonemes,
letters, or words, etc. In practice, the output symbol yo is usually
represented as a vector yo which may be obtained from an embed-
ding matrix. In the decoder, the posterior probability of yo is com-
puted using the softmax function after a recurrent hidden layer which
takes both the embedding vector of the previous token yo−1 and the
current context vector co as inputs, i.e.

P (yo|y1, . . . , yo−1, co) = Softmax(so, co) (3)
so = Recurrent(yo−1, so−1, co), (4)

The recurrent layer in the decoder performs implicit language mod-
elling, which can explain that the encoder-decoder can work without
any language model. The function of the recurrent hidden state so

is to remember the current decoding state, and fuse the information
from yo−1 and co. As shown in 2.2, so is also used to compute the
attention weight in order to obtain the context vector. In the sofmax
function Eq. (3), it is possible to remove co from the inputs, how-
ever, we obtain lower recognition accuracy (results are not given in
this paper), indicating that so cannot capture all the information from
co by one recurrent hidden layer.

2.2. Attention-based scheme

For the encoder-decoder, it is possible to use a global fixed con-
text vector c in Eq. (1) as in the machine translation task [25, 18].
However, for long input sequences as in speech recognition, this ap-
proach usually does not work, especially when the dimension of c
is relatively small. The more effective approach is to dynamically
compute the context vector co given the current decoding state so by
the attention-based scheme [19]. More precisely, co is obtained as

co =
X

t

αotht (5)

where αot is the attention weight with the constraint as αot ∈ [0, 1]
and

P
t αot = 1. ht denote the hidden state of the encoder RNN

which transforms the input feature as

ht = Recurrent(xt,ht−1) (6)

In this paper, we always use the bidirectional RNN [26] in the en-
coder, and we then concatenate the forward and backward hidden
state as ht =

“−→
ht,
←−
ht

”
. Since the conventional RNN only has lim-

ited power to capture the sequential information due to the vanish-
ing gradient problem, in this work, we use the gated recurrent units
(GRU) [18] in all the recurrent layers.

In Eq. (5), the weight αot is computed by a learned alignment
model for each co, which is implemented as a neural network such
that

αot =
exp(eot)P
t′ exp(eot′)

(7)

eot = v> tanh(Wso−1 + Uht), (8)

where eot is the relevance score of each hidden representation ht

with respect to the previous hidden state of RNN decoder so−1. W
and U are weight matrices, and v is a vector so that the output of eot

is a scalar.
Since all the functions used in the encoder-decoder are differ-

entiable, the model can be trained using SGD by maximising the
average conditional log-likelihood over the training set as

M̂ = arg max
M

1

N

NX
n=1

logP (yn
1 , . . . , y

n
O|xn

1 , . . . ,x
n
T ,M),

whereM denotes the set of model parameters, and N is the num-
ber of training utterances. Unlike the hybrid model using the feed-
forward neural networks, this model is more complex in using dif-
ferent types of neural components. It leads to the problem that the
dynamic range of the gradients for some weights varies significantly,
which makes manually tuning the SGD learning rates challenging.
Previously, we used the Adadelta algorithm [27] to aumatically tune
the learning rate. However, it is still sub-optimal. The reason is that
when we train the recurrent nets, we clipped the gradients as in [28]
to avoid gradient explosion, but this makes the Adadelta algorithm
unstable. This issue will be further investigated in section 3.

2.3. Long memory decoder

As discussed before, the hidden state so in Eq. (3) has multiple
functions, which may not be well realised by just using one recurrent
layer. In this work, we investigate to improve the capacity of so by
feeding in more informative features, which is again learned by a
recurrent net. More precisely, we modify the decoder as

P (yo|y1, . . . , yo−1, co) = Softmax(so, co) (9)
so = Recurrent(po, so−1, co) (10)
po = Recurrent(yo−1,po−1) (11)

where we introduce another recurrent layer as in Eq. (11) which only
does the implicit language modelling and remembers the decoding
history. We then replace yo−1 by the recurrent hidden state po as in
Eq. (10) so that hidden state so can receive more information of the
decoding history from the input features. This decoder is expected
to have longer memory, and may work better without the language
model. It is also possible to feed po into the sofxmax layer as

P (yo|y1, . . . , yo−1, co) = Softmax(so, co,po), (12)

however, it may over-weight the role of po, and may not be suitable
for the task of conversational speech recognition investigated in this
paper, where the language pattern is more irregular.

2.4. Comparison to CTC

CTC [13] does not directly compute the conditional probability of
the output sequence given the input sequence. Instead, it compute
the posterior probability of the label lt for every frame xt similar to
the hybrid model. In the case of using bi-directional RNN to trans-
form the acoustic feature xt, this probability is computed using only
the softmax function without recurrent layer as

P (lt|xt) = softmax(
−→
ht,
←−
ht). (13)

Since the classification is performed on the per-frame level, CTC
needs to compute the alignment between the acoustic frames and
output labels as part of the model training, and as observed in [14],



x 1000 mini-batches
0 20 40 60 80 100 120

av
g 

lo
g-

pr
ob

 o
n 

de
v 

se
t

-90

-80

-70

-60

-50

-40

-30

-20

-10

SGD_joint (WER = 42.3%)
SGD_adadelta (WER = 50.4%)
SGD_manual (r=0.4,k=0.95,WER = 83.6%)
SGD_manual (r=0.4,k=0.98,WER = 67.9%)
SGD_manual (r=0.6,k=0.98,WER = 49.9%)
SGD_manual (r=0.8,k=0.98,WER = 50.7%)

Switch to SGD_manual

Fig. 1. Comparison of scheduling the SGD learning rate for training
the RNN encoder-decoder. The results were obtained by using 24
dimensional FBANK static features. r denotes the initial learning
rate and k is the learning rate decay factor. Since we have a large
training set, we decay the learning rate for every 1000 mini-batches
by a small factor as this is more stable and efficient compared to
decaying the learning rate by a large ratio for every epoch.

it may be sensitive to the initial alignment. In order to guarantee
tha the lengths of the input and output sequences are the same, CTC
replicates the output labels so that a consecutive frames can corre-
spond to the same label. It then applies a rule to collapse the repli-
cated labels during the decoding, while the RNN decoder does not
have this problem. Finally, CTC still requires the independence as-
sumption of the acoustic frames, which is not required in the RNN
encoder-decoder approach.

3. RESULTS AND DISCUSSION

3.1. System setup

We report results using the Switchboard corpus of [29] released by
LDC with the catalog number as LDC97S62. It has a 300 hour
training set, and we show separate results for the Callhome English
(CHE) and Switchboard (SWB) evaluation sets. The vocabulary size
is around 30,000, and the number of training utterances in Switch-
board is 192,701. In this work, we evaluated both the mel-frequency
cepstral coefficients (MFCCs) and log-mel filterbanks (FBANKs) as
acoustic features, which were obtained using the Kaldi toolkits [30].
In the frond-end, we performed the mean and variance normalisation
on the per-speaker basis before we concatenating the features by a
context window ±5 frames. Following our previous practice [22],
we uniformly subsample the spliced features for each utterance by a
ratio of 1/3, which can significantly speedup the training. Interest-
ingly, subsampling was also applied in the CTC-based system and it
improved the recognition accuracy in [14]. In our experiments, the
number of hidden units in the RNN encoder is 1000 unless specified
otherwise, and the mini-batch size is 30 utterances.

3.2. SGD learning rate

Manually searching the SGD initial learning rate and the learning
rate decay factor — referred to SGD manual — may be expensive

Table 1. Comparison of SGD adadelta and SGD joint to
schedule the SGD learning rates.

SGD learning rate Feature CHE SWB Avg
SGD adadelta [22] MFCC 59.9 38.8 49.4
SGD joint MFCC 55.0 36.2 45.6
SGD adadelta FBANK 56.8 34.7 45.8
SGD joint FBANK 48.2 26.8 37.6
SGD joint FBANK(static) 52.2 31.8 42.1

to train the model, In addition, the hyper-parameters may change
when using different type of features and model configrations. Previ-
ously, we applied the Adadelta algorithm [27] to automatically tune
the learning rate [22]. However, we found that it does not lead to the
optimal solution similar to the observation in [21]. As discussed in
Section 2.2, the Adadelta algorithm relies on the gradient to set the
learning rate, however, in oder to tackle the gradient explosion prob-
lem in training the RNNs, we clipped the gradient which makes the
Adadelta algorithm unstable. To address this problem, the authors
in [21] proposed an approach to fix the gradient before applying
Adadelta. In this work, we use the SGD joint approach, where
we first run the Adadelta algorithm until convergence that usually
takes around 10 - 15 epochs for our task, and we then switch to
SGD manual with small initial learning rate (e.g. 0.01 - 0.02 used
in this paper) to run another few epochs to fine tune the model. As
shown in Table 1, we can achieve significant WER reduction by the
fine tuning. Note that in these experiments, we used words as the
output units in the softmax function in Eq. (3).

We also compared two different type of acoustic features, i.e. 39
dimensional MFCCs and 45 dimensional FBANKs both with delta
and delta-delta coefficients. Note that in both cases, we spliced the
features with the context window of ±5. Compared to the hybrid
systems [31], we obtained much larger gains by using FBANK fea-
tures, possibly due to that transforming the features by discrete co-
sine transform (DCT) in MFCCs makes it more difficult for RNNs to
learn the sequential patterns. Since RNN can perform long temporal
modelling and we have used long context window for feature splic-
ing, we also did experiment with static FBANK features to evaluate
if the dynamic features is still useful. Contrary to our exception, we
obtained significantly higher WER without the dynamic features. In
Figure 1, we increased the number of filterbanks from 15 to 24. We
also show the convergence graphs of the three approaches to sched-
ule the SGD learning rates. Again, SGD joint achieved much bet-
ter result compared SGD adadelta, and it converges much faster
then SGD manual. However, we did not obtain better results by
using larger number of filterbanks. In the following experiments, we
used 45 dimensional FBANKs with dynamic coefficients as features,
and trained the model using SGD joint optimisation algorithm.

3.3. Results of long memory decoder

We then evaluate if the long memory decoder approach discussed
in section 2.3 can enhance the implicant language model and result
in WER reduction. In our experiments, we set a smaller number
of hidden units in recurrent layer in Eq. (11) which is 300, which is
much smaller than the dimension of co. The intuition is to emphasise
the role of the context vector in the decoder hidden state in Eq. (10).
As shown in Table 2, the long memory decoder described as Eq. (9)
- (11) can improve the recognition accuracy by 1% absolute in case
of using words as output units. However, the decoder as Eq. (12) did
not work better, and we suspect that it is because the decoder may
be biased toward the implicit language model. We then rescored the



Table 2. Results of language model rescoring and using long mem-
ory decoder. LongMem1 is referred to Eq. (9), and LongMem2 is
referred to Eq. (12).

System Output CHE SWB Avg
EncDec no LM word 48.2 26.8 37.6
EncDec + 3-gram rescoring word 47.4 26.2 36.8
EncDec + LongMem1 word 46.5 26.3 36.4

+ 3-gram rescoring word 46.0 25.8 36.0
EncDec + LongMem2 word 47.1 27.3 37.3

+ 3-gram rescoring word 46.4 26.5 36.5
EncDec no LM char 52.7 32.8 42.8
EncDec + 5-gram rescoring char 51.9 32.6 42.3
EncDec + LongMem1 char 51.6 30.9 41.3

+ 5-gram rescoring char 50.4 30.5 40.5

n-best list from the model using a 3-gram language model which was
trained on Switchboard and Fisher transcriptions using the KenLM
tookit [32]. However, we only obtained small improvement. Here,
the size of n-best list to be 32, and similar to the observation in [24],
increasing the size of n-best list did not further reduce the WER.

There are several problems of using word level output units, e.g.
it can not generalise to words that are in the training set, and it may
not work well for the low frequency words in the training set. In
addition, for large vocabulary tasks, it has large number of model
parameters in the softmax layer which may slow down the model
training. Another approach is to use phonemes or characters as the
output units. In this work, we prefer to use the characters so that we
do not need to reply on the pronunciation dictionary, and it is possi-
ble to generalise to out-of-vocabulary words. The number of char-
acters in our system is 35 including symbols as hyphen, slash,
space, etc, and tokens corresponding to the noise as [noise],
[vocalized-noise], [laughter]. In our experiments, we
observed that the character level encoder-decoder model is more ex-
pensive to train since the lengths of the output sequences are much
longer, which introduces more iterations to estimate the attention
weights in Eq. (7). We also observe the character baseline system
is worse than the corresponding word level system as predicting a
longer output sequence is more challenging without any constraint.
However, the long memory decoder can still bring more than 1%
absolute again in this case.

3.4. Depth of the encoder

In the previous experiments, we have only used 1 layer of RNN in
the encoder after 1 hidden layer of feedforward neural network for
feature extraction. In [22], we show that having more hidden layers
in the feedforward neural network does not reduce the WER signifi-
cantly. In this work, we investigate if having multiple layers of RNN
in the encoder can improve the accuracy. As this will significantly
increase the model size, limited by the size of the GPU memory, we
only did the experiments with characters1. The results are given in
Table 3. We observed that using multiple RNN layers in the encoder
can significantly improve the recognition accuracy. However, the
gain is smaller for the model with 1000 hidden units, which may be
due to overfitting. As we mentioned before, we used the GRU [18]
in all the recurrent layers which has 4 additional weight matrices
compared to the conventional RNN that controls the forget and input

1Training this model requires large memory since all the hidden states
(
−→
ht,
←−
ht) for each frame in a minibatch are kept in the memory in order to

dynamically compute the context vector co.

Table 3. Results of using multiple RNN layers in the encoder.

System Output Dim CHE SWB Avg
EncDec – 1 layer char 1000 52.7 32.8 42.8
EncDec – 2 layer char 1000 50.3 29.1 39.7
EncDec – 1 layer char 500 54.1 34.5 44.4
EncDec – 2 layer char 500 48.4 28.8 38.7
EncDec – 3 layer char 500 48.2 27.3 37.8

Table 4. Comparison to CTC and DNN-HMM hybrid systems.
In [17], the LMs were trained using a corpus of 31 billion words,
while in [16, 8], the LMs were trained using the Switchboard and
Fisher transcriptions.

System Output CHE SWB Avg
DNN-HMM sMBR [8] - 24.1 12.6 18.4
CTC no LM [17] char 56.1 38.0 47.1
CTC+5-gram char 47.0 30.8 39.0
CTC+7-gram char 43.8 27.8 35.9
CTC+NNLM (1 hidden layer) char 41.1 23.4 32.3
CTC+NNLM (3 hidden layers) char 39.9 21.8 30.9
CTC+RNNLM (1 hidden layer) char 41.7 24.2 33.0
CTC+RNNLM (3 hidden layers) char 40.2 21.4 30.8
Deep Speech [16] char 31.8 20.0 25.9
EncDec no LM word 46.5 26.3 36.4
EncDec no LM char 48.2 27.3 37.8

gates respectively. Having one more layer of GRU-RNN can signif-
icantly increase the number of model parameters, especially in the
case of bi-directional RNN as in this work. After reducing the num-
ber of hidden units to be 500, we can achieved significantly lower
WER with multiple RNNs in the encoder. In the future, we shall
evaluate the long memory decoder with multiple of RNN layers in
the encoder.

3.5. Comparison to CTC

In Table 4, we compare our results to those obtained using CTC
reported in [16, 17] using the same dataset. In the CTC sys-
tems [16, 17], a strong LM was applied during the decoding, and
according to [17], the LM can significantly improve the recognition
accuracy of CTC. Without any LM, the encoder-decoder approach
can achieve much higher recognition accuracy compared to CTC,
however, we can only obtain marginal improvement by LM rescor-
ing. In the future, we shall incorporate the LM into the decoder. We
also refer to the publicly reported hybrid baseline in [8]. We see that
there is still a big gap between the end-to-end and hybrid systems
on this dataset, but we also note that in [14], CTC outperformed the
hybrid baseline on the Google voice search task.

4. CONCLUSIONS

In this paper, we present the improvements obtained for the RNN
encoder-decoder based end-to-end speech recognition on the large
vocabulary task. We show a simple yet efficient and effective ap-
proach to schedule the SGD learning rates which achieves large gain
in our experiments. In principle, the encoder-decoder approach does
not need to rely on a language model given enough training data, and
we proposed an approach to extend the decoder with long memory
to enhance its power for implicit language modelling. Finally, us-
ing multiple recurrent layers in the encoder can significantly reduce
the WER. In the future, we shall investigate using multiple recurrent
layers and incorporating a language model in the decoder.



5. REFERENCES

[1] H. A. Bourlard and N. Morgan, Connectionist speech recogni-
tion: a hybrid approach. Springer, 1994, vol. 247.

[2] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco,
“Connectionist probability estimators in HMM speech recog-
nition,” IEEE Transactions on Speech and Audio Processing,
vol. 2, no. 1, pp. 161–174, 1994.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
and B. Kingsbury, “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups,” Signal Processing Magazine, IEEE, vol. 29, no. 6, pp.
82–97, 2012.

[4] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recogni-
tion with deep recurrent neural networks,” in Proc. ICASSP.
IEEE, 2013, pp. 6645–6649.

[5] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” in Proc. INTERSPEECH, 2014.

[6] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recog-
nition,” IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), vol. 22, no. 10, pp. 1533–1545,
2014.

[7] B. Kingsbury, T. N. Sainath, and H. Soltau, “Scalable mini-
mum Bayes risk training of deep neural network acoustic mod-
els using distributed Hessian-free optimization.” in INTER-
SPEECH, 2012.

[8] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in Proc. IN-
TERSPEECH, 2013.

[9] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation
for sequence training of context-dependent deep networks for
conversational speech transcription,” in Proc. ICASSP. IEEE,
2013, pp. 6664–6668.

[10] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of hy-
brid nn/hmm model for speech recognition based on discrim-
inative learning of speaker code,” in Proc. ICASSP. IEEE,
2013, pp. 7942–7946.

[11] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker
adaptation of neural network acoustic models using i-vectors,”
in Proc. ASRU. IEEE, 2013, pp. 55–59.

[12] P. Swietojanski and S. Renals, “Learning hidden unit contri-
butions for unsupervised speaker adaptation of neural network
acoustic models,” in Proc. SLT. IEEE, 2014, pp. 171–176.

[13] A. Graves and N. Jaitly, “Towards end-to-end speech recogni-
tion with recurrent neural networks,” in Proc. ICML, 2014, pp.
1764–1772.

[14] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recogni-
tion,” in Proc. INTERSPEECH, 2015.

[15] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end
speech recognition using deep rnn models and wfst-based de-
coding,” arXiv preprint arXiv:1507.08240, 2015.

[16] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger et al., “Deep Speech: Scaling up end-to-
end speech recognition,” in arXiv preprint arXiv:1412.5567,
2014.

[17] A. L. Maas, Z. Xie, D. Jurafsky, and A. Y. Ng, “Lexicon-free
conversational speech recognition with neural networks,” in
Proc. NAACL, 2015.

[18] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder-decoder for statistical machine transla-
tion,” Pro. EMNLP, 2014.

[19] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” in Proc. ICLR,
2015.

[20] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” in Proc. ICML, 2015.

[21] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, “End-
to-end Continuous Speech Recognition using Attention-based
Recurrent NN: First Results,” arXiv preprint arXiv:1412.1602,
2014.

[22] L. Lu, X. Zhang, K. Cho, and S. Renals, “A study of the re-
current nerual network encoder-decoder for large vocabulary
speech recognition,” in Proc. INTERSPEECH, 2015.

[23] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech
recognition,” arXiv preprint arXiv:1508.04395, 2015.

[24] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell,” arXiv preprint arXiv:1508.01211, 2015.

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 3104–3112.

[26] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” Signal Processing, IEEE Transactions on, vol. 45,
no. 11, pp. 2673–2681, 1997.

[27] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
arXiv preprint arXiv:1212.5701, 2012.

[28] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Ad-
vances in optimizing recurrent networks,” in Proc. ICASSP.
IEEE, 2013, pp. 8624–8628.

[29] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCH-
BOARD: Telephone speech corpus for research and develop-
ment,” in Proc. ICASSP. IEEE, 1992, pp. 517–520.

[30] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlıcek, Y. Qian, P. Schwarz,
J. Silovský, G. Semmer, and K. Veselý, “The Kaldi speech
recognition toolkit,” in Proc. ASRU, 2011.

[31] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams et al., “Recent advances in deep
learning for speech research at microsoft,” in Proc. ICASSP.
IEEE, 2013, pp. 8604–8608.

[32] K. Heafield, “KenLM: Faster and smaller language model
queries,” in Proceedings of the Sixth Workshop on Statistical
Machine Translation, 2011, pp. 187–197.


