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ACTIVE LATTICES DETERMINE AW*-ALGEBRAS

CHRIS HEUNEN AND MANUEL L. REYES

Abstract. We prove that operator algebras that have enough projections are
completely determined by those projections, their symmetries, and the action
of the latter on the former. This includes all von Neumann algebras and
all AW*-algebras. We introduce active lattices, which are formed from these
three ingredients. More generally, we prove that the category of AW*-algebras
is equivalent to a full subcategory of active lattices. Crucial ingredients are
an equivalence between the category of piecewise AW*-algebras and that of
piecewise complete Boolean algebras, and a refinement of the piecewise algebra
structure of an AW*-algebra that enables recovering its total structure.

1. Introduction

Operator algebras play a major role in modern functional analysis and mathe-
matical physics, particularly algebras with an ample supply of projections. Such al-
gebras display a rich interplay between their algebraic structure, the order-theoretic
structure of their projections, the group-theoretic structure of their unitaries, and
their various topological structures. It is therefore natural to wonder to what ex-
tent one of these aspects determines the others. We will consider algebras for whom
operator topologies play a minor role, and focus on the other facets; specifically, we
work with AW*-algebras, which include all von Neumann algebras. Such algebras
are not completely determined by the group-theoretic structure of their unitaries:
for example, U(A) ∼= U(Aop), but A 6∼= Aop in general [9]. Adding the order-
theoretic structure of their projections does not suffice to reconstruct the algebra
either: again, Proj(A) ∼= Proj(Aop). Closely related to projections is the structure
of the normal part N(A) of A as a piecewise1 algebra (see [4]). Roughly, these are
algebras where one can only add or multiply commuting elements. But adding this
structure is still not enough to determine the algebra, since N(A) and N(Aop) are
isomorphic as piecewise algebras. It follows from our main result that taking into
account one final ingredient does suffice to completely determine the algebra struc-
ture, namely the action by conjugation of the unitaries on the projections. Thus
we answer the following preserver problem.

Corollary. Let A and B be AW*-algebras. If f : N(A) → N(B) is an isomor-
phism of piecewise algebras, that restricts to isomorphisms Proj(A) ∼= Proj(B) and
U(A) ∼= U(B), and satisfies f(upu∗) = f(u)f(p)f(u)∗, then A ∼= B.
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of the unfortunate conjunction ‘partial complete Boolean algebra’.
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2 CHRIS HEUNEN AND MANUEL L. REYES

There is considerable overkill in the previous corollary. For one thing, we could
have stated the assumption on piecewise algebras in terms that a priori contain less
information, such as, for example, the partial orders of commutative subalgebras of
A and B (see [13]), or various notions built on those. We will prove that any iso-
morphism Proj(A) → Proj(B) extends uniquely to an isomorphism N(A) → N(B)
of piecewise algebras, that could therefore have been left out from the assumptions
altogether. This puts the following two driving questions on an equal footing.

• What extra data make projections a complete invariant of AW*-algebras?
• What extra data on piecewise AW*-algebras enable extension to total ones?

Moreover, it suffices to consider the subgroup of the unitaries generated by so-
called symmetries (see [1, Chapter 6]). Finally, the projection lattice injects into
the symmetry group by p 7→ 1 − 2p, and so the projection lattice acts on itself in
a certain sense. We can package up the remaining data in an active lattice, which
therefore completely determines the AW*-algebra structure. The precise definition
can be found in Section 3, but let us emphasize here that it is expressed exclusively
in terms of the projection lattice and the symmetry group that it generates. (For
related ideas, see also [26], which only came to our attention when the current work
was already in press.)

In fact, we will be (quite) a bit more general, and work with arbitrary morphisms
instead of just isomorphisms: we define a functor from the category of AW*-algebras
to that of active lattices, and prove it to be full and faithful. This then implements
our main result, which makes precise the titular claim that an AW*-algebra is
completely determined by its active lattice.

Theorem. The category of AW*-algebras is equivalent to a full subcategory of the
category of active lattices.

This is summarized in the following commuting diagram of functors. Solid arrows
represent functors that are faithful but not full, whereas the dashed functor we
construct is both full and faithful.

AWstar
Proj

uu❦❦❦❦
❦❦❦

❦❦❦ Sym

))❘❘
❘❘❘

❘❘❘
❘

��
COrtho Activeoo // Group

In particular, this result incorporates all von Neumann algebras, as W*-algebras
and normal ∗-homomorphisms form a full subcategory of AW*-algebras.

Motivation. Our main motivation is to generalize the duality of commutative C*-
algebras and their Gelfand spectra to the noncommutative case. Many proposals for
noncommutative spectra have been studied. One of them concerns quantales [27],
that are based on projection lattices in the case of AW*-algebras. However, there
are rigorous obstructions to various categories being in duality with that of C*-
algebras, including that of quantales [28, 3]. These obstructions suggest that a
good notion of spectrum can instead be based on piecewise structures [15, 13]. Our
active lattices come very close to quantales, but circumvent the obstruction afflicting
them. Whereas a quantale is a monoid that is also a lattice, an active lattice can be
regarded as a monoid that is generated by a lattice. Stone duality between Stonean
spaces and complete Boolean algebras (see Section 2) allows one to consider Proj(A)
as a substitute for the Gelfand spectrum in case A is a commutative AW*-algebra.
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So our results can also be regarded as a successful extension of this “substitute
spectrum” to noncommutative AW*-algebras. This goal explains why go to the
nontrivial trouble of take morphisms seriously, and deal with arbitrary morphisms
with different domain and codomain rather than just focusing on isomorphisms.

The theorem above succeeds in extending a combination of Gelfand’s and Stone’s
representation theorems noncommutatively for the case of AW*-algebras. Because
of the relation to complete Boolean algebras sketched above, active lattices could
be regarded as “noncommutative Boolean algebras”, providing progress toward a
category of “noncommutative sets”. This is an important step closer to the “non-
commutative topological spaces” that C*-algebras represent than the “noncommu-
tative measure spaces” of von Neumann algebras. This explains why we take pains
to avoid measure-theoretic arguments and work with AW*-algebras instead of von
Neumann algebras.

Our results can also be regarded as a novel answer to the Mackey–Gleason prob-
lem, that has been studied in great detail for von Neumann algebras. This type of
problem asks what properties of a function between projection lattices ensure that
it extends to a linear function between operator algebras, or more generally, what
properties of a function between operator algebras that is only piecewise linear make
it linear [7]. As mentioned, we generalize many constructions from von Neumann
algebras to AW*-algebras, as the latter are the natural home for our arguments. In
particular, we will not rely on Gleason’s theorem to extend piecewise linearity to
linearity [8], but directly generalize results to due to Dye [11] instead. In addition,
our main results hold perfectly well for algebras with I2 summands, which are ex-
ceptions to many classic theorems, including the Mackey–Gleason problem. Thus
our main results answer this problem by approaching it a substantially different
and worthwhile way.

Structure of the paper. The article proceeds as follows. Section 2 recalls AW*-
algebras, complete Boolean algebras, and their piecewise versions. It then proves
that the two resulting categories of piecewise structures are equivalent. Section 3
introduces active lattices after discussing the ingredients of projection lattices and
symmetry groups. It also constructs the functor taking an AW*-algebra to its active
lattice. Section 4 is devoted to proving that this functor is full.

2. (Piecewise) AW*-algebras and complete Boolean algebras

After reviewing commutative AW*-algebras and their equivalence to complete
Boolean algebras, this section extends the equivalence to piecewise AW*-algebras
and piecewise complete Boolean algebras, positively answering [4, Remark 3].

AW*-algebras and complete Boolean algebras. Kaplansky introduced AW*-
algebras as an abstract generalization of von Neumann algebras [22, 2]. Their main
characteristic is that they are algebraically determined by their projections, i.e. self-
adjoint idempotents, to a great extent. We denote the set of projections of a ∗-ringA
by Proj(A). This set is partially ordered by the relation p ≤ q ⇐⇒ p = pq (= qp).

Definition 2.1. An AW*-algebra is a C*-algebra A that satisfies the following
left-right symmetric and equivalent conditions:

(a) the right annihilator of any subset is generated as right ideal by a projection;
(b) the right annihilator of any element a ∈ A is generated by a projection, and

Proj(A) forms a complete lattice;
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(c) the right annihilator of any element a ∈ A is generated by a projection, and
every orthogonal family in Proj(A) has a supremum;

(d) any maximal commutative subalgebra C is the closed linear span of Proj(C),
and every orthogonal family in Proj(A) has a supremum.

A morphism of AW*-algebras is a ∗-homomorphism that preserves suprema of pro-
jections. We write AWstar for the category of AW*-algebras and their morphisms.

For a subset S of an AW*-algebra A, write R(S) for the (unique) projection
of Definition 2.1(a): R(S) is the least projection annihilating every element of S,
and is also the (unique) projection such that xy = 0 for all x ∈ S if and only if
R(S)y = y. This is the right annihilating projection of S. With a slight abuse
of notation, we write R(a) in place of R({a}) for a single element a ∈ A. The
projection RP(a) = 1 − R(a) is the right supporting projection of a. It is the least
projection satisfying aRP(a) = a.

Given the equivalent conditions defining AW*-algebras, there are several possible
choices for morphisms of the category AWstar. Fortunately, the most obvious
conditions one might impose on a ∗-homomorphism are also equivalent, as the
following lemma shows. Recall that a set of projections is called directed when
every pair of its elements has an upper bound within the set.

Lemma 2.2. For a ∗-homomorphism f : A → B between AW*-algebras, the fol-
lowing conditions are equivalent:

(a) f preserves right annihilating projections of arbitrary subsets;
(b) f preserves suprema of arbitrary families of projections;
(c) f preserves suprema of orthogonal families of projections;
(d) f preserves suprema of directed families of projections.

If f satisfies these equivalent conditions, then the kernel of f is generated by a
central projection and f preserves RP.

Proof. For a morphism f satisfying (c), the last sentence of the lemma follows
from [2, Exercise 23.8]. That (b) implies (a) follows from the fact that such f
preserves RP as well as the following equation for any S ⊆ A,

R(S) =
∨

x∈S

R(x) =
∨

x∈S

(1− RP(x))

(see also [2, Proposition 4.2]). Conversely, assume (a), and let {pi} ⊆ Proj(A). We
will prove that

∨

{pi} = R({1− pi}),
from which (a) ⇒ (b) will follow. Writing p = R({1−pi}), every (1−pi) ⊥ p, which
gives pi ≤ p for all i. And if all pi ≤ q for any q ∈ Proj(A), then all (1 − pi) ⊥ q,
which means that pq = q and thus q ≤ p. Hence p =

∨

i pi as desired.
Clearly (b) ⇒ (d). To see (d) ⇒ (c), let P be an orthogonal family of projections.

Setting qS =
∨

S for every finite subset S ⊆ P gives a directed family of projections
with the same supremum as P . Because each S is orthogonal and finite, we have
f(qS) = f(

∑

S) =
∑

f(S) =
∨

f(S). And because f is assumed to preserve
directed suprema, f(

∨P) = f(
∨

S qS) =
∨

S f(qS) =
∨

S f(S) =
∨

f(P).
Finally, because any ∗-homomorphism f : A → B between AW*-algebras re-

stricts to a lattice homomorphism Proj(A) → Proj(B) (see [2, Proposition 5.7]),
Lemma 3.2 below provides a direct proof of (c) ⇒ (b). �
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Observe that the proof of the previous lemma establishes more than was promised:
it shows that direct sums provide finite products in the category AWstar. The
initial object is the AW*-algebra C, and the terminal object is the zero algebra.
Observe also that the above lemma holds true if f is only assumed to be a ∗-ring
homomorphism. This will be useful later in Section 4.

Let Wstar denote the category of W*-algebras (i.e. abstract von Neumann alge-
bras) and normal ∗-homomorphisms. ThenWstar is a full subcategory ofAWstar.
(The objects of Wstar are objects of AWstar by [2, Proposition 4.9], and the sub-
category can be shown to be full, for instance, by composing a ∗-homomorphism
A → B with all normal linear functionals on B and using [30, Corollary III.3.11].
See also [24, Lecture 11].) In particular, the lemma above provides equivalent
conditions for a ∗-homomorphism between von Neumann algebras to be normal.

If an AW*-algebra is commutative, its projections form a complete Boolean al-
gebra: a distributive lattice in which every subset has a least upper bound, and in
which every element has a complement. In fact, we now detail an equivalence be-
tween the categories of commutative AW*-algebras and complete Boolean algebras.

First recall Stone duality [18, Corollary II.4.4], which gives a dual equivalence
between Boolean algebras and Stone spaces, i.e. totally disconnected compact Haus-
dorff spaces. If the Boolean algebra is complete, the corresponding Stone space is
in fact a Stonean space, i.e. extremally disconnected, meaning that the closure of
every open set is (cl)open. We write CBool for the category of complete Boolean
algebras and homomorphisms of Boolean algebras that preserve arbitrary suprema.
On the topological side, we write Stonean for the category of Stonean spaces and
open continuous functions. With this choice of morphisms, Stone duality restricts
to a dual equivalence between CBool and Stonean. See [5, Section 6].

Similarly, recall that Gelfand duality gives a dual equivalence between commu-
tative C*-algebras and compact Hausdorff spaces. If the C*-algebra is an AW*-
algebra, then the compact Hausdorff space is in fact a Stonean space [2, Theo-
rem 7.1]. If we write cAWstar for the full subcategory of AWstar consisting of
commutative AW*-algebras, then Gelfand duality restricts to a dual equivalence
between cAWstar and Stonean. Hence we have the following equivalences.

(2.3) cAWstar ≃

Spec //
Stoneanop

≃

Clopen //

Cont
oo CBool

Stone
oo

Explicitly, Spec is the functor taking characters and furnishing them with the
Gelfand topology, and Clopen takes clopen subsets, so the composite Clopen ◦ Spec
is naturally isomorphic to the functor Proj. We write Func for the composite
Cont ◦ Stone. Explicitly, Stone = CBool(−, 2) and Cont = C(−,C). Thus Proj
and Func form an equivalence between commutative AW*-algebras and complete
Boolean algebras.

Piecewise structures. Piecewise algebras are sets of which only certain pieces
carry algebraic structure, but in a coherent way. Before we can extend the equiva-
lence above to a piecewise setting, we spell out the appropriate definitions. Defini-
tion 2.1(c) leads to a specialization of the definition of a piecewise C*-algebra, that
we recall first [4].

Definition 2.4. A piecewise C*-algebra consists of a set A with:

• a reflexive and symmetric binary (commeasurability) relation ⊙ ⊆ A×A;
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• elements 0, 1 ∈ A;
• a (total) involution ∗ : A→ A;
• a (total) function · : C×A→ A;
• a (total) function ‖−‖ : A→ R;
• (partial) binary operations +, · : ⊙ → A;

such that every set S ⊆ A of pairwise commeasurable elements is contained in a set
T ⊆ A of pairwise commeasurable elements that forms a commutative C*-algebra
under the above operations.

A piecewise AW*-algebra is a piecewise C*-algebra A with

• a (total) function RP: A→ Proj(A);
• a (partial) operation

∨

: {X ⊆ Proj(A) | X ×X ⊆ ⊙} → Proj(A);

such that every set S ⊆ A of pairwise commeasurable elements is contained in a set
T ⊆ A of pairwise commeasurable elements that forms a commutative AW*-algebra
under the above operations.

A morphism of piecewise AW*-algebras is a (total) function f : A→ B such that:

• f(a)⊙ f(b) for commeasurable a, b ∈ A;
• f(ab) = f(a)f(b) for commeasurable a, b ∈ A;
• f(a+ b) = f(a) + f(b) for commeasurable a, b ∈ A;
• f(za) = zf(a) for z ∈ C and a ∈ A;
• f(a)∗ = f(a∗) for a ∈ A;
• f(

∨

i pi) =
∨

i f(pi) for pairwise commeasurable projections {pi}.
By Lemma 2.2, such a morphism automatically satisfies f(RP(a)) = RP(f(a)).
Also, it follows from the last condition that f(1) = 1. Piecewise AW*-algebras and
their morphisms organize themselves into a category denoted by PAWstar.

The prime example of a piecewise AW*-algebra is the set N(A) of normal ele-
ments of an AW*-algebra A, where commeasurability is given by commutativity.
Hence one can regard piecewise AW*-algebras as AW*-algebras of which the alge-
braic structure between noncommuting elements is forgotten.

Lemma 2.5. The assignment sending an AW*-algebra A to its set of normal ele-
ments N(A) defines a functor N : AWstar → pAWstar.

Proof. Let A be an AW*-algebra. The natural piecewise algebra structure on N(A)
is a piecewise C∗-algebra by [4, Proposition 3]. It is a piecewise AW*-algebra under
the inherited RP and supremum operations, because every pairwise commuting
subset of N(A) is contained in a maximal commutative subalgebra of A, that is an
AW*-subalgebra by Definition 2.1(d), and must itself necessarily be contained in
N(A). Functoriality of N is easy to check. �

The next lemma observes that the structures
∨

and RP in Definition 2.4 are in
fact properties. (Nonetheless morphisms in pAWstar have to preserve

∨

.) Thus we
may say that a certain piecewise C*-algebra “is a piecewise AW*-algebra” without
ambiguity of the AW*-operations. We call a projection p of a piecewise C*-algebra
a least upper commeasurable bound of a commeasurable set S of projections when
p⊙ a for any a that makes S ∪ {a} commeasurable, and whenever a projection q is
commeasurable with S ≤ q, then q is commeasurable with p as well and p ≤ q.

Lemma 2.6. Let A be a piecewise C*-algebra. There is at most one choice of
operations

∨

and RP as in Definition 2.4 making A a piecewise AW*-algebra.
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Proof. First, we claim that in any piecewise AW*-algebra,
∨

is characterized as
giving the least upper commeasurable bound. Since these rely only the under-
lying piecewise C*-algebra structure,

∨

is then unique. The claim derives from
Definition 2.4 as follows. Since

∨

makes A into a piecewise AW*-algebra, there
exists a commutative AW*-algebra T ⊆ A whose suprema are given by

∨

, con-
taining S. Hence T contains

∨

S, making S ∪ {∨S} commeasurable, and
∨

S
majorizes S. If q is commeasurable with S and majorizes it, there exists an AW*-
algebra T containing S ∪ {q}. In particular, it is closed under suprema of projec-
tions, which are given by

∨

. Thus it contains
∨

S, which is therefore commea-
surable with q and

∨

S ≤ q. Finally, RP(a) =
∧{p ∈ Proj(A) | ap = a} equals

∨{q ∈ Proj(A) | ∀p ∈ Proj(A) : ap = a⇒ p ≤ q}. �

The next two results give convenient ways to recognize piecewise AW*-algebras
among piecewise C*-algebras. The first shows that a piecewise AW*-algebra is a
piecewise C*-algebra that is “covered” by sufficiently many AW*-algebras; recall
that an AW*-algebra A is an AW*-subalgebra of an AW*-algebra B when the
inclusion A →֒ B is a morphism in AWstar. The second is a characterization
analogous to Kaplansky’s original definition of AW*-algebras as C*-algebras with
extra properties, Definition 2.1(d).

Lemma 2.7. A piecewise C*-algebra A is a piecewise AW*-algebra when:

• any commeasurable subset S is contained in a commeasurable subset T (S)
that is an AW*-algebra, such that:

• if S ⊆ S′ are commeasurable subsets, T (S) is an AW*-subalgebra of T (S′).

Proof. Define functions RP and
∨

by calculating RP(a) as in T ({a}), and calcu-
lating

∨

X as in T (X). By [2, Proposition 3.8], then RP(a) is the same when
calculated in any T (S) with a ∈ S, because T ({a}) is an AW*-subalgebra of T (S).
Similarly,

∨

X is the same in any T (S) with X ⊆ S [2, Proposition 4.8]. Therefore
RP and

∨

make A into a piecewise AW*-algebra. �

Proposition 2.8. A piecewise C*-algebra A is a piecewise AW*-algebra when both:

• commeasurable sets of projection have least upper commeasurable bounds;
• maximal commeasurable subalgebras are closed linear spans of projections.

Proof. The first assumption defines a function
∨

. If S is a commeasurable subset,
Zorn’s lemma provides a maximal commeasurable set M ⊇ S. By definition of
piecewise C*-algebra,M is contained in a commeasurable C*-algebra. Hence max-
imality guarantees that M is a commutative C*-algebra under the operations of A.
But now the second assumption together with

∨

make M into an AW*-algebra [2,
Exercise 7.1]. Taking S = {a}, we can define RP(a) as the unique right supporting
projection in M . The functions

∨

and RP (uniquely) make A into a piecewise
AW*-algebra. �

There is a similar definition of piecewise complete Boolean algebras that special-
izes the definition of piecewise Boolean algebras [4].

Definition 2.9. A piecewise complete Boolean algebra consists of a set B with

• a reflexive and symmetric binary (commeasurability) relation ⊙ ⊆ B ×B;
• a (total) unary operation ¬ : B → B;
• a (partial) operation

∨

: {X ⊆ B | X ×X ⊆ ⊙} → B;
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such that every set S ⊆ B of pairwise commeasurable elements is contained in a
pairwise commeasurable set T ⊆ B that forms a complete Boolean algebra under
the above operations. (Notice that these data uniquely determine elements 0 =

∨ ∅
and 1 = ¬0, and (partial) operations x ∨ y =

∨{x, y} and x ∧ y = ¬(¬x ∨ ¬y).)
A morphism of piecewise complete Boolean algebras is a (total) function that

preserves commeasurability and all the algebraic structure, whenever defined. We
write pCBool for the resulting category.

A piecewise equivalence. The functor Proj: AWstar → CBool extends to a
functor pAWstar → pCBool [4, Lemma 3]. We aim to prove that the latter
functor is also (part of) an equivalence. By [4, Theorem 3], any piecewise com-
plete Boolean algebra B can be seen as (a colimit of) a functor C(B) → CBool,
where C(B) is the diagram of (commeasurable) complete Boolean subalgebras of B
and inclusions. Similarly, by the AW*-variation of [4, Theorem 7], any piecewise
AW*-algebra A can be seen as a functor C(A) → cAWstar, where C(A) is the
diagram of (commeasurable) commutative AW*-subalgebras of A and inclusions.
Hence postcomposition with Func should turn a piecewise complete Boolean alge-
bra into a piecewise AW*-algebra. Below we explicitly compute the ensuing colimit
to get a functor F : pCBool → pAWstar. Even though it is unclear how general
coequalizers are computed in either category, the fact that C(B) is a diagram of
monomorphisms makes the constructions manageable.

Lemma 2.10. The monomorphisms in AWstar, cAWstar, and CBool are pre-
cisely the injective morphisms.

Proof. Let f : A  B be a monomorphism in AWstar or cAWstar. We first
show that Proj(f) : Proj(A)  Proj(B) is injective. Suppose that f(p) = f(q)
for p, q ∈ Proj(A). Define g, h : C2 → A by g(1, 0) = p and h(1, 0) = q. Then
(f ◦ g)(x, y) = xf(p) + yf(p)⊥ = (f ◦ h)(x, y), so g = h and hence p = q. In
particular, f cannot map a nonzero projection of A to 0 in B. Thus ker(f) = 0 by
Lemma 2.2, and f is injective. Conversely, injective morphisms are trivially monic.

Monomorphisms f : P  Q in CBool factor as

P ∼= Proj(Func(P ))  Proj(Func(Q)) ∼= Q.

Now, isomorphisms in CBool are bijective, and by the above, the middle arrow
Proj(Func(f)) is injective, making f itself injective. �

We are ready to define the object part of a functor F : pCBool → pAWstar.

Definition 2.11. Let B be a piecewise complete Boolean algebra. Define F (B) to
be the following collection of data.

• The carrier set A is (
∐

C∈C(B) Func(C))/ ∼, where ∼ is the smallest equiv-

alence relation satisfying f ∼ g for f ∈ Func(C) and g ∈ Func(D) when
C ⊆ D and g = Func(C →֒ D)(f).

• Two equivalence classes ρ and σ in A are commeasurable if and only if there
exist C ∈ C(B) and f, g ∈ Func(C) such that f ∈ ρ and g ∈ σ.

• Notice that z · 1C ∼ z · 1D for C ⊆ D in C(B), and any z ∈ C. Also, {0, 1}
is the minimal element of C(B). Hence z · 1C ∼ z · 1D for any C,D ∈ C(B)
by transitivity.

In particular, [0Func({0,1})] = [0C ] defines an element 0 ∈ A indepen-
dently of C, and 1 ∈ A is defined by [1Func({0,1})] = [1C ] for any C ∈ C(B).
Likewise, z · [f ] = [z · f ] is well-defined for z ∈ C.
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• Similarly, [f ]∗ = [f∗] gives a well-defined operation ∗ : A→ A.
• If ρ and σ are two commeasurable elements of A, then by definition there are
C ∈ C(B) and f, g ∈ Func(C) with f ∈ ρ and g ∈ σ. Setting ρ+σ = [f +g]
and ρ · σ = [f · g] gives well-defined operations +, · : ⊙ → A.

• If C ⊆ D, then Func(C →֒ D) : Func(C) → Func(D) is an injective
∗-homomorphism by Lemma 2.10, and hence preserves norm [20, Theo-
rems 4.1.8, 4.1.9]. So ‖[f ]‖ = ‖f‖ gives a well-defined operation A→ R.

Proposition 2.12. The data F (B) defined above form a piecewise AW*-algebra.

Proof. For ρ in A, define Cρ =
⋂{C ∈ C(B) | ρ ∩ Func(C) 6= ∅}. Because C(B) is

closed under arbitrary intersections, Cρ ∈ C(B). If ρ and σ in A are commeasurable,
then by definition there are C ∈ C(B) and f, g ∈ Func(C), so Cρ ⊆ C ⊇ Cσ. But
that implies any element of Cρ is commeasurable in B with any element of Cσ.

Let S ⊆ A be pairwise commeasurable. Then Ŝ =
⋃

ρ∈S Cρ ⊆ B is pairwise

commeasurable by the last paragraph. Hence there exists a set T̂ ⊆ B that con-
tains Ŝ, is pairwise commeasurable, and forms a complete Boolean algebra under
the operations from B. Therefore T = {[f ] | f ∈ Func(T̂ )} ⊆ A contains S, is
commeasurable, and forms a commutative AW*-algebra under the operations from
A. Hence A is a piecewise C*-algebra. Moreover, if S ⊆ S′, then Ŝ ⊆ Ŝ′, and

T̂ ⊆ T̂ ′ are both complete Boolean subalgebras of B under the same operation
∨

,
namely that of B. Hence T is an AW*-subalgebra of T ′, so that A is in fact a
piecewise AW*-algebra by Lemma 2.7. �

Lemma 2.13. If B ∈ pCBool, then F (B) is a colimit of the diagram Func(C)
with C ranging over C(B). Therefore F is functorial pCBool → pAWstar.

Proof. Clearly there exists a cocone of morphisms Func(C) → A for each C ∈ C(B),
given by f 7→ [f ]. If kC : Func(C) → A′ is another cocone, the unique mediating
map m : A→ A′ is given by m([f ]) = kC(f) when f ∈ Func(C).

Let g : B1 → B2 be a morphism of pCBool. Because F (B1) is a colimit of
{Func(C) | C ∈ C(B1)}, to define a morphism F (g) : F (B1) → F (B2), it suffices
to specify morphisms Func(C) → F (B2) in pAWstar for each C ∈ C(B1). But
g preserves commeasurability, so its restriction to C is a morphism in CBool and
we can just take F (g)

∣

∣

Func(C)
= Func(g

∣

∣

C
). This assignment is automatically func-

torial. Moreover, it is well-defined, even though colimits are only unique up to
isomorphism, because Definition 2.11 fixed one specific colimit. �

Theorem 2.14. The functors F and Proj form an equivalence between the cate-
gories pAWstar and pCBool.

Proof. For a piecewise AW*-algebra A we have

F (Proj(A)) ∼= colimC∈C(Proj(A)) Func(C)

∼= colimC∈C(A) Func(Proj(C))
∼= colimC∈C(A) C ∼= A.

by Lemma 2.13, [4, Proposition 6], and [4, Theorem 7]. Each of the above isomor-
phisms is readily seen to be natural in A.

Next we establish an isomorphism Proj(F (B)) ∼= B. Let ρ ∈ Proj(F (B)) ⊆
F (B). If ρ = [f ] for f ∈ Func(C) and C ∈ C(B), then f ∈ Proj(Func(C)). So
ηC(f) ∈ C ⊆ B, where η is the unit of the equivalence formed by Proj and Func. In
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fact, by naturality of η, if C ⊆ D for another D ∈ C(B) with the inclusion denoted
by i : C →֒ D, the following diagram commutes.

Proj(Func(C))
ηC //

Proj(Func(i))
��

C� _
i
��

Proj(Func(D))
ηD

// D

So if g ∼ f because g = Func(C →֒ D)(f), then ηC(f) = ηD(g). That is,
ηC(f) is independent of the chosen representative f of ρ. Thus we have a map
Proj(F (B)) → B that is a morphism of piecewise complete Boolean algebras, be-
cause η is a morphism of complete Boolean algebras.

Conversely, for b ∈ B, consider the commeasurable subalgebra B〈b〉 of B gener-
ated by b. Then η−1

B〈b〉(b) is an element of Proj(Func(B〈b〉)). Thus b 7→ [η−1
B〈b〉(b)]

is a function B → Proj(F (B)), that is easily seen to be inverse to the function
Proj(F (B)) → B above. Thus we have an isomorphism B ∼= Proj(F (B)) of piece-
wise complete Boolean algebras. Unfolding definitions shows that this isomorphism
is natural in B. �

As a consequence, the functor Proj preserves general coequalizers.

3. The category of active lattices

This section equips the piecewise AW*-algebra structure of AW*-algebrasA with
enough extra data to recover their full algebra structure, which will be done in the
next section. The required structure consists of three ingredients: a lattice structure
on Proj(A), a group structure on the so-called symmetry subgroup of the unitaries
U(A), and an action of the latter on the former. We will discuss each in turn.

The projection lattice. We start with some axioms satisfied by lattices of pro-
jections of AW*-algebras.

Definition 3.1. An orthocomplementation on a lattice P is an order-reversing
involution p 7→ p⊥ satisfying p∨p⊥ = 1 and p∧p⊥ = 0 (i.e., p⊥ is a complement of
p). We say p and q are orthogonal when p ≤ q⊥. An orthocomplemented lattice is
said to be orthomodular when p∨(p⊥∧q) = q for all p ≤ q. Complete orthomodular
lattices form a category COrtho whose morphisms are functions that preserve the
orthocomplementation as well as arbitrary suprema.

The condition of being an object ofCOrtho can be tested on orthogonal subsets,
and the same is nearly true for morphisms.

Lemma 3.2. An orthomodular lattice P is complete if and only if every orthog-
onal subset of P has a least upper bound. If P and Q are complete orthomodular
lattices, a function f : P → Q is a morphism of COrtho if and only if it preserves
orthocomplements, binary joins, and suprema of orthogonal sets.

Proof. The first statement is [17, Corollary 1]. Let f : P → Q be as in the second
statement, and let {pi} be any subset of P . Because f preserves finite joins, it
preserves order, and so

∨

f(pi) ≤ f(
∨

pi); we prove the reverse comparison. Let
{eα} be a maximal orthogonal set of nonzero elements of P with f(eα) ≤

∨

f(pi),
and set e =

∨

eα. By hypothesis, f(e) =
∨

f(eα) ≤ ∨

f(pi). Thus it suffices to
show that each pi ≤ e, for then

∨

pi ≤ e and f(
∨

pi) ≤ f(e) ≤ ∨

f(pi) as desired.
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Assume for contradiction that some pj � e. Then e′ = (pj ∨ e) ∧ e⊥ is a nonzero
element of P orthogonal to e and hence orthogonal to each eα. Furthermore

f(e′) ≤ f(pj ∨ e) = f(pj) ∨ f(e) ≤
∨

f(pi),

since e′ ≤ pj ∨ e. But this contradicts the maximality of {eα}. �

The axioms defining AW*-algebras and their morphisms are such that the oper-
ation of passing to projection lattices defines a functor Proj: AWstar → COrtho.

Complete orthomodular lattices are tightly linked to piecewise complete Boolean
algebras (rather than the more general orthocomplemented lattices). Indeed, any
complete orthomodular lattice P canonically is a piecewise complete Boolean al-
gebra, as follows. Define a commeasurability relation ⊙ on P by the following
equivalent conditions, for any p, q ∈ P :

(i) there is a Boolean subalgebra of P that contains both p and q;
(ii) there exist pairwise orthogonal p′, q′, r ∈ P with p = p′ ∨ r and q = q′ ∨ r;
(iii) p ∧ (p ∧ q)⊥ is orthogonal to q;
(iv) q ∧ (p ∧ q)⊥ is orthogonal to p;
(v) the commutator (p ∨ q) ∧ (p ∨ q⊥) ∧ (p⊥ ∨ q) ∧ (p⊥ ∨ q⊥) of p and q is zero.

For the equivalence of (i)–(iv) we refer to [32, Lemma 6.7]; for the equivalence of
(i) and (v) see [25].

Lemma 3.3. The assignment P 7→ (P,⊙) is a functor COrtho → pCBool.

Proof. Given a complete orthomodular lattice P and the commeasurability relation
⊙ above, it follows from [32, Lemma 6.10] that the supremum operation of P
restricts to a partial operation

∨

: {X ⊆ P | X ×X ⊆ ⊙} → P . �

Composing this forgetful functor with the equivalence pCBool → pAWstar

of Theorem 2.14 gives a canonical functor COrtho → pAWstar. Below, we will
extend the structure of the piecewise complete Boolean algebra Proj(A) to that of a
complete orthomodular lattice, where A is a piecewise AW*-algebra. As a converse
to the above lemma, we now show that this is a property rather than structure.

For any piecewise Boolean algebra B, let ≤ be the union of the partial orders
on each commeasurable subalgebra C of B. When this relation is transitive, it is
a partial order, which we call the induced partial order. In that case we call B
transitive. If every pair of (not necessarily commeasurable) elements of B have
a least upper bound with respect to ≤, we say that B is joined. Similarly, we
call a piecewise AW*-algebra A transitive or joined when Proj(A) is respectively
transitive or joined.

Proposition 3.4. The following categories are equivalent:

(a) the category COrtho of complete orthomodular lattices;
(b) the subcategory of pCBool whose objects are transitive and joined and whose

morphisms preserve binary joins;
(c) the subcategory of pAWstar whose objects are transitive and joined and

whose morphisms preserve binary joins of projections.

Proof. The piecewise complete Boolean algebras that are in the image of the func-
tor COrtho → pCBool from Lemma 3.3 are by definition transitive and joined.
Next, we define a functor G in the opposite direction. Let B be a transitive, joined
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piecewise complete Boolean algebra and ≤ its induced partial order. By construc-
tion of ≤, it restricts to the given partial order on each commeasurable subalgebra
of B. Furthermore, it is straightforward to verify that if X ⊆ B is commeasurable
then

∨

X is the least upper bound of X with respect to ≤. Kalmbach’s bundle
lemma [21, 1.4.22] now applies to show that ≤ and ¬ induce the structure of an
orthomodular lattice on B. Because orthogonal subsets are commeasurable, and
B has suprema of such subsets, it in fact has suprema of arbitrary subsets by
Lemma 3.2. This makes B into a complete orthomodular lattice, and we can define
G(B) = (B,≤). Setting G(f) = f on for pCBool morphisms that preserve binary
joins gives a well-defined functor, thanks to Lemma 3.2. It is straightforward to see
that these two functors form an isomorphism of categories.

The equivalence of (b) and (c) follows from Theorem 2.14. �

Remark 3.5. For an AW*-algebra A, recall that C(A) is the set of commutative
AW*-subalgebras, ordered by inclusion. It carries the same information as the
projection lattice Proj(A) [14, Theorem 2.5]. Therefore, everything that follows
can equivalently be expressed in terms of C(A) instead of Proj(A).

The symmetry group. If A is a piecewise AW*- algebra, we let U(A) denote the
set of unitary elements of A, i.e. the set of all elements u ∈ A such that uu∗ = 1
(recall that u⊙u∗ for all u ∈ A). This set carries the structure of a piecewise group,
i.e. one can multiply commeasurable elements, the multiplication has a unit (that is
commeasurable with any element), and there is a total function giving inverses, such
that every commeasurable subset generates a commutative subgroup. A piecewise
subgroup is a subset that is a piecewise group in its own right under the inherited
operations (and commeasurability relation). Every group is a piecewise group, and
conversely, we will be extending the structure of the piecewise group U(A) to that
of a group. Piecewise groups form a category pGroup with the evident morphisms.

Definition 3.6. A symmetry in an AW*-algebraA is a self-adjoint unitary element;
these are precisely the elements of the form p⊥ − p = 1− 2p for some p ∈ Proj(A).
Let U(A) denote the group of unitary elements of A, and define Sym(A) to be
the subgroup of U(A) generated by the symmetries of A. (Notice that if A is not
commutative then Sym(A) contains elements that are not symmetries.)

Before moving on to actions of groups on lattices, we consider how large the
symmetry Sym(A) group can become. We will see that this depends on the type:
Sym(A) is (significantly) smaller than U(A) for type In algebras, and just as large
as U(A) for other AW*-algebras.

If A is an AW*-algebra of type I1, i.e. if A is commutative, then Sym(A) is as
small as possible, namely in bijection with Proj(A), as the following example shows.

Example 3.7. If A is a commutative AW*-algebra, then the product of symmetries
is again a symmetry, and so the sets Sym(A) and Proj(A) are bijective. In fact,
(1− 2p)(1− 2q) = 1− 2((p+ q − pq)− pq) = 1− 2((p ∨ q)− (p∧ q)) = 1− 2(p∆q),
where ∆ is the symmetric difference operation. Thus Sym(A) is the additive group
of the Boolean ring structure associated to the Boolean algebra Proj(A).

For AW*-algebras of type In for n ≥ 2, we will use the fact that traces and
determinants are well-defined for matrices over commutative rings. Recall that
any AW*-algebra of type In takes the form Mn(C) for a commutative AW*-algebra
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C [2, Proposition 18.2]. We will use roman letters a, b, p, . . . for elements of a matrix
algebraMn(B) and greek letters α, β, π, . . . for elements of B when both are needed.

Lemma 3.8. Let A = Mn(C) for n ≥ 2 and a commutative AW*-algebra C.

(a) If b, c ∈ C satisfy 0 ≤ c = b2 ≤ 1 and b∗ = b, then there exists u ∈ Sym(C)
with b = uc0, where c0 is the unique positive square root of c in C.

(b) If u ∈ U(A) has det(u) = 1, then u = (1−2p)(1−2q) for some p, q ∈ Proj(A).
(c) If u ∈ U(A) has det(u) = 1 − 2π for π ∈ Proj(C), then u can be written as

u = (1 − 2p)(1− 2q)(1− 2r) for some p, q, r ∈ Proj(A).

(d) Sym(A) is the normal subgroup {u ∈ U(A) | det(u)2 = 1} = det−1(Sym(C)).

Proof. For part (a), observe that the Gelfand spectrum X of C is extremally dis-
connected. So int(b−1(−∞, 0]) is a clopen set, as is its complement cl(b−1(0,∞))).
So the function u : X → C defined by

u(x) =

{

−1 if x ∈ int(b−1(−∞, 0]),

1 if x ∈ cl(b−1(0,∞)),

is continuous. It is clearly a self-adjoint unitary. If x ∈ int(b−1(−∞, 0]), then
b(x) ≤ 0 and u(x) = −1, so b(x) = u(x)c0(x). If x ∈ cl(b−1(0,∞)), then b(x) ≥ 0
and u(x) = 1, so b(x) = u(x)c0(x). In either case b = uc0.

For part (b) we generalize the argument of [11, page 87] from matrices with
entries in C to entries in C. Let u ∈ U(A) have determinant 1. Then u is unitarily
equivalent to a diagonal matrix diag(ζ1, . . . , ζn) with diagonal entries ζi ∈ U(C)

satisfying
∏

ζi = 1 [10]. Such a matrix can be written as
∏n−1

i=1 diag(ζ1,i, . . . , ζn,i),

where ζi,i =
∏i

k=1 ζk, ζi+1,i = ζ∗i,i, and ζk,i = 1 otherwise. Therefore, we may

assume that u = diag(ζ, ζ∗, 1, . . . , 1) for fixed ζ ∈ U(C). Keeping the rest of the
matrices involved equal to the identity matrix, we may in fact pretend that we are
dealing with n = 2 and u = diag(ζ, ζ∗) for fixed ζ ∈ U(C). We may write ζ = α+iβ
where α, β ∈ C are self-adjoint and satisfy α2 + β2 = 1.

For each positive ϕ ∈ C, the element 1 + ϕ2 is invertible in C, so we can define

pϕ =
1

1 + ϕ2

(

1 ϕ
ϕ ϕ2

)

.

Each pϕ is easily seen to be a projection in A, so vϕ = (1 − 2pϕ)(1 − 2p0) defines
an element of Sym(A). Computing

vϕ =
1

1 + ϕ2

(

1− ϕ2 −2ϕ
2ϕ 1− ϕ2

)

shows that det(vϕ) = 1 and tr(vϕ) = 2 · 1−ϕ2

1+ϕ2 . Now, the function ϕ 7→ 1−ϕ2

1+ϕ2 is

a composite of an order-automorphism ϕ 7→ ϕ2 of the positive cone of C with
the Cayley transform ϕ 7→ 1−ϕ

1+ϕ
, which maps the positive cone of C order-anti-

isomorphically onto the interval {γ ∈ C | −1 < γ ≤ 1}. Hence tr(vϕ) assumes all
values in the interval {γ ∈ C | −2 < γ ≤ 2} as ϕ ranges over the positive cone of
C, and actually achieves the value −2 by interpreting p∞ = ( 0 0

0 1 ). Diagonalizing
vϕ to diag(ξ, ξ∗) with ξ ∈ U(C), we can therefore make tr(vϕ) = ξ + ξ∗ = 2Re(ξ)
assume all values in the positive cone of C by varying ϕ.

In particular, for ζ = α + iβ as above, there exist positive ϕ ∈ C and β0 =√
1− α2 such that ζ0 = α + iβ0 ∈ U(C) and diag(ζ0, ζ

∗
0 ) is unitarily equivalent
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to vϕ. Part (a) gives σ ∈ Sym(C) with β = σβ0. The R-linear map θ fixing self-
adjoint elements and sending i to iσ defines a ∗-ring automorphism of C. Thus
Mn(θ) is a ∗-ring automorphism of A, and Mn(θ)(vϕ) is unitarily equivalent to
Mn(θ)(diag(ζ0, ζ

∗
0 )) = diag(θ(ζ0), θ(ζ0)

∗) = diag(ζ, ζ∗). Because vϕ is a product of
two symmetries, the same is true for diag(ζ, ζ∗).

For part (c), suppose det(u) = 1−2π. Set r = diag(π, 0) ∈ Proj(A). Notice that
1−2r = diag(1−2π, 1) has determinant 1−2π. Then u ·(1−2r) has determinant 1,
so by part (b) there exist p, q ∈ Proj(A) such that u(1 − 2r) = (1 − 2p)(1 − 2q).
Multiplying on the right by 1 − 2r, which is its own inverse, gives the desired
representation of u.

Finally, part (d) follows from the observation Sym(C) = {1− 2π | π ∈ Proj(C)}
and part (c), as follows. Because its generators 1 − 2p square to the identity, and
the determinant is multiplicative, Sym(A) ⊆ {u ∈ U(A) | det(u)2 = 1}. Next, if
det(u)2 = 1, then det(u) is a symmetry in C, and hence of the form 1−2π for some

π ∈ Proj(C), so that {u ∈ U(A) | det(u)2 = 1} ⊆ det−1(Sym(C)). Finally, part (c)

implies det−1(Sym(C)) ⊆ Sym(A). �

For AW*-algebras of infinite type, it is known that every unitary is a product of
four symmetries [31], and therefore the symmetry group is the full unitary group.

That leaves AW*-algebras of type II1. For W*-factors of this type, it is known
that Sym(A) = U(A) [6]. If Sym(A) is closed in U(A), it follows from from [19,
Theorem 2], which holds for AW*-algebras, that Sym(A) = U(A). The general
question of whether Sym(A) = U(A) for AW*-algebras A of type II1 remains open.

Active lattices. The final piece of structure we will need to be able to recover the
full algebra structure of an AW*-algebra is an action of the symmetry group.

Definition 3.9. An action of a group G on a piecewise AW*-algebra A is a group
homomorphism from G to the group of isomorphisms A → A in pAWstar. Sim-
ilarly, an action of a group G on a complete orthomodular lattice P is a group
homomorphism from G to the group of isomorphisms P → P in COrtho. Explic-

itly, we can consider a function G× P
·→ P satisfying:

• 1 · p = p for all p ∈ P ;
• u · (v · p) = (uv) · p for all p ∈ P and u, v ∈ G;
• u · (−) : P → P is a morphism of COrtho for each u ∈ G.

Alternatively, we can speak about a group homomorphism α : G → Aut(P ). If
the object being acted upon needs to be emphasized, we will speak of a piecewise
algebra action or an orthomodular action, respectively.

If A is an AW*-algebra, then its unitary group U(A) acts on its projection
lattice Proj(A) by (left) conjugation: if p is a projection and u is a unitary, then
upu∗ is again a projection. Moreover, because conjugation with a unitary is an
automorphism of AW*-algebras, u(−)u∗ : Proj(A) → Proj(A) is a morphism of
complete orthomodular lattices for each u ∈ U(A). The group Sym(A) acts on
Proj(A) by restricting the action of U(A). This motivates the following definition.

Definition 3.10. The category eAWstar of extended piecewise AW*-algebras is
defined as follows. Objects are 4-tuples (A,P,G, ·) consisting of:

• a piecewise AW*-algebra A;
• an object P of COrtho that maps to Proj(A) under the forgetful functor
COrtho → pCBool;
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• a group G, that maps to a piecewise subgroup of U(A) under the forgetful
functor Group → pGroup, and that (contains and) is generated as a
group by the elements 1− 2p for all p ∈ Proj(A);

• an action of G on A, which restricts to (left) conjugation on G ⊆ A, that
is, g · h = ghg−1 for g ∈ G and h ∈ G ⊆ A.

A morphism f : (A,P,G, ·) → (A′, P ′, G′, ·′) is a function f : A→ A′ such that:

• f is a morphism of piecewise AW*-algebras;
• f restricts to a morphism P → P ′ of complete orthomodular lattices;
• f restricts to a group homomorphism G→ G′;
• the equivariance condition f(u ·a) = f(u) ·′ f(a) holds for u ∈ G and a ∈ A.

In fact, using the equivalence F : pCBool → pAWstar of Theorem 2.14, we
can whittle the data down further. In particular, if a group G has an orthomod-
ular action on P , there is an induced piecewise algebra action on F (P ) as follows
(applying Lemma 3.3 and Theorem 2.14):

G→ AutCOrtho(P ) ⊆ AutpCBool(P ) ∼= AutpAWstar(F (P )).

Hence we can reformulate purely in terms of orthomodular lattices and groups.

Definition 3.11. An active lattice is a 3-tuple (P,G, ·) consisting of:

• a complete orthomodular lattice P ;
• a group G, that maps to a piecewise subgroup of U(F (P )) under the for-
getful functor Group → pGroup, and that (contains and) is generated as
a group by the elements 1− 2p for all p ∈ Proj(F (P )) ∼= P ;

• an orthomodular action of G on P such that the induced piecewise algebra
action of G on F (P ) restricts to (left) conjugation on G ⊆ F (P ).

A morphism of active lattices (P,G, ·) → (P ′, G′, ·′) is a morphism f : P → P ′ of
complete orthomodular lattices such that:

• Ff restricts to a group homomorphism G→ G′;
• equivariance f(u · p) = Ff(u) ·′ f(p) holds for all u ∈ G and p ∈ P .

Active lattices and their morphisms form a category Active.

Proposition 3.12. The categories eAWstar and Active are equivalent.

Proof. We use the unit ηP : P → Proj(F (P )) and counit εA : F (Proj(A)) → A
isomorphisms of the equivalence of Theorem 2.14 to define appropriate functors.

Define G : eAWstar → Active by G(A,P,G, α) = (P,U(ε−1
A )(G), α ◦ U(εA))

and G(f) = f . This is well-defined: if G is a piecewise subgroup of U(A),
then U(ε−1

A )(G) is a piecewise subgroup of U(F (P )), and precomposing the ac-

tion α : G → Aut(P ) with U(εA) turns it into an action of U(ε−1
A (G)) on P . The

equivariance condition on morphisms also follows directly.
In the reverse direction, define H : Active → eAWstar on objects by setting

H(P,G, α) = (F (P ), ηP (P ), G,Aut(η
−1
P ) ◦ α)

and on morphisms by H(f) = F (f). This is well-defined: the structure of P as
a complete orthomodular lattice transfers via ηP to ηP (P ) = Proj(F (P )), and
postcomposing the action α : G→ Aut(P ) with Aut(η−1

P ) turns it into an action of
G on Proj(F (P )). The equivariance condition on morphisms also follows directly.

Now ηP implements a (natural) isomorphism G ◦H(P,G, ·) ∼= (P,G, ·), and εA
implements a (natural) isomorphism H ◦G(A,P,G, ·) ∼= (A,P,G, ·). Hence G and
H form an equivalence. �
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The functor. We can now define a functor from AW*-algebras to active lattices,
and prove that it is faithful. In Section 4 we will prove that it is also full. The
next proposition tacitly identifies a piecewise AW*-algebra A with F (Proj(A)), as
justified by Theorem 2.14.

Proposition 3.13. There is a functor AProj: AWstar → Active acting as

AProj(A) = (Proj(A), Sym(A), ·),
on objects, where u · p = upu∗. It sends a morphism A → B to its restriction
Proj(A) → Proj(B).

Proof. Follows directly from the definitions. �

Via Proposition 3.12, we also write AProj for the functor AWstar → eAWstar.

Lemma 3.14. The functor AProj is faithful.

Proof. If AProj(f) = AProj(f ′), the continuous linear functions f, f ′ : A → B
coincide on Proj(A). But A is the closed linear span of Proj(A). �

The reader might think that Definition 3.11 could be reduced further still by
considering just complete orthomodular lattices acted upon by groups generated
by them, and letting morphisms be equivariant pairs of group homomorphisms and
morphisms of complete orthomodular lattices. The following example shows that
one cannot ignore piecewise algebra structure this easily and hope to have a full
and faithful functor out of AWstar.

Example 3.15. Consider AProj(M2(C)) = (Proj(M2(C)), Sym(M2(C)), ·). Define
a morphism of complete orthomodular lattices f : Proj(M2(C)) → Proj(M2(C))
by f(0) = 0, f(1) = 1, and f(p) = p⊥ for p 6= 0, 1. Recall from Lemma 3.8
that Sym(M2(C)) = {u ∈ U2(C) | det(u) = ±1}. Define a group homomorphism
g : Sym(M2(C)) → Sym(M2(C)) by g(u) = det(u)u. Write j for the injection
Proj(M2(C)) → Sym(M2(C)) given by j(p) = 1− 2p. For p = 0, 1 one easily checks
that j(f(p)) = g(j(p)), and for p 6= 0, 1:

j(f(p)) = j(p⊥) = p− p⊥ = det(p− p⊥) · (p− p⊥) = g(p− p⊥) = g(j(p)).

Finally, for u ∈ Sym(M2(C)) and p 6= 0, 1:

g(u)f(p)g(u)∗ = | det(u)|2up⊥u∗ = 1− upu∗ = f(upu∗),

and for p = 0, 1 this formula is also easily seen to hold. Hence f and g satisfy the
equivariance condition.

But if there is a linear map h : M2(C) → M2(C) that restricts to f on Proj(M2(C))
and to g on Sym(M2(C)), then for ζ ∈ U(C)\{±1}, p ∈ Proj(M2(C))\{0, 1}, and
u = ζp+ ζ∗p⊥ ∈ Sym(M2(C)), we would have

u = g(u) = g(ζp+ ζ∗p⊥) = ζf(p) + ζ∗f(p⊥) = ζp⊥ + ζ∗p = u∗,

contradicting ζ 6= ±1. Therefore it cannot be the case that h restricts to f .

In the commutative case, the functor AProj has nice properties.

Example 3.16. There is a functor CBool → Active, that maps a complete
Boolean algebra B to the active lattice (B,Badd, ·). Here, we identify B with
Proj(F (B)) using Theorem 2.14, and Badd is the additive group of B qua Boolean
ring, which acts trivially on the Boolean algebra B itself. This functor is full and
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faithful. Moreover, it factors through the functor AProj. If we restrict to the full
subcategory cActive of Active consisting of the objects (P,G, ·) for which P is a
complete Boolean algebra, then it follows from Example 3.7 that the functor AProj
becomes an equivalence of categories. This makes the left triangle in the following
diagram commute. The other faces obviously commute.

cActive
� � // Active

��✞✞
✞✞
✞✞
✞✞

CBool
��

∼=
✟✟✟✟✟✟✟

� � // COrtho

cAWstar

AProj

VV✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲Proj

≃

ee❑❑❑❑❑❑❑❑❑❑❑
� � // AWstar

Proj

dd❏❏❏❏❏❏❏❏❏❏❏

AProj

UU✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰

4. Recovering total algebras from piecewise algebras

This section proves that the functor AProj of Proposition 3.13 is full. The proof
distinguishes two cases. First, we adapt a theorem of Dye to deal with algebras
without type I2 summands. Subsequently we deal with algebras of type I2 directly.

Algebras without I2 summand and a theorem of Dye. To facilitate the proof
of Theorem 4.6 below, we give a sequence of preparatory lemmas. Several of these
are adapted from Dye’s results in [11, Section 3]. Let A be an AW*-algebra. Any
matrix ring Mn(A) is an AW*-algebra; see [2, Section 62]. If x is a row vector in
An one of whose entries is a projection, then there is a projection in Mn(A) whose
range is the submodule Ax ⊆ An according to [11, Lemma 2]. We shall refer to
these projections in Mn(A) as vector projections.

In particular, given two distinct indices 1 ≤ i, j ≤ n and an element α ∈ A, there
is a projection as above where the vector x is taken to have 1 in the ith entry, α in
the jth entry, and all other entries zero. We denote the corresponding projection
in Mn(A) by pij(α). For instance, when n = 2, i = 1, and j = 2, we have

p12(α) =

(

(1 + αα∗)−1 (1 + αα∗)−1α
α∗(1 + αα∗)−1 α∗(1 + αα∗)−1α

)

.

For larger n, we follow the convention to only write down the nonzero 2-by-2 parts
of such n-by-n matrices. Notice that if pij(α) = pij(β) for some α, β ∈ A, then
α = β.

Lemma 4.1. Let A be an AW*-algebra.

(a) Sublattices of Proj(Mn(A)) containing all pij(α) contain all vector projections.
(b) Any projection in Mn(A) is the supremum of (orthogonal) vector projections.

Hence the pij(α) generate Proj(Mn(A)) as a complete orthomodular lattice.

Proof. Part (a) is proven as in [11, Lemma 7]. For (b), first note that the proof
of [11, Lemma 7] illustrates that every nonzero element of Proj(Mn(A)) contains a
nonzero vector projection. Fix p ∈ Proj(Mn(A)). Zorn’s lemma gives a maximal set
S of orthogonal nonzero homogeneous projections below p. We claim that p equals
p0 =

∨

S. Otherwise p0 < p, so that there would be a nonzero vector projection
q ≤ p− p0. Because p− p0 ≤ p, transitivity gives q ≤ p. Combined with q ≤ p− p0,
this implies q is orthogonal to p0. It follows that q is orthogonal to Proj(S), so
S ⊔ {q} is an orthogonal set of projections below p, contradicting maximality. �
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We denote by eij ∈ Mn(A) the matrix unit whose i, j-entry is 1 and every other
entry is zero. Note that eii = pij(0) for any j 6= i. For a projection p in an
AW*-algebra, we denote by sp = 1− 2p the corresponding symmetry.

Lemma 4.2. Let A and B be AW*-algebras. If f : Proj(Mn(A)) → Proj(Mn(B))
is a function satisfying f(eii) = eii and f(spqsp) = sf(p)f(q)sf(p), then for each i, j
and each ζ ∈ U(A) there is a unique ξ ∈ U(B) with f(pij(ζ)) = pij(ξ).

Proof. Notice that for ζ ∈ U(A), we have (in “2-by-2 shorthand”)

pij(ζ) =
1

2

(

1 ζ
ζ∗ 1

)

.

It is easy to see that conjugation by 1− 2pij(ζ) swaps eii and ejj while leaving the
remaining diagonal matrix units fixed. Conversely, if p ∈ Proj(Mn(A)) is such that
conjugation by 1 − 2p leaves ekk fixed for k 6= i, j, then it must equal the identity

everywhere except in rows and columns i and j. Hence we can write p =
(

α β

β∗ γ

)

in “2-by-2 shorthand”. If eii = (1− 2p)ejj(1 − 2p), then α = 1
2 and β∗β = 1

4 , and

it follows from p = p2 that γ = 1
2 and ββ∗ = 1

4 . Hence the projections of the form
pij(ζ) with ζ unitary are precisely those projections p for which conjugation with
1− 2p swaps eii and ejj while leaving the other ekk fixed.

Now, because of the assumptions that f sends diagonal matrix units to diagonal
matrix units, and is equivariant, the same statement is true about f(pij(ζ)). Hence
there is some unitary ξ ∈ U(B) such that f(pij(ζ)) = pij(ξ); uniqueness follows. �

Recall that a C-linear function f : A → B between C∗-algebras that preserves
the involution is a Jordan ∗-homomorphism if it preserves the Jordan product
a ◦ b = 1

2 (ab + ba); this is readily seen to be equivalent to the property that f
preserves the square of every element.

Lemma 4.3. Given a ∗-ring homomorphism A→ B between C*-algebras, there is
a unique Jordan ∗-homomorphism A→ B that equals it on self-adjoint elements.

Proof. Let f : A → B be a ∗-ring homomorphism. As it preserves 1 it is Q-linear,
and it follows from preserving positivity that it is in fact R-linear. Define comple-
mentary projections q− = 1

2 (1 + if(i)) and q+ = 1
2 (1 − if(i)) in B. Setting

f− : A→ q−Bq− f−(a) =
1
2 (f(a) + if(ia))

f+ : A→ q+Bq+ f+(a) =
1
2 (f(a)− if(ia))

gives ∗-ring homomorphisms, where f− is C-anti-linear and f+ is C-linear. Clearly
f = f+ + f−. Now define g : A→ B by

g(a) = f+(a) + (f−(a))
∗.

This C-linear function preserves the involution and agrees with f on self-adjoint
elements. It is easy to verify that it preserves the operation of squaring because
the images of f+ and f− are orthogonal in B. Uniqueness is straightforward. �

The following lemma records some results of Dye [11] about properties of the
“coordinate assignment” from Lemma 4.2. Basically, it expresses algebraic oper-
ations on the coordinates in lattice-theoretic terms. The subsequent lemma will
use these properties to establish a ∗-ring homomorphism, following [11, Lemmas 6
and 8]. Recall that a lattice polynomial is an expression combining a finite number
of variables using ∧ and ∨; these are preserved by morphisms in COrtho.
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Lemma 4.4. There exist lattice polynomials P , Q, and R such that, for any el-
ements α, β, γ of a C*-algebra A with γ invertible, any integer n ≥ 3, and any
distinct indices 1 ≤ i, j, k ≤ n, the following hold:

(a) pij(α+ β) = P
(

pij(α), pij(β), pik(γ), eii, ejj , ekk
)

;

(b) pij(−αβ) = Q
(

pik(α), pkj(β), eii, ejj
)

;

(c) pij(−α∗) = R
(

pji(α), eii, ejj
)

.

Proof. See [11, Lemma 5], [11, Lemma 4], and [11, Lemma 3(i)], respectively. �

Lemma 4.5. Let f : Proj(Mn(A)) → Proj(Mn(B)) be a morphism of COrtho for
AW*-algebras A,B, and n ≥ 3. Suppose f(eii) = eii for all i, and that for any
distinct i, j and any ζ ∈ U(A) there is ξ ∈ U(B) with f(pij(ζ)) = pij(ξ). Then
there is a diagonal W ∈ U(Mn(B)) such that:

(a) there is a function ϕ : U(A) → U(B) satisfying the “coordinate condition”

f(pij(α)) =W ∗pij(ϕ(α))W

for all α ∈ U(A) and distinct indices i, j;
(b) ϕ extends to a ∗-ring homomorphism A → B satisfying the coordinate con-

dition for all α ∈ A and distinct i, j.

Proof. Abbreviate the coordinate condition as (∗). By hypothesis, for all in-
dices j > 1 there exist βj ∈ U(B) such that f(p1j(1)) = p1j(βj). Define W =
diag(1, β2, . . . , βn) ∈ U(B). Then p1j(βj) = W ∗p1j(1)W for all j. Notice that
conjugation by a diagonal unitary fixes all eii, and leaves the set {pij(α)} invariant
as α ranges over U(A) (respectively, over A). Thus, replacing f with the morphism
p 7→ Wf(p)W ∗, we may assume that f(p1j(1)) = p1j(1) for all j > 1, and prove
that (∗) holds in both (a) and (b) with W = 1.

Towards (a), define ϕ : U(A) → U(B) by the condition f(p12(α)) = p12(ϕ(α)).
In case f(p1j(α)) = p1j(ϕ(α)), for some α ∈ U(A) and distinct i, j > 1, it follows
by applying Lemma 4.4 that

f(pij(α)) = f
(

Q
(

pi1(−1), p1j(α), eii, ejj
))

= f
(

Q
(

R
(

p1i(1), eii, e11
)

, p1j(α), eii, ejj
)

= Q
(

R
(

p1i(1), eii, e11
)

, p1j(ϕ(α)), eii, ejj
)

= pij(ϕ(α)).

In particular, because (∗) is known to hold in case i = 1 and α = 1, this shows that
(∗) in fact holds for α = 1 and any distinct i, j > 1 (and, of course, when i = 1 and
j = 2). Now since (∗) for the case α = 1 and j = 2, and it holds by assumption for
i = 1, j = 2 and all α ∈ U(A), then for j > 2 we find:

f(p1j(α)) = f
(

Q
(

p12(α), R
(

pj2(1), e22, ejj
)

, e11, ejj
))

= Q
(

p12(ϕ(α)), R
(

pj2(1), e22, ejj
)

, e11, ejj
))

= p1j(ϕ(α)).

Thus the above shows that (∗) holds for all α ∈ U(A) and any j ≥ 2. For the
remaining case where i > 1 and j = 1, simply note that

f(pi1(α)) = f(R
(

p1i(−α∗), eii, e11
)

)

= R
(

p1i(−α∗), eii, e11
)

= pi1(α).

To prove part (b), we start by defining a function ψ : A→ B. Write α = α1+iα2

where each αk is self-adjoint. Set ζk = αk

2n + i
√

1− (αk

2n )
2, where n is an integer

satisfying ‖αk‖ ≤ 2n for k = 1, 2. Then ζk ∈ U(A) satisfy ζk + ζ∗k = αk

n
. Now,
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an application of Lemma 4.4(a) with γ = 1 shows f(pij(λ1 + λ2)) = pij(µ1 + µ2)
if f(pij(λl)) = pij(µl), and similarly for sums with more terms. Therefore, in
particular,

f(pij(α/n)) = f(pij(ζ1 + ζ∗1 + iζ2 + iζ∗2 ))

= pij(ϕ(ζ1) + ϕ(ζ∗1 ) + ϕ(iζ2) + ϕ(iζ∗2 )).

Taking β to be n times the argument of pij in the previous line, we have β ∈ B with
f(pij(α)) = pij(β). Setting ψ(α) = β yields f(pij(α)) = pij(ψ(α)) for all α ∈ A. It
follows that pij(ψ(α)) = pij(ϕ(α)) for unitary α, whence ψ extends ϕ.

Next we prove that ψ is a ∗-ring homomorphism. First apply Lemma 4.4(a) with
γ = 1 and use part (a) to deduce

pij
(

ψ(α) + ψ(β)
)

= P
(

pij(ψ(α)), pij(ψ(β)), pik(ψ(1)), eii, ejj , ekk
)

= P
(

f(pij(α)), f(pij(β)), f(pik(1)), f(eii), f(ejj), f(ekk)
)

= f
(

P
(

pij(α), pij(β), pik(1), eii, ejj , ekk
))

= f(pij(α+ β)) = pij
(

ψ(α+ β)
)

,

and conclude that ψ is additive. Hence also ψ(0) = ψ(0+0)−ψ(0) = 0. It similarly
follows from Lemma 4.4(b) that ψ is multiplicative. Finally, Lemma 4.4(c) shows
that ψ preserves the involution. �

The assumption that each ζ ∈ U(A) allows ξ ∈ U(A) such that f(pij(ζ)) = pij(ξ)
is slightly stronger than necessary and is only used to shorten the proof above. With
more work, one may simply assume that this is the case when i = 1 and j = 2.

We are now ready to prove an AW*-analogue of Dye’s theorem [11, Theorem 1].

Theorem 4.6. Let A be an AW*-algebra without type I2 summands, and B any
AW*-algebra. A COrtho-morphism f : Proj(A) → Proj(B) extends to a Jordan
∗-homomorphism A→ B if and only if f(spqsp) = sf(p)f(q)sf(p).

Proof. The “only if” direction follows because the expression to be preserved can
be written in terms of Jordan operations:

spqsp = (1 − 2p)q(1− 2p) = q − 2(pq + qp) + 4pqp

= q − 2(p ◦ q) + 4(pqp+ p⊥qp⊥) ◦ p
= q − 2(p ◦ q) + 4(p+ q − 1)2 ◦ p.

For the converse we first reduce the problem to the case A = Mn(D) for n ≥ 3
and AW*-algebra D. Indeed, [2, Theorem 15.3] and [2, Theorem 18.4] provide
unique orthogonal central projections p1, p2, . . . , p∞ with sum 1 such that pnA is
of type In for n < ∞ and p∞A has no finite type I summands. Then A is the
C*-sum of piA [2, Proposition 10.2], and it suffices to consider one summand at a
time because Jordan ∗-homomorphisms are closed under direct sums. By [2, Ex-
ercise 19.2], p∞A ∼= M3(D) for some AW*-algebra D. For each finite n, by [2,
Proposition 18.2], pnA ∼= Mn(C) for some commutative AW*-algebra C. By as-
sumption p2 = 0, leaving us with commutative AW*-algebras p1A. But this case
is taken care of by the duality (2.3), since morphisms in cAWstar are definitely
Jordan ∗-homomorphisms. Thus we may replace A with Mn(A) for n ≥ 3.

Next, we make another reduction (replicating the proof of [11, Theorem 1]) to
show that we may also replace B with Mn(B). Any two distinct diagonal matrix
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units eii in Mn(A) have a common complement, so the same is true for their images
under f . By [22, Theorem 6.6] this means that their images f(eii) are equivalent
projections. These n orthogonal equivalent projections sum to 1, so by [2, Proposi-
tion 16.1] they form the diagonal projections of a set of n-by-n matrix units in B.
Thus we may replace B by Mn(B) and assume that f(eii) = eii.

So we are assuming that A and B are AW*-algebras with an COrtho-morphism
f : Proj(Mn(A)) → Proj(Mn(B)) for n ≥ 3. Combining Lemmas 4.2 and 4.5
produces a ∗-ring homomorphism ϕ : A → B and a diagonal W ∈ U(Mn(B)) such
that f(pij(α)) = W ∗pij(ϕ(α))W for all α ∈ A and all distinct i, j. It follows from
the definition of pij that f(pij(α)) =W ∗

(

Mnϕ(pij(α))
)

W for all i, j and α ∈ A.
Next we show that ϕ preserves suprema of projections, using an auxiliary func-

tion π 7→ p12(π) ∧ e22. It is a well-defined morphism jA : Proj(A) → Proj(Mn(A))
of complete orthomodular lattices that is injective. Hence

jB(
∨

i

ϕ(πi)) =
∨

i

p12(ϕ(πi)) ∧ e22 =
∨

i

Wf(jA(πi))W
∗

=Wf(jA(
∨

i

πi))W
∗ = p12(ϕ(

∨

i

πi)) ∧ e22 = jB(ϕ(
∨

i

πi)),

and so
∨

i ϕ(πi) = ϕ(
∨

i πi) by injectivity of jB .
Consequently, the ∗-ring homomorphism Mn(ϕ) : Mn(A) → Mn(B) also pre-

serves suprema of projections by [16, Theorem 8.2 and Remark 8.3]. Hence so does
its conjugation with W . Now Lemma 4.1 guarantees that W ∗Mn(ϕ)W equals f on
all of Proj(Mn(A)). The proof is concluded by an application of Lemma 4.3. �

Remark 4.7. It remains an open question whether every morphism of complete
orthomodular lattices Proj(A) → Proj(B) extends to a Jordan ∗-homomorphism
A→ B when A and B are AW*-algebras and A has no type I2 summands. This is
known to be the case when A and B are W*-algebras [8, Corollary 1]. Our proof
suffices to answer this question for AW*-algebras if Lemma 4.2 holds more generally
without the equivariance assumption.

The analogous generalization of Lemma 4.2 is known to hold over a von Neumann
regular ring R, i.e. a ring such that every a ∈ R admits b ∈ R with a = aba. In
this setting, denote by qij(α) the idempotent in Mn(R) whose row range is the
submodule of Rn generated by the row vector with ith entry 1 and jth entry α.
Then the qij(α) for invertible α are characterised in lattice-theoretic terms as those
projections p that complement both eii and ejj , i.e. p ∧ eii = 0 = p ∧ ejj and
p ∨ eii = eii + ejj = p ∨ ejj (see Part II, Chapter III, Lemma 3.4 of [33]).

Unfortunately, this characterisation does not hold for a general AW*-algebra A.
To see the difficulty, let α ∈ A be neither a left nor a right zerodivisor, but also not
invertible. Considering A2 as a left M2(A)-module, p = p21(α) is a projection with
range A

(

α 1
)

. Since α is not a left zerodivisor, A
(

α 1
)

∩A
(

0 1
)

= 0, whence
range(p ∧ e22) = range(p) ∩ range(e22) = 0, so p ∧ e22 = 0. Similarly p ∧ e11 = 0.
Furthermore, p⊥ has range A

(

1 −α∗
)

, which has zero intersection with A
(

1 0
)

because α is not a right zerodivisor, so that p⊥ ∧ e11 = 0, which (−)⊥ sends to
p∨e22 = 1. Also p∨e11 = 1, so p complements both e11 and e22. However, because
α is not invertible, it cannot be of the form p = p12(β) [11, Lemma 3(ii)].

Lemma 4.8. Let A and B be AW*-algebras. If f : AProj(A) → AProj(B) is
a morphism in eAWstar such that f extends to a continuous C-linear function
g : A→ B, then g is a morphism of AW*-algebras satisfying AProj(g) = f .
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Proof. We first show that g(a)g(b) = g(ab) for all a, b ∈ A. Because the functions
A × A → A on each side of the equation above are continuous and bilinear, and
because A is the closed linear span of its projections, it suffices to consider the case
where a and b are projections. Now, for p, q ∈ Proj(A),

1− 2g(p)− 2g(q) + 4g(pq) = g(1− 2p− 2q + 4pq)

= f((1− 2p)(1− 2q))

= f(1− 2p)f(1− 2q)

= (1− 2f(p))(1− 2f(q))

= 1− 2g(p)− 2g(q) + 4g(p)g(q),

and therefore g(pq) = g(p)g(q) as desired. The above equations used, respectively:
linearity of g; g extends f ; f is a group homomorphism on Sym(A); f is a piecewise
algebra morphism; g extends f .

So g is an algebra homomorphism, and it is readily seen to be a ∗-homomorphism
using linearity and the fact that it equals f on normal elements. Because f preserves
suprema of projections and g extends it, we see that g is a morphism in AWstar,
which obviously satisfies AProj(g) = f . �

Corollary 4.9. Let A and B be AW*-algebras, and f : AProj(A) → AProj(B) a
morphism of eAWstar. If A has no type I2 summand, f is in the image of AProj.

Proof. Theorem 4.6 extends f : Proj(A) → Proj(B) to a Jordan ∗-homomorphism
g : A→ B, which is continuous [29, Page 439]. Because A is the closed linear span
of Proj(A), in fact f and g coincide as functions N(A) → N(B). Hence the result
follows from Lemma 4.8. �

Type I2 algebras. Next we focus on algebras of type I2. As in Lemma 3.8, we
will use the fact that determinants and traces are well-defined for matrices with
entries in a commutative ring.

Proposition 4.10. Let A and B be AW*-algebras, and f : AProj(A) → AProj(B)
a morphism of eAWstar. If A is type I2, then f is in the image of AProj.

Proof. Let C be a commutative AW*-algebra with A = M2(C); this exists by [2,
Proposition 18.2]. The algebra C is embedded in A = M2(C) by γ 7→ diag(γ, γ).
Fix p = e11 ∈ Proj(A) and u = e12 + e21 ∈ Sym(A). Since upu = p⊥, we deduce

f(u)f(p)f(u) = f(p)⊥,

f(u)f(p) = f(p)⊥f(u),

f(p)f(u) = f(u)f(p)⊥.

It follows that e′11 = f(p), e′12 = f(p)f(u), e′21 = f(u)f(p), and e′22 = f(p)⊥

form a self-adjoint set of 2-by-2 matrix units in B (see [20, Page 429]). The image
D = f(C) ⊆ B is a commutative ∗-subalgebra centralizing all e′ij . Letting V ⊆ B

be the D-span of the e′ij , it follows that V is a ∗-subalgebra of B isomorphic to

M2(D). Define a C-linear function g : A→ V ⊆ B by g(eij) = e′ij and g(γ) = f(γ)
for γ ∈ C; it is a ∗-homomorphism.

Next we will prove that g equals f on all q ∈ Proj(A). Notice that det(q) is
a projection in C. Using properties of the adjugate matrix [23, XIII.4.16] we find
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det(q)1A = adj(q)q = adj(q)q2 = det(q)q, and so det(q)1A ≤ q in Proj(A). Because
adj : M2(C) → M2(C) is C-linear, the projection q

′ = q−det(q)1A has determinant

det(q′) = adj(q′)q′ = (adj(q)− det(q)1A)(q − det(q)1A) = 0.

So without loss of generality we may assume det(q) = 0. In this case one can
compute that τ = tr(q) is a projection of C. As any projection in A with trace τ
and determinant zero, q can be written (in standard matrix units eij) in the form

q =
1

2

(

τ + α ζβ
ζ∗β τ − α

)

where α, β ∈ C are self-adjoint, satisfy α2+β2 = τ , and ζ ∈ C is a partial isometry
with ζζ∗β = β. Replacing ζ with ζ + (1− ζζ∗) if necessary, we may in fact assume
ζ ∈ U(C). Because the algebra C has square roots [10, Corollary 2.3], there exists
ξ ∈ U(C) such that iξ2 = ζ. From α2 + β2 = τ one deduces that τ supports α and
β, so τ⊥ annihilates α and β. Then

1− 2q =

(

τ⊥ − α −ζβ
−ζ∗β τ⊥ + α

)

(∗)

=

(

τ − τ⊥ 0
0 1

)(

−τ⊥ − α −iξ2β
i(ξ∗)2β τ⊥ + α

)

=

(

τ − τ⊥ 0
0 1

)(

−ξ 0
0 ξ∗

)(

τ⊥ + α iβ
iβ τ⊥ + α

)(

ξ∗ 0
0 ξ

)

=
(

(τ − τ⊥)p+ p⊥
)(

− ξp+ ξ∗p⊥
)(

(τ⊥ + α)1 + iβu
)(

ξ∗p+ ξp⊥
)

.

The four factors in the right hand side are elements of Sym(A) by Lemma 3.8(d).
Because f is piecewise linear and is multiplicative when restricted to Sym(M2(C)),
applying f to (∗) and invoking piecewise linearity gives

1− 2f(q) = f
(

(τ − τ⊥)p+ p⊥
)

f
(

− ξp+ ξ∗p⊥
)

f
(

(τ⊥ + α)1 + iβu
)

f
(

ξ∗p+ ξp⊥
)

= (τ⊥ − α)f(p) − ζβf(p)f(u)− ζ∗βf(u)f(p) + (τ⊥ + α)f(p)⊥

= (τ⊥ − α)g(e11)− ζβg(e12)− ζ∗βg(e21) + (τ⊥ + α)g(e22)

= g(1− 2q) = 1− 2g(q),

whence f(q) = g(q). Finally, because ∗-homomorphisms are continuous, an appli-
cation of Lemma 4.8 finishes the proof. �

Fullness of the functor and some open problems. We summarize by showing
that AProj: AWstar → Active is a full functor.

Theorem 4.11. If A and B are AW*-algebras, and f : AProj(A) → AProj(B) is
a morphism in Active, then f = AProj(g) for some g : A→ B in AWstar.

Proof. Proposition 3.12 allows us to replace Active by eAWstar. As any AW*-
algebra, A is a direct sum A = p1A⊕p2A for central projections p1 and p2 = 1−p1,
where p1A is a type I2 AW*-algebra and p2A is an AW*-algebra without type I2
summands [2, Section 15]. Because pi are central in A, the symmetries 1− 2pi are
central in Sym(A). So the projections qi = f(pi) are central in B, as the symmetries
1−2qi are central in Sym(B) because f is a morphism inActive. Thus f restricts to
two morphisms fi : AProj(piA) → AProj(qiB) of eAWstar. Corollary 4.9 provides
a morphism g1 : p1A→ q1B of AWstar with AProj(g1) = f1, and Proposition 4.10
provides a morphism g2 : p2A → q2B of AWstar with AProj(g2) = f2. Their
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sum g : A → B, defined by g(a) = g1(p1a) + g2(p2a), is a morphism of AWstar

satisfying AProj(g) = f . �

Corollary 4.12. AWstar is equivalent to a full subcategory of Active.

Proof. Follows directly from Lemma 3.14 and Theorem 4.11. �

This corollary immediately presents the problem of characterizing those active
lattices in the essential image of AProj. That is, for which active lattices (P,G, ·)
does there exist an AW*-algebraA such that (P,G, ·) ∼= AProj(A) as active lattices?
This is a coordinatization problem, reminiscent of von Neumann’s coordinatization
of continuous geometries by continuous regular rings [33]. The authors are currently
unaware of any active lattices that are not in the essential image of AProj. A
solution to this problem should provide deeper insight into how exactly the active
lattice AProj(A) “encodes” the ring structure of an AW*-algebra A.

We incorporated the symmetry group into AProj(A) to circumvent the problem
that the product pq of two projections in an AW*-algebra A is only a projection if
p and q commute. Another way to bypass this shortcoming would be to consider
the submonoid P (A) ⊆ A generated by Proj(A). The involution of A restricts to
P (A), and this makes A into a Baer ∗-semigroup in the sense of Foulis [12] (that is,
a ∗-semigroup in which the right annihilator of any subset is generated as a right
ideal by a projection). The assignment A 7→ P (A) is a functor from AWstar to
the category of Baer ∗-semigroups with morphisms given by ∗-homomorphisms that
preserve annihilating projections. This functor is faithful for the same reason given
in the proof of Lemma 3.14. Theorem 4.11 now suggests the natural question: is
this functor also full?

In conclusion, our results also suggest the following natural question for general
C*-algebras: can one reconstruct a C*-algebra A from the piecewise C*-algebra
N(A), the unitary group U(A), and the action by conjugation of the latter on
the former? The following proposition shows that this comes down to a Mackey–
Gleason type problem once again.

Proposition 4.13. Let A,B be C*-algebras, and f : N(A) → N(B) a morphism of
piecewise C*-algebras that restricts to a group homomorphism U(A) → U(B). Then
f extends to a ∗-homomorphism A→ B if and only if it is additive on self-adjoints.

Proof. One direction is obvious. For the other, assume that f is additive on self-
adjoints. Since any a ∈ A can be written as a = a1+a2 for self-adjoint a1 = 1

2 (a+a
∗)

and a2 = 1
2i(a − a∗), if f extends to a linear function f : A → B, then it does so

uniquely, by f(a) = f(a1) + if(a2). First notice that this is well-defined and
coincides with the given values for a ∈ N(A), since in that case a1 ⊙ a2.

As (a+ b)1 = a1+ b1 and (a+ b)2 = a2+ b2, the assumption makes the extension
f : A→ B additive. Next, for z ∈ C, say z = x+ iy for real x and y, compute

f(za) = f(xa1 − ya2) + if(xa2 + ya1),

zf(a) = f(xa1)− f(ya2) + if(xa2) + if(ya1).

So the assumption in fact makes the extension f : A → B a C-linear function. It
also clearly satisfies f(a∗) = f(a)∗ and f(1) = 1.

Finally, any self-adjoint a ∈ A can be written as a = 1
2a+ + 1

2a− for unitaries

a± = a± i
√
1− a∗a that commute with each other and a. Therefore any element of
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A is a linear combination of four unitaries. Because f restricts to a homomorphism
U(A) → U(B), it therefore preserves multiplication on all of A. �

One could take into account the action by conjugation of U(A) on N(A), but it
is not clear at all how additionally assuming that f(uau∗) = f(u)f(a)f(u)∗ should
guarantee that f is additive on self-adjoints.
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